In this paper we consider the equation $x_1^2 + x_2^2 + x_3^2 + x_4^2 = N$, where N is a sufficiently large integer and prove that if η is quadratic irrational number and $0 < \lambda < \frac{1}{10}$, then it has a solution in almost-prime numbers x_1, \ldots, x_4, such that $\{\eta x_i\} < N - \lambda$ for $i = 1, \ldots, 4$.

Keywords: Lagrange’s equation, almost-primes, quadratic irrational numbers.

2020 Math. Subject Classification: Primary 11P05; Secondary 11N36.

1. INTRODUCTION AND STATEMENT OF THE RESULT

In 1770 Lagrange proved that for any positive integer N the equation

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = N \quad (1.1)$$

has a solution in integer numbers x_1, \ldots, x_4. Later Jacobi found an exact formula for the number of the solutions (see [8, Ch. 20]). A lot of researchers studied the equation (1.1) for solvability in integers satisfying additional conditions. There is a hypothesis stating that if N is sufficiently large and $N \equiv 4 \pmod{24}$ then (1.1) has a solution in primes. This hypothesis has not been proved so far, but several approximations to it have been established.
In 1994 J. Brüdern and E. Fouvry [1] proved that for any large \(N \equiv 4 \pmod{24} \), the equation (1.1) has a solution in \(x_1, \ldots, x_4 \in \mathcal{P}_{34} \). (We say that integer \(n \) is an almost-prime of order \(r \) if \(n \) has at most \(r \) prime factors, counted with their multiplicities. We denote by \(\mathcal{P}_r \) the set of all almost-primes of order \(r \).) This result was improved by D. R. Heath-Brown and D. I. Tolev [9]. They showed that, under the same restrictions for \(N \), the equation (1.1) has a solution in prime \(x_1 \) and almost-prime \(x_2, x_3, x_4 \in \mathcal{P}_{101} \). In their paper they also proved that the equation has a solution in \(x_1, \ldots, x_4 \in \mathcal{P}_{25} \). In 2020 Tak Wing Ching [2] improved this result with three of them being in \(\mathcal{P}_3 \) and the other in \(\mathcal{P}_4 \).

On the other hand, let us consider a subset of the set of integers having the form
\[
\mathcal{A} = \{ n \mid a < \{ \eta n \} < b \},
\]
where \(\eta \) is a fixed quadratic irrational number, and \(a, b \in [0, 1] \).

Denote by \(I(N) \) the number of solutions of (1.1) in arbitrary integers and by \(J(N) \) the number of solutions of (1.1) in integers from the set \(\mathcal{A} \).

In 2011 S. A. Gritsenko and N. N. Motkina [6] proved that for any positive small \(\varepsilon \), the following formula holds
\[
J(N) = (b - a)^4 I(N) + O \left(N^{0.9+3\varepsilon} \right).
\]

S. A. Gritsenko and N. N. Motkina consider many others additive problem in which variables are in special set of numbers similar to \(\mathcal{A} \). (See [4] – [5] and [7].) In 2013 A. V. Shutov [12] considered solvability of diophantine equation in integer numbers from \(\mathcal{A} \). Further research in this area was made by A. V. Shutov and A. A. Zhukova [13].

We consider the equation (1.1), where \(x_i \) are almost-prime numbers and belong to a set similar to \(\mathcal{A} \). Our result is

Theorem 1.1. Let \(\eta \) be a quadratic irrational number, \(0 < \lambda < \frac{1}{10} \) and \(k = \left\lfloor \frac{54}{1 - 10\lambda} \right\rfloor \). Then for every sufficiently large integer \(N \), the equation (1.1) has a solution in almost-prime numbers \(x_1, \ldots, x_4 \in \mathcal{P}_k \), such that \(\{ \eta x_i \} < N^{-\lambda} \), \(i = 1, 2, 3, 4 \).

In the present paper we use the following notations.

We denote by \(N \) a sufficiently large odd integer and \(P = N^{\frac{1}{2}} \). Letters \(a, b, k, l, m, n, q, p \) always stand for integers. By \((n_1, \ldots, n_k) \) we denote the greatest common divisor of \(n_1, \ldots, n_k \). Let \(||t|| \) denote the distance from \(t \) to the nearest integer. We denote by \(\vec{n} \) four dimensional vectors and let
\[
||\vec{n}|| = \max(|n_1|, \ldots, |n_4|).
\]

As usual, \(\mu(q) \) is the Möbius function and \(\tau(q) \) is the number of positive divisors of \(q \). Sometimes we write \(a \equiv b \pmod{q} \) as an abbreviation of \(a \equiv b \pmod{q} \).
We write $\sum_{x \equiv (q)}$ for a sum over a complete system of residues modulo q and respectively $\sum_{x \equiv (q)}^*$ is a sum over a reduced system of residues modulo q. We also denote $e(t) = e^{2\pi it}$.

