FOAMIIHUK HA COPURCKUA YHUBEPCUTET CB. KIMMEHT OXPUICKHU "

SPARKYJITET ITO MATEMATUEREA U UHPOPMATHURA
Tom 99

ANNUAIRE DE L'UNIVERSITE DE SOFIA |ST. KLIMENT OHRIDSKI*

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 99

UNIVERSAL LEVENSTEIN AUTOMATA FOR
A GENERALIZATION OF THE LEVENSHTEIN DISTANCE

PETAR MITANKIN, STOYAN MIHOV, KLAUS U. SCHULZ

The need to efficiently find approximate matches for a given input string in a large
background dictionary arises in many areas of computer science. In earlier work we
introduced the concept of a universal Levenshtein automaton for a distance bound
n. Given two arbitrary strings » and w, we may use a sequence of bitstrings y(v, w)
obtained from v and w in a trivial way as input for the automaton. The automaton is
deterministic. The sequence x{v,w) is accepted iff the Levenshtein distance between
v and w does not exceed n. We showed how universal Levenshtein automata can be
used to efficiently select approximate matches in large dictionaries. In this paper we
consider variants of the Levenshtein distance were substitutions may be blocked for
specific symbol pairs. The concept of an universal Levenshtecin automaton is extended
to cope with this larger class of similarity measures.

1. INTRODUCTION

The problem of how to find good correction candidates for a garbled input
word is important for many fundamental applications, including spelling correction,
speech recognition, OCR-recognition, error-tolerant querying of search engines for
the world wide web and other kinds of information systems. Due to its relevance
the problem has been considered by many authors (e.g. [2, 13, 21, 1, 18, 19, 7, 25,
4)).

If an electronic dictionary is available that covers the possible input words, a
simple procedure may be used for detecting and correcting errors. Given an input
word w, it is first checked if the word is in the dictionary. In the negative case,

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 5-23. 5

the words of the dictionary that are most similar to w are suggested as correction
candidates. If necessary, appropriate statistical data can be used for refinement of
ranking. Similarity between two words can be measured in several ways. Popular
distance measures are the Levenshtein distance ([8, 23, 12, 22, 15, 11]) or n-gram
distances ([1, 12, 20, 5, 6]).

In previous research we have shown that for each bound n there exists a finite
state automaton - the so-called universal Levenshtein automaton, which represents
- in some sense - the set of all couples of words (w,v) such that the Levenshtein
distance between w and v is at most n: Given two arbitrary strings v and w, we may
use a sequence of bitstrings (v, w) obtained from v and w in a trivial way as input -
for the automaton. The sequence y(v,w) is accepted iff the Levenshtein distance
between v and w does not exceed n. The fact that the automaton is deterministic
and does not depend on the particular words but only on the bound n makes the
universal Levenshtein automaton very suitable for practical applications. We can
use this automaton to extract very efficiently all words from a dictionary that are
sufficiently similar to a given input word.

In this paper we show how to compute universal Levenshtein automata for a
generalization of the Levenshtein distance. The usual Levenshtein distance repre-
sents the minimal number of edit operations required to transform one of the two
words into the other. Edit operations are substitution (replacement of one symbol
of the word with another), deletion or insertion of a symbol. Here we restrict the
set of possible substitutions, thus obtaining a more general and flexible notion of
string distance. A set S is fixed that consists of couples of symbols. When we
transform one of the two words into the other, i.e. when we calculate the distance,
we allow to replace the symbol a with the symbol b only if (a,b) € S. When §
contains all possible couples, we have the usual Levenshtein distance.

The research on this generalization is motivated by the fact that in many prac-
tical applications some of the symbol substitutions are not possible. For instance in
a spell checker it would be relevant to restrict S to those couples of symbols whose
corresponding keys are situated close to each other on the keyboard or which can
have similar phonetic realizations.

The main result presented in this report is a construction of the finite au-
tomaton that represents in some sense the set of all couples of words (w,v) for
which the generalized (via §) Levenshtein distance between w and v is at most
n. This automaton has properties analogous to those of the universal Levenshtein
automaton.

Ths paper is structured as follows. In Section 2 we start with formal prelim-
inaries. In Section 3 we introduce a non-deterministic variant of the Levenshtein
automaton for the generalized distance with restricted substitutions. Section 4
presents a determinization procedure. In Sections 5 and 6we define the correspond-
ing universal automaton. In Section 7 we represent some properties of the universal
automaton for the new distance measure. We also present some statistics on the
universal automata for bounds n < 5. The role of each type of automaton will
become clearer after reading the formal preliminaries.

6 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.

2. PRELIMINARIES

Let ¥ be finite alphabet and S C £ x ¥. We define d] - function that gene-
ralizes the usual Levenshtein distance.

