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In this paper we study the problem for non-integrability of a Hamiltonian system, based
on the nonlinear vibrations of an elastic string. We have the following hamiltonian:
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The main result is that the responding Hamiltonian system is non-integrable, except
in the cases N > 2and hy = 0and N = 2 and h; = 0 or h2 = 4h;. In the proof we
use the Morales - Ramis theorem based on Differential Galois Theory.
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1. INTRODUCTION

Free lateral “finite” vibrations of uniform beam with the ends restrained can
be described by the equation

0w otw Eh (Y 0w *w
~— + FI— = — —)%dz | - :
ph ot? +E ot (PO+ 2L Jq (Bx) dx) dz?’ (1.1)
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where w(t,z) is the lateral deflection of the string, E - the Young’s modulus,
ET - the flexural rigidity, p - the mass density, h is the thickness of a beam of unit
width, L - the string’s length, P, is the initial axial tension. Suppose the following
initial and boundary conditions

w(0,z) = wolx), w (U z) = wi(x)

0w 0w

w(t,0) = 92 —(t,0) = w(t, L) = _1:_2(t’ L)=0.

In 1971 Nishida [1] examined the problem of the elastic string’s vibration, in
the case there is no resistance (E7 = 0) and the equation (1.1) changes into

0w Eh W, o 0w
Ph>r —(Po '( x)dz)-é)?

If there is such a natural number N, that the initial and boundary conditions
look like

N
-wo(a')=Zaksin(k~L7[x), wy(z) = Zbg sm(k x),
k=1

where ag,bx,k = 1,..., N are real constants, then there exists a solution

N

w(t,z) = Zu;,( )sm(kL:r) (1.2)

k=1

which is unique in a certain class of functions. Having put (1.2) in (1.1), Nishida got
a Hamiltonian system of differential equations for u(t),k = 1,.... N and proved
that conditional-periodic motions are preserved around equilibrium using the KAM
theorem.

Another kind of problems on the vibrations of the nonlinear string were studied
by Dickey [2].

In 1994 Iliev [3] studied a more general integro-differential equation

0% | [ o 0w [
#;- — o+ hy /(6—;))2417 Frohe Cz+h2/w2dl' w (1.3)
0o 0

and under the same assumptions as Nishida, he brought it to a Hamiltonian system
with N degrees of freedom, namely

N N N
1 c
H(g,p) =5 > p3(t) + 51 > Eql(t) - 52 Z k> (t)+
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N 2
il (Z qukl(t)) - (Z qﬁ(t)) = const (14)
k=1 '

Then Iliev focused himself on the integrability problem in analytic functions
in the case N = 2. Using the Ziglin’s theory, he has proved the following result:

Theorem 1. The Hamiltonian system with Hamiltonian (1.4) is not integrable for
N = 2. if we have

5 — 4¢ ho — 4h
€2 a <0 \/1+8—2——h—1— is not odd.
Co — (1 hz—h]

In 2003 Yagasaki [4] studied the same model of unforced and undamped beam
as equation (1.1) with ET = 1. He proved non-integrability of the corresponding
Hamiltonian system after the same truncation as the solution (1.2) using Differential
Galois Theory for Hamiltonian systems.

One should note that considering the model (1.3) without resistance (ET = 0)
there is no lost of generality. Having in mind the concrete form of the solution
(1.2), the contribution of the forth derivative with respect to z will change the
coefficients of the Hamiltonian (1.4).

Here we study the Hamiltonian system

q _ oA =p
i = op T P

é;H h — \ ha O (1.5)
pj=—5—=- Cl+—Zk2Qk2 j7g; + Cz+—ZQk 4>

9q; L 23

j=1,...,N

with Hamiltonian (1.4) for N degrees of freedom and generalize the result of the
Theorem 1 as follows. Consider the complexified system (1.5) on the phase space
M = {(q(t),p(t)) € C?®} with standard symplectic structure, ¢ € C. We are
interested in the question at which values of the parameters c;, ¢2, hy, hs, the system
(1.5) is integrable (of course the case N = 1 is trivial).

Theorem 2. The Hamiltonian system with Hamiltonian (1.4) is non-integrable.

excluding the following two cases
a) N >2 and hy =0,
b) N =2 and hy =0 or hy = 4h,.