We use Vinogradov’s notation $A \ll B$, which is equivalent to $A = O(B)$. By ε we denote an arbitrarily small positive number, which is not the same in different occurrences. The constants in the O-terms and \ll-symbols are absolute or depend on ε.

2. AUXILIARY RESULTS

Now we introduce some lemmas, which shall be used later.

Lemma 2.1. Suppose that $D \in \mathbb{R}, D > 4$. There exist arithmetical functions $\lambda^{\pm}(d)$ (called Rosser’s functions of level D) with the following properties:

1. For any positive integer d we have
 \[|\lambda^{\pm}(d)| \leq 1, \quad \lambda^{\pm}(d) = 0 \text{ if } d > D \text{ or } \mu(d) = 0. \]

2. If $n \in \mathbb{N}$ then
 \[\sum_{d|n} \lambda^{-}(d) \leq \sum_{d|n} \mu(d) \leq \sum_{d|n} \lambda^{+}(d). \]

3. If $z \in \mathbb{R}$ is such that $z^2 \leq D$ and if
 \[P(z) = \prod_{2 < p < z} p, \quad B = \prod_{2 < p < z} \left(1 - \frac{1}{p-1}\right), \quad N^{\pm} = \sum_{d|P(z)} \frac{\lambda^{\pm}(d)}{\varphi(d)}, \quad s_0 = \frac{\log D}{\log z}, \quad (2.1) \]
 then we have
 \[B \leq N^{+} \leq B \left(F(s_0) + O \left((\log D)^{-\frac{1}{3}}\right)\right), \quad (2.2) \]
 \[B \geq N^{-} \geq B \left(f(s_0) + O \left((\log D)^{-\frac{1}{3}}\right)\right), \quad (2.3) \]

where $F(s)$ and $f(s)$ satisfy
\begin{align*}
F(s) &= 2e^{\gamma}s^{-1}, & \text{if } & 2 \leq s \leq 3, \\
f(s) &= 2e^{\gamma}s^{-1}\log(s-1), & \text{if } & 2 \leq s \leq 3, \\
(sF(s))' &= f(s-1), & \text{if } & s > 3, \\
(sf(s))' &= F(s-1), & \text{if } & s > 2.
\end{align*}

Here γ is Euler’s constant.

Lemma 2.2. Suppose that \(\Lambda_i, \Lambda_i^\pm \) are real numbers satisfying \(\Lambda_i = 0 \) or \(1 \), \(\Lambda_i^- \leq \Lambda_i \leq \Lambda_i^+ \), \(i = 1, 2, 3, 4 \). Then
\[
\Lambda_1 \Lambda_2 \Lambda_3 \Lambda_4 \geq \Lambda_1^- \Lambda_2^+ \Lambda_3^- \Lambda_4^+ + \Lambda_1^+ \Lambda_2^- \Lambda_3^+ \Lambda_4^- + \Lambda_1^+ \Lambda_2^+ \Lambda_3^- \Lambda_4^+ + \Lambda_1^+ \Lambda_2^+ \Lambda_3^+ \Lambda_4^- - 3 \Lambda_1^+ \Lambda_2^+ \Lambda_3^+ \Lambda_4^+ .
\]
(2.4)

Proof. The proof is similar to the proof of [1, Lemma 13].

Let
\[
w_0(t) = \begin{cases} e^{\frac{t}{t^2 - \frac{1}{5}}} & \text{if } t \in \left(-\frac{4}{5}, \frac{4}{5}\right) , \\ 0 & \text{if } t \not\in \left(-\frac{4}{5}, \frac{4}{5}\right) \end{cases}
\]
and
\[
w(x) = w_0 \left(\frac{x}{P} - \frac{1}{2} \right) .
\]
(2.5)

Lemma 2.3. Let \(u, \beta \in \mathbb{R} \) and
\[
J(\beta, u) = \int_{-\infty}^{+\infty} w_0 \left(x - \frac{1}{2} \right) e(\beta x^2 + ux) dx .
\]
(2.6)

Then:

1. For every \(k \in \mathbb{N} \) and \(u \neq 0 \) we have
\[
J(\beta, u) \ll_k \frac{1 + |\beta|^k}{|u|^k} .
\]

2. The following inequality hold
\[
J(\beta, u) \ll \min \left(1, |\beta|^{-\frac{1}{2}} \right) .
\]

Proof. See [9, Lemma 9].