Definition 2.1. d3 : ¥* x Z* = N
l)w=¢corx=c¢

. de
d$ (w, z) = max(|wl, |z)

Qw#ecand r #e
Let w = wyws...w, and * = r122...Tk.

de . . ;
ds (w,) ef min(1f(w1_=:1:1,di(wz...w,,,xz...xk),oo),

1+ dz(wg...ur,,,x),
1+ dj (w, z2...2k),
if((wr,z1) € S,1 + d3 (wa..wp, Ta...Tx), 00))

The following proposition shows that we may think of d7 in the terms of sub-
stitution, deletion and insertion.

Proposition 2.1. Let us consider that ¥ and ¥’ are equal but the symbols
in ¥ are black and the symbols in £ are red. In other words, let ¥’ = {a'|a € £},
r be a biection from % into £’ and ¥ N ¥’ = ¢. For each black symbol a € X
with @’ we denote the corresponding red symbol r(a). Let v € (X UZX')*. We
say that v is transformed into w via deletion of a symbol iff v = viv2..0¢ and

T

W = UyVs...V;_1Vis1.-.0; for some i such that 1 < i < ¢t and v; € Y. We say
that v is transformed into w via insertion of a symbol iff v = viva...v4 and w =
v102...0;6"Vi41...v¢ for some i such that 0 < 7 < t and b’ € 3. We say that v is
transformed into w via substitution iff v = viva...v¢ and w = v 1v2...0;_ 16" Vip1... Ve
for some i such that 1 <i <t v; € £, b € ¥’ and (v;,0) € S. If, w,z € ¥*, then
d (w,) is the minimal natural number k£ for which there exists sequence of words
wg, W1, ..., Wk such that

1) wo = w,

2) if 0 < i < k — 1 then w; is transformed into w;41 via deletion of a symbol,
insertion of a symbol or substitution,
a; ifa; €2

3) if wx = ajaz...a; then x = byby...by where b; = { ¢ ifa;ey and ¢ = a;

In fact this proposition shows that the order of applying the operations that
transform w into v is not crucial. For eaxample, if S = ¢, then d7 (abe, acd) = 2.
We could apply first the deletion and after it the insertion: wo = abe, w1 = ac,
ws = acd’. But we could also aplly first the insertion and after it the deletion:
wo = abe, wy = abed', wy = acd'.

Is it true that d7 is a distance? It is true that dj (w,z) = 0 & w = z and
the triangle inequality holds for d§. But d3 is not always symmetric, i.e. d; is not

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 5-23. 7

always distance. d‘Z is distance only when the relation S is symmetric.

How can we compute d7 (w.x)? Wagner and Fischer show how dynamic pro-
gramming scheme can be used to compute the usual Levenshtein distance ([23]). The
same tehnique can be used for d'z' (w,z): we find recursively the values A/;; of a
(Jewe] + 1) x (Jx| + 1) sized matrix M:

1)Myj=j3—-1for1 <j<|r|+1land M;; =i~1forl <7< |w|+1

2) Let us suppose that we have found A;;, M,y ; and M; ;4. Then

4’\[,‘+1_j+| = . 77?-1:71(if(u-',- =Ty, A‘Iij, OO),
1+ AL i,
1+ M,
ff((u,‘,',.’l'.]’> €S, 1+ x\'fij,))
After we have found the values of A, we have that df(w, T) = My +1,|7141-

Let n € N. We use d to introduce a criterion for proximity of two words. We

consider that the word « is proximate to the word w if dj (w,) < n. With L(w,n)
: de
we denote the set of all words that are proximate to the word w: L(w,n) <

{z]d7 (w,z) < n}. It turns out that for each word w and each n we can build
finite automaton A2 (w), such that its language L(AP(w)) = L(w,n). We give a
definition of AP(w) in section 3. The main result of this report is the so-called
universal automaton AY - deterministic finite automaton that represents in some
sense L(w,n) for each word w. We call AY ‘universal’ because, in contrast to
AP (w), AY does not depend neither on particular word w nor on the set S, but it
depends only on n. We give a definition of AY in section 4.

How does AY represent L(w,n) for each word w? Let w be a word and n be
a natural number. For given word z € ¥+ we want to know whether x € L(w, n).
We suppose that |z| < |w| +n. (If [z] > Jw| + n, then z & L(w,n).) ¥ (LY is the
alphabet of AY) consists of couples of binary vectors, i.e. £¥ ¢ {0,1}*x {0,1}*. By
w and z we build in some way a word a = aja...a,| whose symbols are couples
of binary vectors, i.e. a; € {0,1}* x {0,1}* for 1 < i < |z|. Then o € L(AY) &
z € L(w,n). We build « in the following way: a = ajaa...a),) as a; = (5, (3s)i)
for 1 <i¢ < |z| and

1) 8; = x{(z;, wi—pwi—pnii...wr), where

k=min(lul,i+n+1), w_py; =w_p = ... =wy = $ forn > 0, $ is such
symbol, that § ¢ X,
1, ifc=a;
0, ifc#a;
2) (Bs)i = Xs(T5, Wi—n41Wi—p41...wg), where
k=min(lwl,i+n—1),w_pio=w_py1 =..=upg=%forn>1
1, if (aj,c) €S
0, if{aj.c)¢gS

and x(c,ajaz...a;) = b1by...b, as b; = {

and xs(c,a1az2...a;) = byba...b, as b; = {

8 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.

