Species composition of cyanoprokaryota in the summer phytoplankton of 55 selected lakes and reservoirs, sampled in Bulgaria in the years 2018, 2019, 2021 and 2023

Authors

DOI:

https://doi.org/10.60066/GSU.BIOFAC.Bot.107.57-113

Keywords:

algal blooms, biodiversity, chytrids, drone observations , Rhizosiphon anabaenae, rare species, zoosporic parasites

Abstract

The paper presents detailed results on cyanoprokaryote diversity in the summer phytoplankton of 55 lakes, small and large reservoirs sampled in Bulgaria in the frame of three joined projects related to algal blooms threat to human health and national security. The phytoplankton of twenty from these selected waterbodies was sampled for first time. In total, 185 species and one variety from 55 genera have been identified, 54 of which (29%) were novel for the country. The average contribution of cyanophytes to the phytoplankton per site was 8 species (or 44% of the total biodiversity), reaching in some sites 80%. According to the morphology, the recorded algae were distributed as follows: 83 coccal, 52 non-eterocytous filamentous and 51 heterocytous filamentous cyanoprokaryotes. Their average contribution to the phytoplankton diversity was estimated as 4 coccal, 2 non-heterocytous and 2 heterocytous species per site. Most of the cyanoprokaryote species (94, or 51%) were recorded only once, even in the case of wetlands and sites which have been repeatedly visited during all sampling campaigns. These 96 species embrace 39 coccal, 23 non-heteroctous and 32 heterocytous forms. No species was found in all studied waterbodies. The most widely spread species were Microcystis aeruginosa (19 records), Planktolyngbya limnetica (17 records), Aphanizomenon klebahnii (16 records), Microcystis wesenbergii (16 records), Aphanocapsa delicatissima (13 records), Cuspidothrix issatschenkoi (12 records), Coelomoron pusillum (11 records), Pseudanabaena limnetica (11 records), Anagnostidinema amphibium (10 records), Raphidiopsis raciborskii (10 records), Limnococcus limneticus (10 records), and separate cells of Microcystis as well (15 records). The record of the chytrid parasite Rhizosiphon anabaenae on separate trichomes of Sphaerospermopsis aphanizomenoides is described.

 

References:

Canter H. M. 1950. Fungal parasites of the phytoplankton. I. - Annals of Botany 14: 263–289.

Canter H. M. 1972. A guide to the fungi occurring on planktonic blue-green algae. – In: Desikachary T. V. (Ed.) Taxonomy and biology of blue-green algae, University of Madras, Madras, 145–158.

Canter H. M. & Lund J. 1948. Studies on plankton parasites. - New Phytologist 110 47: 238–261.

Canter H. M. & Lund J. 1951. Studies on plankton parasites. Examples of the interaction between parasitism and other factors determining the growth of diatoms. - Annals of Botany 15: 359–371.

Carpine R. & S. Sieber 2021. Antibacterial and antiviral metabolites from cyanobacteria: their application and their impact on human health. - CRBIOT 3: 65-81.

Descy J.-P., M. P. Stoyneva-Gärtner, B. A. Uzunov, P. H. Dimitrova, V. Ts. Pavlova & G. Gärtner 2018. Studies on cyanoprokaryotes of the water bodies along the Bulgarian Black Sea Coast (1890-2017): a review, with special reference to new, rare and harmful taxa. - In: Peev D. R., G. Gärtner, M. P. Stoyneva-Gärtner, N. V. Popova & E. E. Georgieva (Eds), Proceedings of the First European Symposium “Research, Conservation and Management of Biodiversity of European Seashores”(RCMBES) Primorsko, Bulgaria, 8-12 May 2017. - Acta zoologica bulgarica, Suppl. 11: 43–52.

Dimitrova R. E., E. P. Nenova, B. A. Uzunov, M. D. Shihiniova & M. P. Stoyneva 2014. Phytoplankton composition of Vaya Lake (2004-2006). – Bulgarian Journal of Agricultural Science 20, Suppl. 1: 165-172.