Lemma 2.4. Suppose that \(\vec{u} \in \mathbb{Z}^4 \) and
\[
J(\beta, \vec{u}) = \prod_{i=1}^{4} J(\beta, u_i) .
\]

Then we have
\[
\int_{-\infty}^{+\infty} |J(\beta, \vec{u})| d\gamma \ll |\vec{u}|^{-1+\epsilon} .
\]
Proof. Proof can be found in [9, Lemma 10].

Lemma 2.5. There exists a function $\sigma(v, q, \gamma)$ defined for $-\frac{q}{2} < v \leq \frac{q}{2}, q \leq P, |\gamma| \leq \frac{P}{q}$, integrable with respect to γ, satisfying

$$|\sigma(v, q, \gamma)| \leq \frac{1}{1+|v|}$$

and also for every $a \in \mathbb{Z}, (a, q) = 1$ we have

$$\sum_{-\frac{q}{2} < v \leq \frac{q}{2}} e\left(\frac{\pi v}{q}\right) \sigma(v, q, \gamma) = \begin{cases} 1 & \text{if } \gamma \in \mathcal{N}(a, q), \\ 0 & \text{otherwise}, \end{cases}$$

where

$$\mathcal{N}(a, q) = \left(-\frac{P^2}{q(q+q')}, \frac{P^2}{q(q+q'')} \right)$$

and

$$P < q + q', q + q'' \leq P + q, \quad aq' \equiv 1(\text{mod } q), \quad aq'' \equiv -1(\text{mod } q). \quad (2.7)$$

Proof. See [15, Lemma 45].

For $q \in \mathbb{N}$ and $m, n \in \mathbb{Z}$, the Gauss sum is defined by

$$G(q, m, n) = \sum_{x(q)} e\left(\frac{mx^2 + nx}{q}\right). \quad (2.8)$$

For $\vec{d} = \langle d_1, \ldots, d_4 \rangle \in \mathbb{Z}^4$ and $\vec{n} = \langle n_1, \ldots, n_4 \rangle \in \mathbb{Z}^4$ we denote

$$G(q, a\vec{d}, \vec{n}) = \prod_{i=1}^{4} G(q, ad_i^2, n_i).$$

We need to estimate an exponential sum of the form

$$V_q = V_q(N, \vec{d}, v, \vec{n}) = \sum_{a(q)}^* e\left(\frac{\pi v - Na}{q}\right) G(q, a\vec{d}, \vec{n}). \quad (2.9)$$

To estimate V_q we use the properties of the Gauss sum and the Kloosterman sum.

Lemma 2.6. Suppose that $N, q \in \mathbb{N}, v \in \mathbb{Z}$ and $\vec{d}, \vec{n} \in \mathbb{Z}^4$. Then we have

$$V_q(N, \vec{d}, v, \vec{n}) \ll q^\frac{5}{4} \tau(q)(q, N)^\frac{1}{2}(q, d_1)(q, d_2)(q, d_3)(q, d_4).$$

Moreover, if some of the conditions

$$(q, d_i)|n_i, \quad i = 1, \ldots, 4$$

do not hold, then $V_q(N, \vec{d}, v, \vec{n}) = 0$.

Proof. This result is analogous to this one in [1, Lemma 1].

Lemma 2.7. (Liouville) If η is an irrational number which is the root of a polynomial f of degree 2 with integer coefficients, then there exists a real number $A > 0$ such that, for all integers p, q, with $q > 0$,

$$|\eta - \frac{p}{q}| \geq \frac{A}{q^2}.$$

Proof. See [11, Theorem 1A].

3. PROOF OF THE THEOREM

3.1. BEGINNING OF THE PROOF

Let N be a sufficiently large integer. We denote

$$z = N^\alpha, \quad P(z) = \prod_{p < z} p, \quad \delta = N^{-\lambda}.$$

We apply the well-known Vinogradov’s “little cups” lemma (see [10, Chapter 1, Lemma A]) with parameters

$$\alpha_1 = \frac{\delta}{4}, \quad \beta_1 = \frac{3\delta}{4}, \quad \Delta = \frac{\delta}{2}, \quad r = [\log N]$$

and construct a function $\theta(t)$ which is periodic with period 1 and has the following properties:

$$\theta \left(\frac{\delta}{2} \right) = 1; \quad 0 < \theta(t) < 1 \quad \text{for} \quad 0 < t < \frac{\delta}{2} \quad \text{or} \quad \frac{\delta}{2} < t < \delta;$$

$$\theta(t) = 0 \quad \text{for} \quad \delta \leq t \leq 1.$$

Furthermore, from the Fourier series of $\theta(t)$ we find

$$\theta(t) = \frac{\delta}{2} + \sum_{0 < |m| \leq H} c(m) e(mt) + O(P^{-A}), \quad (3.1)$$

with

$$|c(m)| \leq \min \left(\frac{\delta}{2}, \frac{1}{|m|} \left(\frac{[\log N]}{\delta \pi |m|} \right)^{[\log N]} \right).$$
where A is arbitrary large constant and
\[
H = \left[\frac{\log N}{\delta}\right]^2.
\] (3.2)