{001, x)

(0]0(X). X> . -__,____,_.__‘."‘II":.:(‘xlx(x). x)"
’ v s 2 .

.' ’{ﬂO(x), X) ! | "'_(xl,X)

TP x01, x
'(X”x-x):\ll"'.lé-rl},' ()
e a {x()]x. X) e S
<Ollx’.‘x)) 1 xxlxn)
L 000X, x) . '4 o
(I llx X)A “‘I . I:I I-:l I+|-I, N . - (l(ﬂ,x) / (OXIX, x) (xx‘.x>
. N LR L N i S /t . |)

f(lxlx.x)"_ _ SR P
e M2 MY

.- -\ \ - ' {{—l.'._l+l":‘.__\i
. .«: . "- .\\- 4 ™~ ... ,'

a0ty \
(x0ix.0), " * LA N T o (Ix0(x).x)

E .’ 4 l . S ~'..": el b :;'
(I .I\O(x) X) {0 x(x)“_xf S o

(%, %)

{Ix1,x)

o {0xLx) /

: . \‘ - l'iv o S S Lo
: :.'(_llx(x).x)_f"{/—l".l";'j-."' 10(x)(x). x) i
o {Ix(x)(x), x) f_:l-l”'}_ (l‘s)uft'g_M"f_}.;

s

Xy (100(x), x)

S if
OL,x) 7~

| LN

4X00(x), 1) qoxy

(1, x}y
- Lu’ _ 2u|.‘u _ I-l.M.,,': ‘{

/'
«

J

; Loy
Oy M

(xOL G g
x0.1). (x0,0)

fdmnx) gy DXL a1 ey

ﬂ - o Sabm (0D |

. e ‘ N e (x’g.).,'-
e {xhxy y\-’:_M"_'_.}',,

(x0(0(x)), 0)
(x01,0) .

Fig. 1 A}

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 5-23. 9

Example. Let us consider that ¥ = {a,b,¢c,...,z} and S = {(a,d), (d,a),
(hyk),(h,n)}. Let w = hahd and x = hand. We want to know whether = €
L(hahd, 1). We construct the word a = ajazazay:

o = (B, (B:)1) = (x(h,$hah), x,(h, h)) = (0101,0)

a2 = (B2, (Bs)2) = (x(a, hahd), x,(a,a)) = (0100,0)

ag = (33,(8s)3) = (x(n,ahd), xs(n, h)) = (000, 1)

gy = (/34'» (.He)1> = (’((d~ hd): Ys(d, d)) = (01,0)

The automaton A is depicted on fig. 1. On fig. 1 the notation r means 0 or
1 and the bracketed expressions are optional. For instance from the state {J —
1#1 1#1 [+ 1#'} with (010(x),) we can reach the state {I#!1}. This means that
from {I — 1#1 [#1] 4+ 1#1} we can reach {I#'} with (010,0), (010,1), {(0100,0),
(0100, 1), (0101,0) and (0101, 1). So we start from the initial state {/#°} and with
the symbols (0101, 0, (0100, 0), (000, 1) and (01, 0) we visit the states {I#1}, {1#0},
{I —1#1 1#1} and {M#!}. {M#'} is final state. Therefore hand € L(hahd, 1).

With the notions and notations introduced above, the structure of the paper
may now be rephrased as follows. In Section we build nondeterministic finite
automaton AYP(w), such that its language L{ANP(w)) is L(w,n). In Section
we determinize in a specific way AN P(w). As a result we obtain the deterministic
automaton A”(w). In Section we define the universal automaton AY and show
the connection between A”(w) and AY. In Section we represent some properties
of AY, that are based on our previous research. We also show some final results for
AY when n < 5. ‘

3. NONDETERMINISTIC FINITE AUTOMATON ANP (W)

Deﬁnitic()in 3.1. Letwe X*andn € N.
ANP(w) < (3, QNP,0%0,61P, FNP)
Let |w| = p. The set of states of ANP(w) is QNP & {i#c|0 < i < p& 0 <
e < n}. (With i#° we denote the couple (i,e).) The set of the final states is
def . . I . .
FND %S fi#e) i < n—e). The initial state is 0%°. SND C QNP x (ZU{e})x QNP
is the transition relation. Let ¢ € £ U {e} and q1,q2 € QNP. Then
de
(qi,c,q2) € NP &
q=i"&ec=win &g =i+ 1% or
g =1i*&ce L&g = i#etl or
G =1""&c=e&qg =i+ 1%+ or
q = ite & <’ll’i+1,(.‘.> eES&qgp =1+ 1 #et+]
The automaton A) P (wywowswws) is depicted on fig 2. where we use S5, to
denote {c|(w;,c) € S} U {¢}.