Dochin K. 2019. Functional and morphological groups in the phytoplankton of large reservoirs used for aquaculture in Bulgaria Bulgarian Journal of Agricultural Science 25 (1): 166-176.

Dochin K. 2021. Summer cyanoprokaryote blooms in eleven reservoirs in South Bulgaria. – Annual of Sofia University, Faculty of Biology, Book 2 – Botany 105: 5-17.

Dochin K. 2022. The dominance of invasive algae Raphidiopsis raciborskii in lowland reservoirs in Bulgaria. - Bulgarian Journal of Agricultural Science 28 (1): 158-165

Dochin K. 2023. Using phytoplankton as a tool for evaluating changes in the ecological status of two Bulgarian reservoirs (2020-2021). - Bulgarian Journal of Agricultural Science 29 (2): 252-261.

Dochin K., A. Ivanova & I. Iliev 2017. The phytoplankton of Koprinka Reservoir (Central Bulgaria): species composition and dynamics. - Journal of BioScience and Biotechnology (1): 73-82.

Dochin K., V. Kuneva, A. Ivanova & I. Iliev 2018. Current state of phytoplankton in Batak reservoir (Southwestern Bulgaria). - Bulgarian Journal of Agricultural Science 24 (4): 686–697.

Gecheva G. M., D. S. Belkinova, Y. G. Hristeva, R. D. Mladenov & P. S. Stoyanov 2019. Phytoplankton and Macrophytes in Bulgarian Standing Water Bodies. – Ecologia Balkanica, Special edition 2: 45-61.

Geitler L. 1932. Cyanophyceae. - In: Rabenhorst’s Kryptogamen Flora. 14. Akad. Verlagsges., Leipzig, 1196 pp.

Gollerbakh M. M., Kosinskaja E. K. & Poljanskij V. I. 1953. Opredelitel presnovodnykh vodoroslej SSSR, Vypusk 2: Sinezelionye vodorosli [The guide for 111 determination of the freshwater algae of the USSR Part 2: Blue-green algae]. Moscow: Publ. House Sovetskaya Nauka (Soviet science), 652 pp. (In Russian)

Hindák F. 2008. Colour Atlas of Cyanophytes. Publishing House of the Slovak Academic of Sciences VEDA, Bratislava, 253 pp.

Komárek J. 2013. Cyanoprokaryota. 3 Teil/Part 3: Heterocytous genera. – In: Büdel B., G. Gärtner, L. Krienitz & M. Shagerl (Hrsg./Eds.), Süßwasserflora von Mitteleuropa, 19/3, Springer-Spectrum, Springer Verlag, Berlin - Heidelberg, 1130 pp.

Komárek J. & Anagnostidis K. 1999. Cyanoprokaryota. 1 Teil: Chroococcales. – In: Ettl H., G. Gärtner, H. Heynig & D. Mollenhauer (Hrsg.), Süßwasserflora von Mitteleuropa, 19/1, Gustav Fischer, Jena, 548 pp.

Komárek J. & Anagnostidis K. 2005. Cyanoprokaryota. 2 Teil: Oscillatoriales. – In: Büdel B., G. Gärtner, L. Krienitz & M. Shagerl (Hrsg.), Süßwasserflora von Mitteleuropa, 19/2, Elsevier GmbH, Spektrum Akademischer Verlag, München, 759 pp.

Konkel R., A. Milewska, N. D. T. Do, E. B. Duran, A. Szczepanski, J. Plewka, E. Wieczerzak, S.Iliakopoulou, T. Kaloudis, D. Jochmans, J. Neyts, K. Pyrc & H. Mazur-Marzec 2023. Anti-SARS-CoV-2 activity of cyanopeptolins produced by Nostoc edaphicum CCNP1411. - Antiviral Research 219:105731.

Mader J., Gallo A., Schommartz T., Handke W., Nagel C.-H., Günther P., Brune W. & Reich K. 2016. Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis. - The Journal of Allergy and Clinical Immu-nology 137: 197–203.

Mazur-Marzec H., Cegłowska M., Konkel R. & P yrć K. 2021. Antiviral cyanometabolites - A review. - Biomolecules 11: 474.