Remark. 1) If N > 1 and hy =0, we have
1 N 1 N C2 N h N ’
_ 2 2,4 K202 _ &2 2 _ M2 2 -
H(q,p) 2k§=1m +3 k§=1 %= kizlqk 3 1?:1 )
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whence the starting Hamiltonian system is equivalent to so-called ‘anharmonic
oscillator” with Hamiltonian

N N N 2

1 . .
H(q.p) = = 2 2 2]
(q.p) 2;:11)1. +A§=] Kk +(A-§=IQk) .

which is integrable in Liouville sense [5].
2) If N =2 and ho = 4h,, the variables in the system with Hamiltonian
1 . . (¢ — ¢ dcy — ) 5, 3 g 3
H(q1.92,p1.p2) = 5(1’12 +p2%) + —1—2——2—)-(112 + E—IT—)sz - ghlql’ + Shiga
can be separated, hence in this case it is integrable.

Comment. The proof of Theorem 2 is based on “Differential Galois T heory”,
which gives a necessary condition for integrability. Moreover, in a view of the last
remark, it follows this condition is also a sufficient one. So Theorem 2 gives a
complete answer, when the system is integrable and when it is not.

The paper is organized as follows. In section 2 we summarize the theoretical
results about Ziglin’s and Morales-Ramis’s theories. The proof of the Theorem 2 is
given in section 3. In the last section some numerical experiment, confirming the
theoretical results, are presented. '

2. THEORY

In this section we summarize briefly some results on integrability of Hamilto-
nian systems. For more detailed description on Differential Galois theory see [6],
[7].

Let (M?",w) be a complex symplectic manifold. H is an analytic function over
M?" and the respective Hamiltonian system is

T = XH(.T-).

A Hamiltonian system is integrable in Liouville sense if there exist n indepen-
dent first integrals Fy = H, F),.., F, in involution, namely {F;, F;} = 0 for all
¢ and j, where {.} is the Poisson’s bracket [9]. Let z = z(t) is a solution (not
equilibrium) of the Hamiltonian system and T := {z = 2(t)} is its integral curve.
The variational equations (VE) responding to z = 2(t) are

0Xp
t))n.
5, ()
Reducing (VE) by the first integral dH, we get so called normal variational

equations (NVE) _
&= A(t)€ with dimention 2(n — 1).
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One of the first, who gave a criterion for having non-integrability, based on
(VE) was Poincaré. Let AM*" be real and z = 2(t) be a periodic solution of the
Hamiltonian system. Poincaré has studied the monodromy matrix, corresponding
to (VE) [10Jand he has proved that if the Hamiltonian system has k first integrals,
then k characteristic exponents must be zero.

In 1982 Ziglin [11]proved the following result for integrability of a complex-
analytical Hamiltonian systems:

Theorem 3. Let a Hamiltonian system have n first integrals. independent around
T. but not necessary on I'. Suppose that there is a nonresonant element g in the
monodromy group of (NVE). Then every other element g’ of the monodromy group
transforms the set of eigendirections of g into itself.

Let us remind of g € Sp(2n,C) (the monodromy group is a subgroup of the
symplectic group) is a resonant if I[7'...lI» =1, where r; are nonzero integers and
I; are the eigenvalues of g.

Note that in the Ziglin's result, there is no assumption that the integrals are
in involution, in addition it refers to the case n = 2, because in higher dimensions
there are resonanses.

Another method for proving non-integrability is based on the Galois group of
(VE). In result of the efforts of Ramis, Morales-Ruiz, Simo, Chirchil and Rod, the
following result has appeared in the end of the last century [6]:

Theorem 4. Let a Hamiltonian system has n meromorphic first integrals in invo-
lution around I'. but not necessary on L. Then the identity component G of the
Galois group G of (VE) with respect to I' 1s abelian.

In applications is used the next algorithm:

1) to find out a solution z = z(t) of the hamiltonian system

2) to write the variational equations (VE) and (NVE), corresponding to z =
z(t)

3) to check for commutativity of the Galois group of (VE), (NVE)

If once is proved, that G® is not abelian, than the respective system is non-
integrable in Liouville sense. But the fact that GY is abelian doesn’t imply integra-
hility.

3. PROOF OF THEOREM 2

The proof of Theorem 2 is divided in several lemmas.
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Lemma 1. The system (1.5) has a particular solution

— 4
G = /A1sn (\/(h2 rihi)Az t,n)

2
P =g j=1,....N,j7ér. (3.1)
q:,'--O
P; =

where Ay, A2 € C. |\1| < [A2] and Ay and Ay are roots of the equation

ho — rihy cr — ey
___,\2 + —

= 0.
1 5 A+2f

andn=[.