10 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.

Fig. 2 AQ’D(u'l'wgwgu,q ws)

If we think of d*z in the terms of the operations substitution, deletion and inser-
tion, we can draw the following analogy between ANP(w) and d7: each transition
(i#¢, €, + 1#t1) in ANP () corresponds to deletion of the symbol wi+1, each
transition (i#¢,c,i+1#t!) forc€ X corresponds to substitution - replacement of
the symbol ;41 with ¢, each ¢ransition (i%¢, c,i%<t!) corresponds to insertion of
the symbol ¢. The e in the state i#¢ indicates the number of the operations that
have been applied on the way from the initial state 0#0 to i

Proposition. L(A)P(w)) = L(w,n)

Proof. With 67" we denote the oxtended transition relation, that is defined
by induction as usual:

1) (m,e,m) € ONP”

2) (m v.7) € SNP* & (n a,m") € SND & (n" €, ma) € §ND* = (my,va, m) for
v e X* and a € LU {¢€}

3) NP is the smallest w. T .t. C relation for which the conditions 1) and 2)

-

are true.

We check that L(i¥€) def {v € T*3m € FND . (i#°,0,7) € 52}1)*} _
{v|d] (wip1Wis2--Wps v) < n—e} = L(wis1 Witz Wps M~ e), where p = |wl. When
i#e = 0#0, we have L(ANP (w)) = L(O#O) = L{w,n).

Automata that are similar to ANDP(w) are used for approximate search of a
word w in a text T ([24, 3)). 1f we add a ¥ loop to the initial state 0%9, the language

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 5-23. 11

of the automaton will be £*.L(w,n) and we could use the automaton to traverse
the text T

4. DETERMINISTIC FINITE AUTOMATON AR (W)

In this scction we determinize the automaton ANP(w) in a specific way. In
result we get the deterministic automaton AP(w). In the standard subset con-
struction for determinization each state of the deterministic automaton is subset.
of Q)YP. We also define each state of A (w) as a subset of Q¥P. The difference is
that we use the so-called relation of subsumption <,C QNP x QNP <, is defined
in such a way that 7, <, mo = L(my) 2 L(mq). This allows each state Q of AP (w)
to be built such that Vo', 7" € Q : #’ £, n”. '

The construction that we represent here is analogous to one presented for the
usual Levenshtein distance in [17].The main differences are the additional charac-
teristic vector Y, that depends on S and the additional relevant subword.

4.1. THE RELATION OF SUBSUMPTION <s

Definition 4.1. Q, Y {i#<lic Z&0 < e < n}

Definition 4.2. </ C Q,, x Qn
ite < GG GH € (i e ety ety

Proposition 4.1. Let i#“ j#/ ¢ QNP Then i#¢ <! % = L@i*°) D
L(j#/). '

Definition 4.3. <,C Qn xQ,
<s Is the transitive closure of <.

Corollary 4.1. Let i*c, j#/ € QNP Thep i#e < j#f = L(i#¢) D L(5#/).
The next proposition gives a direct way to compute whether i#¢ < j#/,
Proposition 4.2. i#° < j#/ o F—i<f-e&kf>e

The set {m € QYP[3#0 <, 7} for n = 2 and |w| = 5 is depicted with bold
circles on fig. 3.

12 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.

© @

Fig. 3 {r e QNP[3#% < x}

4.2. CHARACTERISTIC VECTORS. RELEVANT SUBWORDS
Let us consider that AYP(w) is fixed. Let 7 € ND and a € X.

Definition 4.4. R(w,a) Ui € QNP|(m,a,n') € 6N P"}
We call R(7.,a) the set of all states reachable from with a.

To determinize ANP(w) we have to know R(m,a) for each 7 € QyY D and for
each a € £. We introduce w(, and w”‘"] - subwords of w. We call wy,) and u,"[“ﬂ
resp. relevant to m subword of w an s-relevant to m subword of w. For each
symbol a € ¥ and each word aaz...ar € X° we introduce also the binary vectors
\(a.ajas...ax) and Ys(@,a1as...a;). We call them resp. characteristic vector and
s-characteristic vector of a w. . t. ajaz...ax. We define the relevant subwords and
the characteristic vectors in such a way that if we know x(a,w(-) and xs(a, Wix))
then we know R(m,a). In ANP(w) there are four types of transitions {G1.¢,q2):

1) ¢y = i#°, ¢ = wiy) and g2 =7 + 1%¢

2) q1 =i ce ¥ and g = gHetl

3) q1 = i*¢, c =€ and gp = i + 17t

4) g1 = i#°, (wiy1,¢) € Sand g2 =i + | #etl

To know all states 7' € R(7,a) means to know all sequences

(*) (m, e, my), (71, €, m2), o {Tr1, €, 707), (77, @,), (w6, mh), Ty, €, 7).