Let us denote
\[
\theta(\eta\vec{x}) = \theta(\eta x_1)\theta(\eta x_2)\theta(\eta x_3)\theta(\eta x_4)
\]
and
\[
w(\vec{x}) = w(x_1)w(x_2)w(x_3)w(x_4).
\]
We consider the sum
\[
\Gamma = \sum_{x_1^2 + x_2^2 + x_3^2 + x_4^2 = N} \theta(\eta\vec{x})w(\vec{x}).
\]
From the condition $(x_i, P(z)) = 1$ it follows that any prime factor of x_i is greater than or equal to z. Suppose that x_i has l prime factors, counted with their multiplicities. Then we have
\[
N^{\frac{1}{2}} \geq x_i \geq z^l = N^{\alpha l}
\]
and hence $l \leq \frac{1}{2\alpha}$. This implies that if $\Gamma > 0$ then equation (1.1) has a solution in almost-prime numbers x_1, \ldots, x_4 with at most $\left[\frac{1}{2\alpha}\right]$ prime factors, such that $\{\eta x_i\} < N^{-\lambda}$, $i = 1, \ldots, 4$.

For $i = 1, 2, 3, 4$ we define
\[
\Lambda_i = \sum_{d|(x_i, P(z))} \mu(d) = \begin{cases} 1 & \text{if } (x_i, P(z)) = 1, \\ 0 & \text{otherwise.} \end{cases} \quad (3.3)
\]
Then we find that
\[
\Gamma = \sum_{x_1^2 + x_2^2 + x_3^2 + x_4^2 = N} \Lambda_1\Lambda_2\Lambda_3\Lambda_4 \theta(\eta\vec{x})w(\vec{x}).
\]
We can write Γ as
\[
\Gamma = \sum_{x_i \in \mathbb{Z}} \Lambda_1\Lambda_2\Lambda_3\Lambda_4 \theta(\eta\vec{x})w(\vec{x}) \int_0^1 e(\alpha(x_1^2 + x_2^2 + x_3^2 + x_4^2 - N)) d\alpha.
\]
Suppose that $\lambda^{\pm}(d)$ are the Rosser functions of level D (see Lemma 2.1). Let also denote
\[
\Lambda_i^{\pm} = \sum_{d|(x_i, P(z))} \lambda^{\pm}(d), \quad i = 1, 2, 3, 4. \quad (3.4)
\]
Then from Lemma 2.1, (3.3) and (3.4) we find that
\[
\Lambda_i^{-} \leq \Lambda_i \leq \Lambda_i^{+}.
\]
We use Lemma 2.2 and find that
\[
\Gamma \geq \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 - 3\Gamma_5,
\]
where \(\Gamma_1, \ldots, \Gamma_5\) are the contributions coming from the consecutive terms of the right side of (2.4). We have \(\Gamma_1 = \Gamma_2 = \Gamma_3 = \Gamma_4\) and
\[
\Gamma_1 = \sum_{x_i \in \mathbb{Z}} A^+_1 A^+_2 A^+_3 A^+_4 \theta(\eta \vec{x}) w(\vec{x}) \int_0^1 e(\alpha (x_1^2 + x_2^2 + x_3^2 + x_4^2 - N)) d\alpha,
\]
\[
\Gamma_5 = \sum_{x_i \in \mathbb{Z}} A^+_1 A^+_2 A^+_3 A^+_4 \theta(\eta \vec{x}) w(\vec{x}) \int_0^1 e(\alpha (x_1^2 + x_2^2 + x_3^2 + x_4^2 - N)) d\alpha.
\]
Hence, we get
\[
\Gamma \geq 4\Gamma_1 - 3\Gamma_5. \tag{3.5}
\]