Proof. There exists r, such that hs — r*h; # 0. Putting in the Hamiltonian
system (1.5) (q,p) = (0,..,0,¢,.0,..,0.p;.0,..,0) we get

te

qr = Dr

o s ¢ 7‘4h1 - h-2 ~
pr = —Gr (rzcl ~ 2+ —-—2——<qr)’~’)

The corresponding to this system Hamiltonian H is obtained from (1.4) after
putting (¢,p) = (0,..,0.¢-,0,..,0,9,.,0,...0)

3 ho —1ihy _ )
P2 = L'I-—ltfr‘ + (c2 — 2¢1)@2 + 2f,

Taking into account that p, = cj; we obtain the family of curves

_ ) .4
DU 6 = 2G4 (e = ) @) + 21

from where after some transformations we reach

N2 4 3 N2
&\ _hamrhy lﬂ(Qr) A B
\/Xl 4 \/Xl A2 \/Xl
where A1, A2 € C and |A;| < |A2|. This is precisely the definition of Jacobi’s elliptic
sn [14], so we get the particular solution as the lemma states. O

The function sn(r, k) is double periodic meromorphic function with periods
4K (k) and i2K'(k). In the parallelogram of the periods sn(r,x) has two simple
poles iK'(k) and 2K (k) + iK'(x) [14].

— (K
Therefore sn V(b2 = rlhi)dy t,xk| has periods T, = 8K (r) .
2 \/(hz — 7‘41’)-1)A2
. / . »! . . !/
Ty = 14K'(k) and poles ¢, = 12K'(K) by = 4K (k) + 2K (n).
\/(hz — 7'4h1)/\2 \/(hz - T4h1)1\2 \/(hg — T4h] )/\2
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Geometrically, I'( f) are tori with two points removed.
Next, in order to reduce the domain of the solution (3.1) consider the involution

R:(qis- o sQreee i GuyPleeeesDreeesPn) = (Q1yeees—QryeesGnyPloeees—Prse-sPn)

The involution R leaves the Hamiltonian system invariant and changes the places
of the two missing points. Let us denote with Fz the set of the fixed points of the
involution R,

FR = {(QIs--- *QT—lsoﬁ(JT-’-l!' cesns Pl ‘pT"l’O’pT+l" "‘p")'

Then factoring M\ F in R we get the smooth symplectic manifold A = (M\Fgr) /R.
The Hamiltonian H is transformed to the Hamiltonian H for the same Hamilto-
nian system (1.5) defined on M. It is clear that if the system (1.5) has enough
independent first integrals they will be transformed into independent first integrals
on M. Then factorizing T (f) =T(f)/R and having in mind that

sn(t + 2K (kr)) = —sn(r),7 € C.

we obtain that the domain of the family of the curves is mapped as tori with one
point removed.

Lemma 2. The normal variational equations (NVE) of the systern with hamilto-
nian (1.4) around the particular solution (3.1) are

&=
0 =& ((02 ~j%c1) +

(hs —j2r2h1)(q~1)2) j=1.....Nj#r (3.2
2

The proof is straightforward and therefore is omitted.

In view of Lemma 2, (NVE) breaks into N — 1 separate systems, as each of
them consists of two first-order linear differential equations. So each of these N — 1
systems can be written as a second-ordered linear differential equation denoted with
(NVE;),j=1,...,N,j # r, namely

- :2,..2 ;= i .
£+ ((j201 —c2) + G h2l hz)/\1-9n2 <\/(h2 ‘)7 h])/\zt, \/% ) £ =0.
| 2 2

(3.3)

In our problem, because of the specific kind of (NVE), the Galois group G
looks like a direct product

G=G1®G2®...®Gr—]®cr+} @..-@GNs

where the missing part Gy corresponds to the tangent equations.
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Therefore, in order to prove non-integrability, it is sufficient one part G, - ?
corresponding to the equation (NV E;) to be nonabelian.
The equation (3.3) is Fuchsian one. It is known that in this case the monodromy
group M topologically generates the Galois group G [8], [6]. The monodromy group
M has the same specific structure as G. L

M=MeM®..QM, 1M, .1 ?...2 My, (3.4) -

Again if one M; (corresponding to the equation (NV E;)) is nonabelian, then
this will imply that G is non-abelian and therefore due to Morales-Ramis theorem
(. Theorem 4) we have non-integrability.

Now we shall study the monodromy group M; for the equation (NV E;).

Let g1 and g2 are the generators of the monodromy group A ;. The element
91 is associated with a path along the parallel of the torus I', which corresponds to

adding the period —21 Similarly, g» is associated with a path along the meridian

of I or adding the period T of the function sn*(1).