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 5-23. 13

Of course, if we know 7 then we know all sequences (*), for which the transition
(my,a, 7)) has the type 2). So we define the relevant subwords and the characteris-
tic vectors in such a way that if we know y(m,a), then we know each sequence (*)
for which the transition (7,,a,n}) has the type 1) or 4):

Definition 4.5. y : £ x £* — {0,1}*

1 ifa=a;
x(a, a1az...ak) = biby..by. where b; = { 0 :fZ # Z

Definition 4.6. y,: X x ¥* — {0,1}*
1 if (a;,a) €S

Ys(@,a1as...ax) = byby...bx where b; = { 0 if (as.a) &S
Definition 4.7. wy) .f:"D — X

def . .
W] = Wip1Wip2...Wipk Where k = min(n — e + 1, jw| — 7).

Definition 4.8. wf, : QP — &*

def . .
“’f‘i.#'] = Wip 1 Wip2...Wirk Where k = main(n — e, |w| — i).

4.3. (5g - THE FUNCTION OF THE ELEMENTARY TRANSITIONS

If we apply the standard subset construction for determinization of AP (w)
and A is some state received during the determinization, then B = | J . 4 R(m,¢)
will be also state of the deterministic automaton for ¢ € . But if 7, 72 € B and
T <s T2, we can continue the determinization with B’ = B\{m2} instead with B,
because | J, 5 L(m) = U,ep L(7). So we can remove from B each 7 for which we
can find 7' € B such that 7’ <, m. This means that we can remove from B all
states that are not minimal w.r.t. <;. We denote with | | B the set of all states that
are minimal in B w.r.t. <,. We use also AU B to denote | |(AUB) and | |, . , f(7)

to denote | |(U,¢ 4 £(m)).

Definition 4.9. Let A C Q,’,V D
L]A =4 {me Al-3n" € A(n" <5)}

Proposition 4.3. Let A C QNP Then

ULw= U L

We define function 62 : QNP x ¥ — P(QNP), such that §°(r,a) = | | R(=, a).
The function 67 is called function of the elementary transitions.

Definition 4.10. 62 : Q, x {0,1}* x {0,1}* — P(Q,)

14 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.

SP(i*e, 3, 3,) “J AU Ag, where

{i+ 1%} if1<pg

. {i#e+) if e < n& 3 =0" for some k; € N

’ {i#H i kFOR Y ik > 2& 00 M < Blet+k—1<n
o otherwise

As = { {i+ kI ifky>0&0 N < B &et+hka<n

’ o ohterwise

Deﬁnition 4.11. 62 : QNP x ¥ — P(QNP)
5P (m,a) “ 8P (m, x(a. wpm). xsla, wiy))

Proposition 4.4. | |R(7,a) = 6P (7, a)

1.4. DETERMINISTIC FINITE AUTOMATON AR (W)

d("f

Definition 4.12. AP(w) = (X, Qn,{O#O} 8D FP)

The set of states of AP(w) is QD f {AJA C QNP & Vm 72 € A(my £,
72) & 3i € [0, |lw|]Vm € A(I*0 <,)}\{fb}

The set of final states is FD I (A€ QP|ANFND £ ¢},

8D is partial transition function:

6D QP x L - QP

1) U7r€4 c (71’ C) Q)
In this case 47 (A a) is not defined.

)Un‘GA [§ (71' a # ¢
OD(A) d(’f L.|1re4 59(7‘.? C)

The following two propositions give us the correctness of the definition of 67
Proposition 4.4. Let i < |w|. Then Vr € §P(i#¢,a) : i + 1#¢ < 7.
Proposition 4.5. V7 € 6P (Jw|#¢,a) : |w|#° < 7.

From the propositions in 3.3 it follows that L(AP (w)) = L(AY P (w)) = L(‘w, n).

The automaton AP (hahd) is depicted on fig. 4. The set S is the one defined in the
example in section 1.

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 5-23. 15

Fig. 4 AP(hahd)

5. UNIVERSAL AUTOMATON A%,

We define the universal automaton AY in such way that for each execution of
AY on some word « we can evaluate the execution of AP (w) on z, where w and z
are those words from *, for which we have built the word a in the way described
in section 1. The states of AY are sets, whose elements have the type I + a*? or
M +a*® (fig. 1). I and M are parameters. When we replace these parameters with
appropriate numbers, the states of AY are transformed into the states of AP (w).

Let gf = {0%%}, qP...., ¢P be those states of AP(w), that we visit with the
word z € X*. 0 < f < |z|. In some cases we may have f < |z| because 57
(the transition function of AD(w)) may not be defined. Let |z| < |w|+ n. Let
@ = aj@2...q|y be built from w and z in the way defined in section 1. Let also
95 = {I*#%}, g7 ,..., g} be those states of AY, that we visit with the word a. Then:

1) g=f,

2) for 0 <4 < f it is true that ¢ is final state iff ¢P is final state,

16 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.

3) for 0 < i < f it is true that ¢ is transformed into ¢P by replacement of
each I in q¥ with i and each A with |w|.