3.2. ASYMPTOTIC FORMULA FOR \(\Gamma_1\)

We shall find an asymptotic formula for the integral \(\Gamma_1\). We have
\[
\Gamma_1 = \sum_{d_i \mid P(z)} \lambda^-(d_1) \lambda^+(d_2) \lambda^+(d_3) \lambda^+(d_4) \sum_{x_i \equiv 0 (d_i)} \theta(\eta \vec{x}) w(\vec{x}) \times \int_0^1 e(\alpha (x_1^2 + \cdots + x_4^2 - N)) d\alpha
\]
\[
= \sum_{d_i \mid P(z)} \lambda^-(d_1) \lambda^+(d_2) \lambda^+(d_3) \lambda^+(d_4) \times \int_0^1 \prod_{1 \leq i \leq 4} \left(\sum_{x \equiv 0 (d_i)} \theta(\eta x) w(x) e(\alpha x^2) \right) e(-N\alpha) d\alpha.
\]
Let
\[
S(\alpha, d, m) = \sum_{\substack{x \in \mathbb{Z} \\ x \equiv 0 (d)}} w(x) e(\alpha x^2 + m\eta x). \tag{3.6}
\]
Then using the Fourier series of \(\theta(t)\) (see (3.1)), we find
\[
\sum_{x \equiv 0 (d)} \theta(\eta x) w(x) e(\alpha x^2) = \sum_{|m| \leq H} c(m) \sum_{x \equiv 0 (d)} w(x) e(\alpha x^2 + m\eta x) + O(P^{-A}).
\]
Denoting
\[
S(\alpha, \vec{d}, \vec{m}) = S(\alpha, d_1, m_1) S(\alpha, d_2, m_2) S(\alpha, d_3, m_3) S(\alpha, d_4, m_4) \tag{3.7}
\]
and
\[
\lambda(\vec{d}) = \lambda^-(d_1) \lambda^+(d_2) \lambda^+(d_3) \lambda^+(d_4), \tag{3.8}
\]
we find that

$$\Gamma_1 = \sum_{d_i \mid P(z)} \sum_{|m_i| \leq H} \lambda(d_i) \sum_{x_i \equiv 0(d_i)} \frac{c(m_i)}{x_i^2 + x_i^2 + x_i^2} \int_0^1 S(\alpha, \vec{d}, \vec{m}) e(-N\alpha) d\alpha + O(1).$$

We divide Γ_1 into two parts:

$$\Gamma_1 = \Gamma_0^1 + \Gamma_1^* + O(1),$$

where

$$\Gamma_0^1 = c^4(0) \sum_{d_i \mid P(z)} \lambda(d_i) \sum_{x_i \equiv 0(d_i)} w(\vec{d})$$

and

$$\Gamma_1^* = \sum_{d_i \mid P(z)} \lambda(d_i) \sum_{0 < |m_i| \leq H} c(m_i) \int_0^1 S(\alpha, \vec{d}, \vec{m}) e(-N\alpha) d\alpha.$$ (3.9)

Hence

$$\Gamma \geq 4\Gamma_0^1 - 3\Gamma_0^5 + O(\Gamma_5^*) + O(\Gamma_5^*).$$ (3.10)

According to [1] and [9], for $D \leq P^{1/8-\epsilon}$, $s = \frac{\log D}{\log z} = 3.13$ the estimate

$$4\Gamma_1^0 - 3\Gamma_5^0 \gg \frac{C\delta N}{(\log N)^4} + O(\delta P^{3/2+\epsilon} D^4)$$ (3.11)

with some constant C is obtained. Thus it suffices to evaluate Γ_1^* and Γ_5^*.

3.3. ESTIMATION OF Γ_1^*

In this subsection we find the upper bound for Γ_1^* defined in (3.9). The function in the integral in Γ_1^* is periodic with period 1, so we can integrate over the interval I defined as

$$I = \left[\frac{1}{1 + \lfloor P \rfloor}, \frac{1}{1 + \lfloor P \rfloor} + 1 \right].$$

We apply the Kloosterman form of the Hardy-Littlewood circle method. We divide the interval only into large arcs. Using the properties of the Farey fractions, we represent I as an union of disjoint intervals in the following way:

$$I = \bigcup_{q \leq P} \bigcup_{a=1}^q \mathcal{L}(a, q),$$

where

$$\mathcal{L}(a, q) = \left[\frac{a}{q} - \frac{1}{q(q+q')}, \frac{a}{q(q+q')} + \frac{1}{q(q+q''')} \right].$$

and where the integers \(q', q'' \) are specified in (2.7). Then

\[
\Gamma^*_1 = \sum_{d_i \mid P(z)} \lambda(\vec{d}) \sum_{0 \leq |m_i| \leq H} c(m_i) \sum_{q \leq P} \sum_{a=1}^{q} \int_{\mathcal{L}(a,q)} S(\alpha, \vec{d}, \vec{m}) e(-N\alpha) \, d\alpha.
\]

We change variable of integration \(\alpha = \frac{a}{q} + \beta \) to get

\[
\Gamma^*_1 = \sum_{d_i \mid P(z)} \lambda(\vec{d}) \sum_{0 \leq |m_i| \leq H} c(m_i) \sum_{q \leq P} \sum_{a=1}^{q} \times
\]

\[
\times \int_{\mathcal{M}(a,q)} S\left(\frac{a}{q} + \beta, \vec{d}, \vec{m} \right) e\left(-N \left(\frac{a}{q} + \beta \right) \right) \, d\beta,
\]

where

\[
\mathcal{M}(a,q) = \left[-\frac{1}{q(q + q')}, \frac{1}{q(q + q'')} \right].
\]

