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1. INTRODUCTION AND STATEMENT OF THE RESULT

Throughout this paper, the notation πn will stand for the set of algebraic poly-
nomials of degree not exceeding n. In 1906 G. D. Birkhoff [2] formulated a general
problem on interpolation by algebraic polynomials, which includes as particular
cases the Lagrange and Hermite interpolation problems. Before formulating the
Birkhoff interpolation problem (BIP), we need the following:

Definition 1. An incidence matrix E = {eij} n r
i=1, j=0 is a matrix with elements

eij ∈ {0, 1}. The number of 1-entries in E is denoted by |E|, and we shall assume
always that E is a normal incidence matrix , i.e., |E| = r + 1.

The Birkhoff interpolation problem (BIP). Given an incidence matrix
E = {eij} n r

i=1, j=0, a vector of interpolation nodes X = (x1, x2, . . . , xn) ∈ Rn,
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x1 < x2 < · · · < xn, and a data set {γij ∈ C : eij = 1}, find a polynomial
p ∈ π|E|−1 such that

p(j)(xi) = γij , {i, j} : eij = 1 . (1.1)

It should be pointed out that, unlike the Lagrange and Hermite interpolation
problems, which are known to have a unique solution, the general BIP is not always
solvable.

Definition 2. An incidence matrix E = {eij} n r
i=1, j=0 is said to be (order)

regular, if for every vector of interpolation nodes X = (x1, x2, . . . , xn) ∈ Rn, x1 <
x2 < · · · < xn, and a data set {γij ∈ C : eij = 1}, the BIP (1.1) has a unique
solution.

Surprisingly enough, despite the efforts of many mathematicians, the problem
of complete characterization of the regular incidence matrices remains open. A
simple necessary condition for regularity was found by Pólya.

Pólya condition. A necessary condition for E = {eij} n r
i=1, j=0 to be regular

is
n∑
i=1

k∑
j=0

eij ≥ k + 1 , k = 0, . . . , |E| − 1 . (1.2)

In 1969 Atkinson and Sharma [1] found a simple sufficient condition for regu-
larity. We need another definition before formulating their result.

Definition 3. A block is called any maximal sequence of 1-entries in a row of
E. A block eij = ei,j+1 = · · · = ei,j+`−1 = 1 is called even , resp. odd , if its length
` is even, resp. odd number. The smallest column index j of 1-entry in a block
defines its level. Hermitian block is a block with level 0.

A row ei = (ei,0, ei,1, . . . , eir) of E is called Hermitian row of length k if it
contains a single block which is Hermitian with length k.

A block eij = ei,j+1 = · · · = ei,j+`−1 = 1 in an interior row ei, 1 < i < n, is
called supported, if there are 1-entries in rows i1 and i2, i1 < i < i2 with column
indices j1, j2 < j.

Atkinson–Sharma Theorem. Every incidence matrix E = {eij} n r
i=1, j=0

which satisfies the Pólya condition (1.2) and does not contain supported odd blocks
is regular.

Note that the incidence matrices corresponding to Lagrange’s and Hermite’s
interpolation problems fulfill the assumptions of the Atkinson–Sharma Theorem.
Indeed, their incidence matrices contain only Hermitian rows (with length one in
the Lagrange case), therefore obviously satisfy the Pólya condition and, as their
rows contain only blocks with level 0, these blocks are not be supported.
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Atkinson and Sharma also conjectured that all matrices that contain odd sup-
ported blocks are not regular. However, Lorentz and Zeller [11] found a counterex-
ample to this conjecture, showing that the three-row incidence matrix

E =

1 1 0 0 0 0
0 1 0 0 1 0
1 1 0 0 0 0

 (1.3)

is regular, despite having two odd supported blocks.