Lemma 3. The commutator (g1, g2] = g19297 '95 ' has the following eigenvalues

. j2-r2h1 = h2
expym |1z \/1+8m

Proof. 'The commutator corresponds to one winding around the regular singular
) i2K'(k) X
point t; = of the equation (3.3).
\/(hg —7‘4/2])/\2 '

It is known that for a linear differential equation [12]

Pt) . Q(1)
-t -t

&+ 76 =0

where P(t) and Q(t) are holomorphic in a neighborhood of ¢ = ¢,, then the eigen-
values of the monodromy transformation, corresponding to one circle around the
regular singular point ¢ = t,, are exp(2mip; »), where p; o are the roots of the
indicial equation

plp 1) + P(t1)p + Q(t1) = 0 (3.5)

The analytical theory of the differential equations is described in details in
[13].Hence we have

\/(hg - T“lhl)Ag Al 2 1
. t, —_— ) = — + O(1 y
o ( 2 )\2 \/(hg - 7’4h1)/\| (t - t'l) ( )
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S0 o
' (7°r*hy — hy)

(7'412-1 - h.z) '

and the roots of the quadratic equation (3.5) are exactly
j2r2111 - h2
1+ —_— ).
\/I+8 T 0

Taking into account Lemma 3 we conclude that if the eigenvalues of the j-th
commutator are not units, than Af; is not abelian. Let us denote

Q(ty) = —2 P(t) =0

ol o

P1.2

3%r2hy — hy

rhy —hy
Then the sufficient condition for non-integrability is the existence of j, such that
the number y; is not equal to a square of some odd integer.

fj:=1+8

Lemma 4. The monodromy group (3.4) is not abelian for N > 2 and hy # 0 .

Proof. Suppose that there exists j # 7 such that p; € Z, so u; = (2k — 1) for
some k € Z. Hence when hy # 0 we get
h} 1 - Sj

=

(3.6)

hy — j2r? —s;rt’

where k(k — 1) = 2s;,s; € Z. We notice that for the numbers 8,1 < j< N, j#r
we have s; > 1 or s; = 0. From (3.6), if some s; = 0, that can happen for only one
4, namely j: j2r?h; = ha.

The aim is to show, there exists a number [, such that py # (2p — 1)? for all
p € Z. For the purpose we examine cases according to r.

Case 1. Let 1 <r < N.j <r and none of the numbers s; is zero.
Then there exists | = r + 1 and we assume j; = ;41 = (2p — 1)? for some
p € Z. Again we express

h'] 1 —8r41
ha » 3.7
h-"2 (T + 1)27‘2 - 3r+]7'4 ( )

where p(p — 1) = 25,41, 541 € Z. From both (3.6) and (3.7), after some computa-
tions we get

(85 = D)2 + 1) + (sr41 — D(r = 5)(r +7) =0,

which is true if and only if s; = s,41 = 1, exactly when hy = 0 - the integrable
case called “anharmonic oscillator™ [5]. The last is in contradiction with the current
lemma, so we have proved that the monodromy group M, is not abelian.

Case 2. Let 1 <r < N.r < j and none of the numbers s; 1s zero.
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Then we take [ = r — 1 and we obtain the following equation
(8; = D2r = 1)(=1) + (85— — 1)(r = j)(r +j) =0

and similarly as in the previous case, we obtain that Af,_; is not abelian.

Case 3. Let N = 3.
The cases {r = 1,j = 2,1 =3} and {r = 1,1 = 2,j = 3} are equivalent, if one
transposes j and [ and again from (3.6) and (3.7) we have

1—'82 1—53
4_'-92 9—83’

going back, to that we have noted above, we obtain
3p+1)(p—2)=8(k+1)(k —2),

and there is an equivalent case too, in transposing p and k. The last is true only
when p, k € {—1,2}, which implies the integrable case - h; = 0. From the another
pair of equivalent cases {I = 1,7 = 2,7 =3} and {j = 1,! = 2, = 3}, analogously
we get

5(p+1)(p—2) =8(k+1)(k - 2),
— the next contradiction with the current lemma. The cases {j = 1,r = 2.1 = 3}
and {{ =1, =2,j = 3} lead to

5(s; +1)=—3(s3+ 1),

which is not possible.

Case 4. Let N >3.1<r < N and s; = 0.
Then we can choose another number j, m.stead of j and to fall in case 1) o
case 2}, because only one s; can be zero.

Case 5. Let N >3.r=10rr=N.
If » = 1, then there exist at least two equations, the j-th and the I-th for
N > 3, such that 8; # 0 # s;. Without lost generality we can focus on the case
J = 2,1 =3, so we obtain
3(83 - 1) = 8(82 - 1),

and similarly as the previous cases it leads to a contradiction For r = N, we take
the variational equations with numbers j = N —~ 1 and [ = N — 2, therefore we get

d(sn—1 —1)(N = 1) = (sy—2 = 1)(2N - 1),

which is available only when h; = 0.