Merel S., Walker D., Chicana R., Snyder S., Baurès E. & Thomas O. 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. - Environment International 59: 303–327.

Meriluoto J., L. Spoof & Codd J. (Eds) 2017. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons Ltd., Chichester, 548 pp.

Mitchell C. A., Ramessar K. & O’Keefe B. R. 2017. Antiviral lectins: selective inhibitors of viral entry. - Antiviral Research 142: 37–54.

Radkova M., Stefanova K., Uzunov B., Gärtner G. & Stoyneva-Gärtner M. 2020. Morphological and molecular identification of microcystin-producing Cyanobacteria in nine shallow Bulgarian water bodies. - Toxins 12 (1): 39.

Rasconi S., Niquil N & Sime-Ngando T. 2012. Phytoplankton chytridiomycosis: community structure and infectivity of fungal parasites in aquatic ecosystems. - Environmental Microbiology 14: 2151–2170.

Rasconi S., B. Grami, N. Niguit, M. Jobard & T. Sime-Ngando 2014. Parasitic chytrids sustain zooplankton growth during inedible algal bloom. – Frontiers in Microbiology 5: 229.

Rasconi S., Grossart H-P, Gsell A, Ibelings BW, van de Waal D, Agha R, Bacu A, Balode M, Beklioğlu M, Berden Zrimec M, Botez F, Butler T, Cerbin S, Cortina A, Cunliffe M, Frenken T, Garcés E, Gjyli L, Golan Y, Guerra T, Iacovides A, Idà A, Kagami M, Kisand V, Leshoski J, Marco P., Mazalica N., Miki T., Moza M. I., Neuhauser S., Özkundakci D., Panksep K., Patcheva S., Pestoric B., Petrova Stoyneva M., Pinto D., Polle J., Postolache C., Pozo Dengra J., Reñé A., Rychtecky P., Schmeller D. S. S., Scholz B., Selmeczy G., Sime-Ngando T,. Tapolczai K., Tasevska O., Trbojevic I., Uzunov B., Van den Wyngaert S., van Donk E., Vanthoor M., Veljanoska Sarafiloska E., Wood S . & Znachor P. 2022. Applications for zoosporic parasites in aquatic systems (ParAqua). - ARPHA Preprints. Submitted to Research Ideas and Outcomes. https://doi.org/10.3897/arphapreprints.e94590.

Schopf J. W. 2012. The fossil record of Cyanobacteria, - In: Whitton B. A. (Ed.), The ecology of Cyanobacteria II. Their diversity in space and time. Spinger, 15-38.

Skuja H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Sweden. – Symbolae Botanicae Upsalienses 9 (3): 1-399.

Stal L. J. 2012. Cyanobacterial mats and stromatolites. - In: Whitton B. A. (Ed.), The ecology of Cyanobacteria II. Their diversity in space and time. Springer, 65-126.

Starmach K. 1966. Cyanophyta – Sinice. Glaucophyta – Glaukofity. – In: Starmach K. (Ed.), Flora Słodkowodna Polski. Tom 2. PWN, Warszawa, 806 pp. (In Polish)

Stefanova K., Radkova M., Uzunov B., Gärtner G. & Stoyneva-Gärtner M. 2020. Pilot search for cylindrospermopsin-producers in nine shallow Bulgarian waterbodies reveals nontoxic strains of Raphidiopsis raciborskii, R. mediterranea and Chrysosporum bergii. – Biotechnology and Biotechnological Equipment 34 (1): 384-394.

Stoyneva M. P. 2014. Contribution to the studies of the biodiversity of hydro- and aero-biontic prokaryotic and eukaryotic algae in Bulgaria. DrSc Thesis, Sofia University “St. Kliment Ohridski”, Faculty of Biology, Department of Botany, 825 pp. + Appendices (In Bulgarian, English summary).

Stoyneva-Gärtner M., Stefanova K., Uzunov B., Radkova M. & Gärtner G. 2022. Cuspidothrix is the first genetically proved anatoxin A producer in Bulgarian lakes and reservoirs. - Toxins 14: 778.