Example. Let us look the execution of AP(w) on the word x = hand for the
example in section 1. The automaton A} (w) is depicted on fig. 4. So qf = {0%°},
¢P = {1#0}, g = {2#0}, ¢} = {2#!,3#} and qP = {4%'}. In section 1 we saw
that qf = {I#0}, qf = {I#°}, ¢§ = {I#°}, ¢§ = {I = 1%, I*'} and qi = {M#'}.
If we replace in q¥ I with i and M with |w| we get ¢°.

To the end of section 4 we present the formal definition of the universal au-

de
comaton AY < (£Y QY {I#°}, FY,57).
5.1. L%, Q% AND FY,

Definition 5.1. LY C {0.1}* x {0,1}*
s © 03,818, 8, € {01} & 1 < |B] < 2n+2& 0 < |B,] < 2n — 1}

Definition 5.2. <,C Q! x Q!
QLY (I+i*lieZ&0<e<n}
I +z'#ff < I +]#f %g i#"-’ <,]#f

Definition 5.3. <;C QM x Qﬁ[
ML My i#lie Z&0< e <n)
M +itte <, M + #1 & i#e <, j#]

Definition 5.4. I, C Q1 , M, c QM

L% (1 +i*e|]i| < ele<n)

M, (M yi#e> —i-n&ki<0&0<e<n)

Definition 5.5. Tstates C P(Is), Mtates C P(M,)

Liates " {AJAC I, & Va1, 02 € A1 £5 32)}\{9}

de
Marares "< {AJAC M, & V1,02 € Alq) £5 @2) &

3jAF(M + j# € A& M + j#1 <, M#") & 3i € [-n,0]Vg € A(M +i#° <, q)}
QX déf Istates U Iustates

def
F,Y ‘3“ A”states

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 5-23. 17

6. 0% - THE TRANSITION FUNCTION

6.1. 5;; - THE FUNCTION OF THE ELEMENTARY TRANSI'I‘]ONS

Definition 6.1. r, : (I, UM,) x {0,1}* — {0,1}*

def Tn+it+1Tn+it2--Tntith

D ru(I + %€, @izaap) = {2 6

where h = min(n — e+ 1,k —n — i).

def | Tr4i+1Tk4i4+2-Thtith

2) ra (M7, izpak) = A0 e

where h = min(n — e+ 1, —1).

Definition 6.2. 73 : (I, U M) x {0,1}* — {0,1}*

de f Tn+iTlntitl - Tntith-1

1) r;(I+i#e,xlmg...a‘k) = ¢

where h = min(n —e,k —n —1i+1).

s de xr : T . ---xk h
2) 7‘:(1"!"*‘3#5»171132...12;6) =f k+i+1Lk+1+2 +i4

€
where h = min(n — e, —1i).

Definition 6.3. I : P(Q,) — P(Q!)

I(A) Y {1 +i— 1#e|i#e € A}

Definition 6.4. M : P(Q,) — P(QM)

M(A) Y (M + i#e|ite ¢ A)

Definition 6.5. 87 : (I, U M) x XY — P(I,) U P(M,)

Let A€ I, UM, and (5,8,) € £¥.

1) 7, (A, 3) is not defined

In this case §7(A4, (3,3,)) is not defined.
2) rn(A, B) is defined

21) A€ I,

Let ¢ = i#° where i and e are such that A4 = I + i#¢.

5Y(A, (B,8s)) & 1(5P(q,ra(A, B),75(A, Bs)))
2.2) Ae M,

Let ¢ = i#¢ where i and e are such that A = M + i#€.

8Y(A, (B,8:)) € M(5P(q,ma(A. B),73(A, Bs)))

ifh>0
ifh<O

ifh>0&k+14+1>0
otherwise

fh>0&n+1>0
otherwise

ifh>0&k+1+1>0
otherwise

18 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.

6.2. FUNCTIONS THAT RESTRICT THE LENGTHS OF 3 AND fg

Definition 6.6. rm : Igates U Mgtates — 1s U M

Let A € Lstates U Mgtates-
Lot ¢ = { pz(dediz=e—-i&I+i*c€ A if A€ Luates
pz{3edi(z=e—i&M+i* € A if A€ Myates
With pz[X] we denote the least z such that the X is true.
rm(A) def{ [+i%* fI+i*cec Ake—i=t
M+i#e fM+i**ec A&ke—i=t

rm(A) is called right most element of A.