From (2.7) we find that

\[
\left[-\frac{1}{2qP}, \frac{1}{2qP} \right] \subset \mathcal{M}(a,q) \subset \left[-\frac{1}{qP}, \frac{1}{qP} \right]
\]

and hence

\[
|\beta| \leq \frac{1}{qP} \quad \text{for} \quad \beta \in \mathcal{M}(a,q).
\]

Now we consider the sum \(S(\alpha, d_i, m_i) \) defined in (3.6). As \(\eta \) is irrational number, \(||s\eta|| \neq 0 \) for all \(s \in \mathbb{Z} \). Using that fact and working as in the proof of [9, Lemma 12], we find that for \(\beta \in \mathcal{M}(a,q) \) we have

\[
S\left(\frac{a}{q} + \beta, d_i, m_i \right) = \frac{P}{d_i q} \sum_{n \in M_i} \left(\beta P^2, (m_i \eta - \frac{n}{d_i q}) P \right) G(q, a d_i^2, n) + O(P^{-B}),
\]

where \(G(q, m, n) \) and \(J(\gamma, u) \) are defined respectively by (2.8) and (2.6), \(B \) is an arbitrarily large constant, \(M_i = d_i P^\varepsilon \), \(\varepsilon > 0 \) is arbitrarily small and the constant in the \(O \)-term depends only on \(B \) and \(\varepsilon \). We leave the verification of the last formula to the reader.

Let

\[
F(P, \vec{d}) = \sum_{0 \leq |m_i| \leq H} c(m_i) \sum_{q \leq P} \sum_{a=1}^{q} e\left(-\frac{aN}{q} \right) \int_{\mathcal{M}(a,q)} S\left(\frac{a}{q} + \beta, \vec{d}, \vec{m} \right) e(-\beta N) d\beta.
\]

It is obvious that

\[
\Gamma^*_1 = \sum_{d_i \mid P(z)} \lambda(\vec{d}) F(P, \vec{d}).
\]
Using (3.13) and Lemma 2.3 we get
\[F(P, \vec{d}) = F^*(P, \vec{d}) + O(1), \tag{3.15} \]
where
\[
F^*(P, \vec{d}) = \frac{P^4}{d_1d_2d_3d_4} \sum_{0 < |m_i| \leq H \atop 1, 2, 3, 4} c(m_i) \sum_{q \leq P} \frac{1}{q^2} \sum_{a(q)} \epsilon \left(-\frac{aN}{q} \right) \times \\
\times \sum_{|n_i - m_i d_i q \eta| < M_i} G(q, a d_i^2, \vec{n}) \int_{N(a, q)} J \left(\beta P^2, (\vec{m} \eta - \vec{n} \eta \vec{d}/d) P \right) e(-\gamma) d\gamma.
\]

Using Lemma 2.5 and working as in the proof of [14, Lemma 2] we find that
\[F^*(P, \vec{d}) = F'(P, \vec{d}) + O(P^{3/2 + \varepsilon}), \tag{3.16} \]
where
\[
\begin{aligned}
F'(P, \vec{d}) &= \frac{P^2}{d_1d_2d_3d_4} \sum_{0 < |m_i| \leq H \atop 1, 2, 3, 4} c(m_i) \sum_{q \leq P} \frac{1}{q^2} \sum_{|n_i - m_i d_i q \eta| < M_i \atop (q, d_i)} V_q(N, \vec{d}, 0, \vec{n}) \times \\
&\times \int_{|\gamma| \leq \beta P} J \left(\gamma, (\vec{m} \eta - \vec{n} \eta \vec{d}/d) P \right) e(-\gamma) d\gamma,
\end{aligned}
\]
and \(V_q(N, \vec{d}, 0, \vec{n}) \) is defined by (2.9). We represent the sum \(F'(P, \vec{d}) \) as
\[F'(P, \vec{d}) = F_1 + F_2, \tag{3.17} \]
where \(F_1 \) is the contribution of these addends with \(q \leq Q \) and \(F_2 \) for addends with \(Q < q \leq P \). Here \(Q \) is parameter, which we choose later. Using Lemma 2.3 (2), Lemma 2.6 and (3.1), we get
\[F_2 \ll \frac{P^2 \delta^4}{d_1d_2d_3d_4} \sum_{0 < |m_i| \leq H \atop 1, 2, 3, 4} \sum_{Q < q \leq P} \frac{Q^{5/2} T(q, N)^{1/2} (q, d_1) \cdots (q, d_4)}{q^4} \times \\
\times \sum_{|n_i - m_i d_i q \eta| < M_i \atop (q, d_i)} 1.
\]
(3.18)