Since the problem of characterizing the regularity of general incidence matrices
turns out to be a very difficult one, some authors [3, 4, 5, 6, 9, 10] have studied
the special class of almost Hermitian matrices, which are incidence matrices which
have only one (interior) non-Hermitian row. Special attention has been paid to the
three–row almost Hermitian matrices. Particular reason for the interest in three–
row matrices is that, by applying technique of splitting (de-coalescence) of rows,
singularity of such matrices can imply singularity of incidence matrices with more
rows, see e.g. [8].

Definition 4. A three–row almost Hermitian incidence matrix E(p, q; k1, k2)
is an incidence matrix with its first and third row Hermitian of length p and q,
respectively (with p ≤ q), and single 1-entries (blocks of length one) in the middle
row in positions k1 and k2, where 1 ≤ k1 < k2 − 1 (the case k1 = k2 − 1 is handled
by the Atkinson-Sharma theorem).

It follows from the results in [9, 10] that E(p, q; k1, k2) is not regular unless one
of the following conditions is satisfied (see [13, Theorem 8.5]):

p ≤ k1 < k2 − 1 ≤ q , (1.4)

q + 1 < k2 and k1 + k2 = p+ q + 1 . (1.5)

Only in the second case (called in [13, p. 104] as the symmetric exterior case)
the regularity is completely characterized. Precisely, in this case E(p, q; k1, k2) is
regular if and only if p = q (for more details, see [13, Theorem 8.15]). In the present

note we present a short proof of the “if part” (the sufficiency). More precisely, we
prove the following

Theorem 1. The almost Hermitian matrix E(m,m; k, 2m+ 1− k) is regular
for every k ∈ N, 1 ≤ k < m.

Notice that the matrix in (1.3) corresponds to the case m = 2, k = 1.

Our proof of Theorem 1 makes use of some properties of the Gegenbauer poly-
nomials, in particular of the Legendre polynomials.
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2. PROOF OF THEOREM 1

The claim of Theorem 1 is equivalent to the following statement:

Proposition 1. Let m, k ∈ N, 1 ≤ k < m. Then for every x ∈ (−1, 1) and
data set {(aj , bj), j = 0, 1, . . . ,m−1; c, d} there exist a unique algebraic polynomial
Q(x) of degree not exceeding 2m+ 1 satisfying the interpolation conditions

Q(j)(−1) = aj , j = 0, 1, . . . ,m− 1,

Q(j)(1) = bj , j = 0, 1, . . . ,m− 1,

Q(k)(x) = c,

Q(2m+1−k)(x) = d .

(2.1)

The linear system for the coefficients of Q has a unique solution if and only if
the corresponding homogeneous system has only trivial solution. The polynomial Q
which satisfy the homogeneous system has zeros of multiplicity m at ±1, therefore
is of the form

Q(t) = ω(t)
[
A(t− x) +B

]
, ω(t) = (x2 − 1)m

with constants A and B determined by Q(k)(x) = Q(2m+1−k)(x) = 0, i.e., by the
linear system∣∣∣∣ B ω(k)(x) + Ak ω(k−1)(x) = 0

B ω(2m+1−k)(x) + A (2m+ 1− k)ω(2m−k)(x) = 0 .

To prove Proposition 1, and thereby Theorem 1, we heed to show that the unique
solution of this last system is A = B = 0, which is equivalent to showing that
∆(x) 6= 0 for every x ∈ (−1, 1), where

∆(x) = kω(k−1)(x)ω(2m+1−k)(x)− (2m+ 1− k)ω(k)(x)ω(2m−k)(x) . (2.2)

For the proof of (2.2) we shall use some properties of the Legendre polynomials,
the orthogonal polynomials in [−1, 1] with respect to the constant weight function.
Recall that the n-th Legendre polynomial Pn is defined by

Pn(x) =
1

2n n!

( d
dx

)n{
(x2 − 1)n

}
.

For j = 1, 2, . . . ,m, we define recursively the j-fold anti-derivative Sj(x) of Pm by

Sj(x) =

x∫
−1

Sj−1(t) dt, S0(x) = Pm(x) .