Stoyneva-Gärtner M. P., Descy J.-P., Uzunov B. A., Miladinov P., Stefanova K., Radkova M. & Gärtner G. 2023. Diversity of the summer phytoplankton of 43 waterbodies in Bulgaria and its potential for water quality assessment. - Diversity 15: 472.

Stoyneva-Gärtner M., Stefanova K., Descy J.-P., Uzunov B., Radkova M., Pavlova V., Mitreva M. & Gärtner G. 2021. Microcystis aeruginosa and M. wesenbergii were the primary planktonic microcystin producers in several Bulgarian waterbodies (August 2019). - Applied Science 11: 357.

Teas J., J. R. Hebert, J. H. Fitton & P . V Zimba 2004. Algae – a poor man's HAART? - Medical Hypotheses 62 (4): 507-510.

Teneva I., D. Belkinova, R. Mladenov, P. Stoyanov, D. Moten, D. Basheva, S. Kazakov & B. Dzhambazov 2020. Phytoplankton composition with an emphasis of Cyanobacteria and their toxins as an indicator for the ecological status of Lake Vaya (Bulgaria) – part of the Via Pontica migration route. Biodiversity Data Journal 8: e57507

Uzunov B., Stefanova K., Radkova M., Descy J.-P., Gärtner G. & Stoyneva-Gärtner M. 2021a. First report on Microcystis as a potential microviridin producer in Bulgarian waterbodies. - Toxins 13 (1): 448.

Uzunov B., Stefanova K., Radkova M., Descy J.-P., Gärtner G. & Stoyneva-Gärtner M. 2021b. Microcystis species and their toxigenic strains in phytoplankton of ten Bulgarian wetlands (August 2019). – Botanica 27: 77–94.

Valskys V., Gulbinas Z., Stoyneva-Gӓrtner M., Uzunov B., Skorupskas R., Karosienė J., Kasperovičienė J., Rašomavičius V., Uogintas D., Audzijonytė A., Dainys J., Urbanavičius R., Urbanavičiūtė I., Vaičiūtė D., Bučas M., Grendaitė D., Stonevičius E., Gedvilas A. & Koreivienė J. 2022. Remote sensing in environmental studies: Advantages and challenges. – Annual of Sofia University, Faculty of Biology, Book 2-Botany 106 (1): 31-44.

Whitton B. A. & Potts M. 2012. Introduction to the Cyanobacteria. - In: Whitton B. A. (Ed.), The ecology of Cyanobacteria II. Their diversity in space and time. Springer, 1-14.

Xu H., McCarthy M.J., Paerl H. W., Brookes J. D., Zhu G., Hall N. S., Qin B., Zhang Y., Zhu M., Hampel J. J., Newell S. E. & Gardner W. S., 2021. Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: implications for nutrient management. - Limnology and Oceanography 66 (4): 1492–1509.

Yan D., Xu H., Lan J., Yang M., Wang F., Hou W., Zhou K. & An Z. 2020. Warming favors subtropical lake cyanobacterial biomass increasing. – Science of the Total Environment 726: 138606.

Yan D., Xu H., Yang M., Lan J., Hou W., Wang F., Zhang J., Zhou K., An Z. & Goldsmith Y. 2019. Responses of cyanobacteria to climate and human activities at Lake Chenghai over the past 100 years. - Ecological Indicators 104: 755–763.

Zhang J., K. Shi, H. W. Paerl, K. M. Rühland, Y. Yuan, R. Wang, J. Chen, M. Ge, L. Zheng, Z. Zhang, B. Qin, J. Liu & Smol J. P. 2023. Ancient DNA reveals potentially toxic cyanobacteria increasing with climate change. – Water Research 229: 119435.

Downloads

Published

2023-01-01

How to Cite

Species composition of cyanoprokaryota in the summer phytoplankton of 55 selected lakes and reservoirs, sampled in Bulgaria in the years 2018, 2019, 2021 and 2023. (2023). Annual of Sofia University "St. Kliment Ohridski", Faculty of Biology, Book 2 - Botanics, 107, 57-113. https://doi.org/10.60066/GSU.BIOFAC.Bot.107.57-113