It is clear that the sum over \(\vec{n} \) in the expression above is
\[\ll \prod_{1 \leq i \leq 4} \frac{M_1 M_2 M_3 M_4}{(q, d_1)(q, d_2)(q, d_3)(q, d_4)} \times \]
\[\ll \frac{P^c d_1d_2d_3d_4}{(q, d_1)(q, d_2)(q, d_3)(q, d_4)}, \]

which, together with (3.18) and (3.2), gives

$$F_2 \ll P^{2+\varepsilon} \sum_{Q < q \leq P} \frac{\tau(q)(q, N)^{1/2}}{q^{3/2}}.$$

Now we apply Cauchy’s inequality to get

$$F_2 \ll P^{2+\varepsilon} \left(\sum_{Q < q \leq P} \frac{\tau(q)}{q} \right)^{1/2} \left(\sum_{Q < q \leq P} \frac{(q, N)}{q^2} \right)^{1/2} \ll P^{2+\varepsilon} \frac{1}{Q^{1/2}}.$$ \hspace{1cm} (3.19)

To evaluate F_1 we firstly apply Lemma 2.4 to get

$$\int_{|\gamma| \leq \frac{Q}{q}} \left| J \left(\gamma, (m\eta - \frac{\tilde{n}}{dq}) P \right) \right| d\gamma \ll \left(\left| (m\eta - \frac{\tilde{n}}{dq}) P \right| \right)^{-1+\varepsilon}.$$

Then using Lemma 2.6 and (3.2) we obtain

$$F_1 \ll \frac{P^2}{d_1 d_2 d_3 d_4} \sum_{Q \leq q} \frac{q^{5/2} \tau(q)(q, N)^{1/2}(q, d_1)(q, d_2)(q, d_3)(q, d_4)}{q^4} \times \sum_{1 \leq i \leq 4} \frac{1}{|(m\eta - \frac{\tilde{n}}{dq}) P|}.$$ \hspace{1cm} (3.20)

It is clear that if $n_i = (q, d_i)t_i$, $d_i = (q, d_i)d_i'$ and

$$\left| (m\eta - \frac{n_i}{dq}) P \right| = \frac{P(q, d_i)}{qd_i'} |t_i - m_i d_i' \eta q|,$$

then the sum over $(m\eta - \frac{n}{dq}) P$ in the expression above is

$$\ll \frac{P}{d_1} \sum_{\substack{|t_i - m_i d_i' \eta q| < \frac{M(t_i, d_i)}{d_i} \\text{for } 1 \leq i \leq 4}} \frac{1}{\max_{1 \leq i \leq 4} (q, d_i)|t_i - m_i d_i' \eta q|/d_i}.$$ \hspace{1cm} (3.21)

Let t_1^q be such that

$$|t_1^q - m_1 d_1' \eta q| = || - m_1 d_1' \eta q|| = ||m_1 d_1' \eta q||.$$

As η is quadratic irrational number, then $||m_1 d_1' \eta q|| \neq 0$ and for $t_1 \neq t_1^q$ we have $|t_1 - m_1 d_1' \eta q| \geq 1/2$. Hence

$$\max_{1 \leq i \leq 4} \frac{(q, d_i)|t_i - m_i d_i' \eta q|}{d_i} \gg \frac{(q, d_1)}{d_1},$$
which, together with (3.21), gives

\[
\frac{q}{P} \sum_{|t_i - m_i d_i' q| < \frac{M_1}{d_i}} \frac{1}{\max (q, d_i)|t_i - m_i d_i' q|/d_i}
\ll \frac{q}{P} \left(\frac{d_1 M_1 M_3 M_4}{(q, d_1)^2(q, d_2)(q, d_3)(q, d_4)} + \frac{d_1 M_2 M_3 M_4}{(q, d_1)(q, d_2)(q, d_3)(q, d_4)} ||m_1 d_1' q|| \right)
\ll \frac{q P^{-1} d_1 d_2 d_3 d_4}{(q, d_1)^2(q, d_2)(q, d_3)(q, d_4)} + \frac{q P^{-1} d_1 d_2 d_3 d_4}{(q, d_1)(q, d_2)(q, d_3)(q, d_4)} ||m_1 d_1' q||.
\]

(3.22)

As \(\eta \) is quadratic irrationality, it has periodic continued fraction and if \(\frac{a_n}{b_n} \), \(n \in \mathbb{N} \) is the \(n \)-th convergent, then \(b_n \leq c^n \) for some constant \(c > 0 \). Using that \(||m_1 d_1' q|| \leq \frac{3HDQ}{(d_1, q)} \) and Liouville's inequality for quadratic numbers (see Lemma 2.7), we can find convergent \(\frac{a}{b} \) to \(\eta \) with denominator such that

\[
3\frac{HDQ}{(d_1, q)} < b \ll c \frac{HDQ}{(d_1, q)}.
\]