In view of the definition of Legendre polynomials, we have

Sj(x) =
1

2mm!
ω(m−j)(x) , j = 0, 1, . . . ,m . (2.3)

For the proof of (2.2) we shall need the following lemma.
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Lemma 1. For j = 1, 2, . . . ,m, there holds

Sj(x) =
(m− j)!
(m+ j)!

(x2 − 1)j
( d
dx

)j{
Pm(x)

}
. (2.4)

Proof. We apply backward induction on j. Since
(
d
dx

)m{
Pm(x)

}
= (2m)!

2mm! ,

(2.3) shows that equality (2.4) is true for j = m. Assuming that (2.4) is true for
some j, 1 ≤ j ≤ m, we obtain

Sj−1(x) = S′j(x) =
(m− j)!
(m+ j)!

d

dx

{
(x2 − 1)j

( d
dx

)j{
Pm(x)

}}

=
(m−j)!
(m+j)!

(x2−1)j−1

{
(x2−1)

( d
dx

)j+1{
Pm(x)

}
+2j x

( d
dx

)j{
Pm(x)

}}

=
(m− j)!
(m+ j)!

(x2 − 1)j−1
{

(x2 − 1)z′′ + 2j x z′
}
,

(2.5)

where

z(x) =
( d
dx

)j−1{
Pm(x)

}
. (2.6)

At this point we exploit some well-known properties of the Gegenbauer polynomials.
The Gegenbauer polynomial Cλn is the n-th orthogonal polynomial in [−1, 1] with
respect to the weight function wλ(x) = (1 − x2)λ−1/2 (and the n-th Legendre

polynomials Pn equals C
1/2
n ). The Gegenbauer polynomials satisfy the ordinary

differential equation

(1− x2)y′′ − (2λ+ 1)x y′ + n(n+ 2λ)y = 0 , y = Cλn(x) (2.7)

and their derivatives satisfy d
dx

{
Cλn(x)

}
= 2λCλ+1

n−1(x) (see [14, eqns. (4.7.5) and
(4.7.14)]). From this last property we observe that, apart from a constant factor,

the polynomial z(x) in (2.6) is equal to C
j−1/2
m−j+1(x). Then, according to (2.7),

(x2 − 1)z′′ + 2j xz′ = (m− j + 1)(m+ j) z ,

and substituting this expression in (2.5) we obtain

Sj−1(x) =
(m− j + 1)!

(m+ j − 1)!
(x2 − 1)j−1 z(x) .

With this the induction step from j to j − 1 is done. Lemma 1 is proved. �

We proceed with the proof of (2.2). From (2.3) and( d
dx

)j{
Pm(x)

}
=

1

2mm!
ω(m+j)(x)
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we observe that Lemma 1 is equivalent to the identity

ω(m−j)(x)

(m− j)!
= (x2 − 1)j

ω(m+j)(x)

(m+ j)!
, j = 1, . . . ,m . (2.8)

With j = m− k + 1 and j = m− k this yields

ω(k−1)(x)

(k − 1)!
= (x2 − 1)m−k+1 ω

(2m+1−k)(x)

(2m+ 1− k)!
,

ω(k)(x)

(k)!
= (x2 − 1)m−k

ω(2m−k)(x)

(2m− k)!
.

By expressing ω(2m+1−k) and ω(2m−k) and substitution in (2.2) we find that

∆(x) = k!(2m+ 1− k)!
{ω(k−1)(x)

(k − 1)!

ω(2m+1−k)(x)

(2m+ 1− k)!
− ω(k)(x)

k!

ω(2m−k)(x)

(2m− k)!

}
=

(2m+ 1− k)!

k!
(x2 − 1)k−m−1

{[
kω(k−1)(x)

]2
+ (1− x2)

[
ω(k)(x)

]2}
.

Since the zeros of ω(k−1) and ω(k) interlace, the sum in the last curl brackets is
positive for x ∈ (−1, 1), and consequently ∆(x) 6= 0 for x ∈ (−1, 1). With this the
proof of Proposition 1 is complete.
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