Definition 6.7. Va: Lstates U Mstates — P(N)
1) A = {I#%}
ValA) < {kln < k < 2n+2)
2) Ae Istates & A # {I#O}
Let rm(A) = I + i#e.
Va(4) < YW lk2n+i-e+1<k<2n+2}
) A € A-{qtatcs
Va(A) < {k e NIVg € A(if(k < n, M#"~% M +n — k#°) <, q)}\{0}

Definition 6.8. [, : N x N — {true, false}

Lo (ki ko) = true S (ky = 2n+2& ko = 2n—1) or (ky = 2n+ 1& kg = 2n—1)
OI‘(I<K1<2H&’»2 ky— 1)

6.3. SOME OTHER FUNCTIONS AND 6%

Definition 6.9. f, : (I, UM,) x N — {true, false}

e ydef [true fEk<2n+1&e<i+2n+1-k
1) fall +i7%,k) = { false otherwise
true ife>i+n

[4 i#e 1.y %S
2) fa(M +i7 k) = { false otherwise

Definition 6.10. m, : (QLUQM)x N — QI uQ¥
- (Ak)def M+i4+n+1-k# if A=1+i%°
n I+i—-n—1+k# if A= M +i#¢

n: (P(QL)U P(QM)) x N — P(QL)U P(QM)
mn(A k) {ma(a,k)a € A}

Definition 6.11. | | : P(P(I,)) U P(P(M,)) — P(I,) U P(M,)
LJ 4""’{ €UA|-3¢ e VA : ¢ <, q}

Definition 6.12. §¥ : QY x &Y — QY

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 5-23. 19

Let A € QY and (3,5,) € X7.
1) 18] € 7a(A) or L,(13].18:]) = false
In this case 67(A. (3, Bsubs)) is not defined.
2) 18] € ValA) & 1,181,]8s|) = true
21) quA 5:(‘19 <ﬁ~)Bsubs)) = (1')
In this case 67 (A, (3, Bsubs)) is not defined.
2-2) qu4 5V(q <ﬁ)39ubs)) 7é ¢
Let A = U g€ A p q (8 ﬁaubs))
de A if fo(rm(A), = false
n.(A, (;"3, _l'jsuhs> =f { My (A, ’fjl) if ;ng.rmEA;, :‘SB — gue

7. SOME PROPERTIES OF A},

When S = £ x £ dj is the usual Levenshtein distance that we denote with
dy,. In [27] and [26] we have shown that for d;, one can build universal automaton
which here we denote with A® = (3% Q¥, {I#°},6", F*). In this section we show
the connection between AY and A" and some corollaries.

o is the set of the ﬁl‘bt projections of the elements of £¥ ie. ¥ = {3 €
{0,1}* Il < |8 < 2n+ 2}. To define A we use the sets I, and M,, the relation
<s and the sets Igqates and M- defined in section 4. So each state in Q5 just
like each state in QY, is a subset of I, or subset of M. In [26] we have shown the
following:

1) for A} it is true that if ¢ € Iyaees U Myiates, then g is useful in the sense
that g is reachable from the initial state {I#"} and some final state is reachable
from gq,

2) A, is minimal.

Proposition 7.1 (for the connection between A" and AY). Let q € Q“ and
B=2X4. Then 33, € {1} : 6%(q, 8) = 0%(q, (B, 5s)) (ezther both the left expression
and the right expression are not defined or both the left expression and the right
expression are defined and equal).

Remark. That g, for which §%(q,3) = 6. (q, (3, Bs)), is B = 1%2 where ks is
such that 1, (|3], k2) = true.

It follows from the proposition for the connection that 1) and 2) hold also for

AV u QV In [26] we have presented rough upper hmltatlon for |Q|:
lIstateel = 0(24" log, \/2"-_+)

| Mgtates| = O(n2in—108, V2ntl)

In the table below we show some final results for AY when n < 5. The value
of the column ’transitions’ is |[{{g1, b, g2)|(q1.b,q2) € 67 }|.

20 - Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.

Table 1.

n | |Ltates| | |Mstates| | transitions

1 8 6 320
2 50 40 39552
3 322 280 4480416
4 2187 2025 504895904
B} 15510 15026 | 58028259232

8. CONCLUSION

Besides the operations insertion, deletion and substitution in many applications
there is a need for adding other operations. For example for spell checker it would
be relevant to add transposition (swap two adjacent symbols) - mistake that occurs
very frequently while typing text on keyboard. To correct text recognized by an
OCR program it would be useful to add merge (merge of two adjacent symbols into
one) and split (split one symbol into two others). In [17] and [26] we have shown
that in the case of adding transposition as well as in the case of adding merge
and split we can build deterministic automaton and universal automaton such that
the universal one simulates the deterministic one: The technique developed in this
research can be successfully applied if we restrict the allowed operations in these
cases. For instance restricting the allowed substitutions, the allowed merges and the
allowed splits results in universal automaton whose alphabet consists of fourtuples
of binary vectors: besides x and x, we add two other characteristic vectors that
depend on the allowed merges and the allowed splits.

Here comes the problem for characterization of all functions d : ¥* x ¥* — N
for which universal automaton can be built. Our future research will be devoted
to this problem. ‘

REFERENCES

1. Angell, R., George E. Freund, and Peter Willett. Automatic spelling correction
using a trigram similarity measure. 15 Information Processing and Management,
19, 255-261, 1983.