(3.23)

Since \((a, b) = 1 \) we have that \(m_1 d_1' q \frac{a}{b} \not\in \mathbb{Z} \). As \(|\eta - \frac{a}{b}| < \frac{1}{b^2} \) and (3.23) we get

\[
||m_1 d_1' q\eta|| \geq \left| m_1 d_1' q \frac{a}{b} \right| - \left| m_1 d_1' q \left(\eta - \frac{a}{b} \right) \right| \geq \left| m_1 d_1' q \frac{a}{b} \right| - \frac{|m_1 d_1' q|}{b^2}
\geq \frac{1}{b} - \frac{|m_1 d_1' q|}{3bH_DQ} \geq \frac{1}{b} - \frac{1}{3b} = \frac{2}{3b}
\geq \frac{(d_1, q)}{HDQ}.
\]

From (3.21) and (3.22) it follows that

\[
\sum_{\left| m_1 - m_i d_i q \right| < M_i \atop (q, d_i)|n_1, ..., 4}} \frac{1}{\left| (\bar{m} \eta - \frac{a}{d_4})P \right|} \ll \frac{q P^{-1} d_1 d_2 d_3 d_4 HDQ}{(q, d_1)^2(q, d_2)(q, d_3)(q, d_4)}.
\]

Then for \(F_1 \) (see (3.20)) we obtain

\[
F_1 \ll \frac{P^{1+\varepsilon} DQ}{\delta} \sum_{q \leq Q} \frac{\tau(q)(q, N)^{1/2}}{q^{1/2}}.
\]

(3.24)
Applying Cauchy’s inequality we get

\[F_1 \ll \frac{P^{1+\varepsilon}DQ}{\delta} \left(\sum_{q \leq Q} \tau^2(q) \right)^{\frac{1}{2}} \left(\sum_{q \leq Q} \frac{(q,N)}{q} \right)^{\frac{1}{2}} \]

\[\ll \frac{P^{1+\varepsilon}DQ}{\delta} \cdot Q^{3/2} (\log Q)^{3/2} \left(\sum_{t \leq Q} \sum_{q \leq Q} \frac{1}{q} \right)^{\frac{1}{2}} \]

\[\ll \frac{P^{1+\varepsilon}DQ^{3/2}}{\delta}. \quad (3.25) \]

We choose \(Q = \delta^{1/2} P^{1/2} D^{-1/2} \). Then

\[F_1, F_2 \ll P^{7/4+\varepsilon} \delta^{-1/4} D^{1/4}. \]

From (3.14), (3.15), (3.16), (3.17) it follows that

\[\Gamma^*_1 \ll D^{17/4} P^{7/4+\varepsilon} \delta^{-1/4}. \]

The estimate of \(\Gamma^*_5 \) goes along the same lines.

3.4. END OF THE PROOF OF THEOREM 1.1

From (3.10) and (3.11) we get

\[\Gamma \gg \frac{\delta N}{(\log N)^4} + D^{17/4} P^{7/4+\varepsilon} \delta^{-1/4}. \]

Then for a fixed small \(\varepsilon > 0 \), \(\lambda < \frac{9-8\varepsilon}{10} \), \(D < N^{\frac{1-10\lambda}{10\lambda-8\varepsilon}} \) and \(z = D^{1/3} 13 \) we get \(\Gamma \gg \frac{\delta N}{(\log N)^7} \). So the equation (1.1) have solutions in almost-prime numbers \(x_1, \ldots, x_4 \in \mathcal{P}_k, k = \left\lfloor \frac{53.21}{1-10\lambda-8\varepsilon} \right\rfloor \) such that \(\{ \eta x_i \} < N^{-\lambda}, i = 1, 2, 3, 4. \)

ACKNOWLEDGEMENTS. The authors thank Professor Doychin Tolev for his helpful comments and suggestions. Zhivko Petrov was partially supported by the Sofia University Research Fund through Grant 80-10-43/2020. Tatiana Todorova was partially supported by the Sofia University Research Fund through Grant 80-10-151/2020.

4. REFERENCES

[14] Todorova, T. L. and Tolev, D. I.: On the equation $x_1^2 + x_2^2 + x_3^2 + x_4^2 = N$ with variables such that $x_1x_2x_3x_4 + 1$ is an almost-prime. *Tatra Mountains Math. Publications* **59.** I (2014), 1–26.

Received on December 17, 2020

ZHIVKO H. PETROV AND TATYANA L. TODOROVA
Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
5 James Bourchier Blvd.
1164 Sofia
BULGARIA
E-mails: zhpetrov@fmi.uni-sofia.bg
tlt@fmi.uni-sofia.bg