Blair, C. A program for correcting spelling errors. Information and Control, 3,
60-67, 1960.

3. Baeza-Yates R., Gonzalo Navarro. Faster approximate string matching. Algorith-
mica, 23, 2, 127-158, 1999.

4. Dengel A., Rainer Hoch, Frank Hones, Thorsten Jager, Michael Malburg, and Achim
Weigel. Techniques for improving OCR results. In: H. Bunke and P. S. P.Wang,
editors, Handbook of Character Recognition and Document Image Analysis. World
Scientific; 1997.

o

Ann. Sofia Univ.. Fac. Math. and Inf., 99, 2009, 5-23. 21

(W2}

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

22

Kim, Jong Yong, John Shawe-Taylor. An approximate string-matching algorithm.
Theoretical Computer Science, 92, 107-117, 1992.

Kim Jong Yong, John Shawe-Taylor. Fast string matching using an n-gram algo-
rithm. Software-Practice and Ezperience, 94, 1, 79-88, 1994.

Kukich, K. Techniques for automatically correcting words in texts. ACM Computing
Surveys, 24, 377-439, 1992.

Levenshtein, V. Binary codes capable of correcting deletions, insertions, and rever-
sals. Sov. Phys. Dokl., 10, 07- 710, 1966.

Mitankin, P. Universal Levenshtein automata - building and properties. Technical
report, FMI, University of Sofia, 2005. Master thesis.

Stoyan Mihov and Klaus U. Schulz. Fast approximate search in large dictionaries.
Computational Linguistics, 30, 4, 451-477, December 2004.

B. John Oommen and Richard K.S. Loke. Pattern recognition of strings with substi-
tutions, insertions, deletions, and generalized transpositions. Pattern Recognition,
30, 5, 789-800, 1997.

Olumide Owolabi and D.R. McGregor. Fast approximate string matching. Software
- Practice and Ezperience, 18, 4, 387-393, 1988.

Edward M. Riseman and Roger W. Ehrich. Contextual word recognition using bi-
nary digrams. IEEE Transactions on Computers, C-20, 4, 397-403, 1971.

Sargur N. Srihari, Jonathan J. Hull, and Ramesh Choudhari. Integrating diverse
knowledge sources in text recognition. ACM Transactions on Information Systems,
1, 1, 68-87, 1983.

Giovanni Seni, V. Kripasundar, and Rohini K. Srihari. Generalizing edit distance
to incorporate domain information: Handwritten text recognition as a case study.
Pattern Recognition, 29, 3, 405-414, 1996. 16

Klaus U. Schulz and Stoyan Mihov. Fast String Correction with Levenshtein-Auto-
mata. Technical Report Report 01-127, CIS University of Munich, 2001.

Klaus U. Schulz and Stoyan Mihov. Fast String Correction with Levenshtein-Auto-
mata. International Journal of Document Analysis and Recognition, 5, 1, 67-85,
2002.

Sargur N. Srihari. Computer Text Recognition and Error Correction. Tutorial. IEEE
Computer Society Press, Silver Spring, MD, 1985.

Hiroyasu Takahashi, Nobuyasu Itoh, Tomio Amano, and Akio Yamashita. A spelling
correction method and its application to an OCR system. Pattern Recognition, 23,
3/4, 363-377, 1990.

Esko Ukkonen. Approximate string-matching with q-grams and maximal matches.
Theoretical Computer Science, 92, 191- 211, 1992.

Je.rey R. Ullmann. A binary n-gram technique for automatic correction of substitu-
tion, deletion, insertion and reversal errors. The Computer Journal, 20, 2, 141-147,
1977.

Achim Weigel, Stephan Baumann, and J. Rohrschneider. Lexical postprocessing by
heuristic search and automatic determination of the edit costs. In: Proc. of the
Third International Conference on Document Analysis and Recognition (ICDAR
95), pages 857860, 1995.

Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.

23. Robert A.Wagner and Michael J. Fischer. The string-to-string correction problem.
Journal of the ACM, 21, 1, 168-173, 1974.

24. Sun Wu and Udi Manber. Fast text searching allowing errors. Communications of
the ACM, 35, 10, 83-91, 1992.

95. Justin Zobel and Philip Dart. Finding approximate matches in large lexicons. Soft-
ware—Practice and Experience, 25, 3, 331 345, 1995.

26. Petar Mitankin. Universal Levenshtein Automata - Building and Properties, FMI,
University of Sofia, 2005, Master thesis.

27. Stoyan Mihov and Klaus U. Schulz, Fast Approximate Search in Large Dictionaries,
Computational Linguistics, 2004, 30, 4, 451-477.

Received on September 26, 2006

Faculty of Mathematics and Informatics
«St. KI. Ohridski” University of Sofia
5. J. Bourchier blvd., 1164 Sofia
BULGARIA

FE-mail: peromit@yahoo.com

Ann. Softa Univ., Fac. Math. and Inf., 99, 2009, 5-23. 23