Case 6. The last case left is hy # 0 and hy =0
Here

+2
J
[l,]' =1 +87_.2-

146 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 137-153.



Let first r > 1, then there exists an equation with number j =7 — 1. If pu; = ptr—1
is equal to a square of an odd

(r—1)>°

— : 2
14+8-—— = (2k~1)

we get
r2(k+1)(k - 2) = 2(1 - 2r),

which is possible only when k = 0,1 and r = 1, which is in contradiction with the
case. So we conclude that the group M,_; is not abelian. Now let r = 1. Then
p; = 1+ 852, which, for example, for j = 2, is not equal to a square of an odd
number, so the monodromy group M is not abelian and that proves Lemma 4. [

The first four lemmas prove part a) of Theorem 2. Let us formulate the last
two lemmas, proving the second part of the theorem.

Lemma 5. The system with Hamiltonian (1.4) is non-integrable for N = 2. hy #
4h; and hy # 0.

Proof. The monodromy group for j = 2, corresponding to variations around
the particular solution (gy,p;) is not abelian when
dhy - h
14+8———2 £(2k-1)%, kel (3.8)
hy = ha
First, we write the particular solution of the system (g2,p2), then the respective
(NVE) around it and the following condition for non-integrability

4h; — ho
16hy — hq
Let us assume that for some values of the parameters h; o such that hy # 0

and hy # 4h; there exist integers k and m, that we have equalities in (3.8) and
(3.9).

148 #(2m-1)%, mel (3.9)

4h1 - h2 2 4h1 - h2 2
—— = (2k - 1)7, 1 —_— = (2m - 1)~.
iy - R RRSTT I G
After some transformations in the first equality, like in the proof of Lemma 4, we
express

1+38

4s — 1
s—1

h.-z = 4h1

Here s # 1 since s = 1 implies h; = 0. Putting this k2 in the second equality, we

obtain
4s

Hs — 1
which is true only in the case s = 0, that is exactly the separable case — hy = 4h;.0

EZ

The last case we haven’t examined yet is hy = hs.
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Lemma 6. The system with Hamiltonian (1.4) is non-integrable for N =2, hy =
hy and hy # 0.

Proof. In this case, the hamiltonian is

1 . c1— ¢ . 4e) — ¢ 3 o 15
Hp = 5(1)12""1722)4'(—172—) 12 (—12_2)Q22+5hl(h2922+§h1024

and we find a particular solution (gz,p2), of respective Hamiltonian system, namely

- i/ (15hipa) [
g2 = Jpisn ) t, [1_2

p:z:fjfz' (3.10)
q =0
p1 =0

where pq, pp € C and |py] < |pa), 11 and ps are the roots of the equation

15h
ﬁTl”Q + (c2 —4er)p + 2Hp = 0.

The normal variational equations (NVE) for j = 1 around the solution (3.10)
is '

él =Th )
==& ((c1 —e2) + 3h(g)?)

Hence we get the second-ordered differential equation
. 3 ~\2
Si+&i (1 —c2)+ §hl(qz) =0

and having in mind the Laurant’s expansion of (3.10), we write the indicial equation

2

2
—p—==0,
pr=p 5

whose roots are not integers, therefore the monodromy group is not abelian, which
proves nonintegrabitity in the case h; = ho. O

This concludes the proof of Theorem 2.

4. NUMERICAL EXPERIMENTS

Practically the integrability of a Hamiltonian system can be examined with so
called “Poicaré sections”. Let there be a Hamiltonian system in R?"

z= XH(Z)
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with Hamiltonian H and a periodic solution — z = z(t), let I' be the respective
phase curve. We build a transversal intersection S to I' and the solution z = 2(t)
crosses S in a point zg. In a sufficiently small neighborhood U of §, containing zo,
we look at those solutions of the Hamiltonian system, which have initial conditions
in U. We always take solutions, whose initial conditions lay on the same energy
level H = E. We draw the consecutive intersection points where these paths cross
S. This mapping P : S — S is called “Poincaré mapping”.

If the intersection points form regular curves, then we suppose integrability.
If a chaotic picture is obtained, then we conclude that the Hamiltonian system is
non-integrable.

In practice we examine two-dimensional intersection S and here are some
Poincaré sections for our system, drawn by Maple.

H = 9.999399000;

Fig. 1. c; = —12,c20=1.3,h1 =0,h2 = —1.5,5 = (p1.¢1)
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H = 9.999399000:

Fig. 2.

¢y =—12¢c=13h) =0,h2 =-15,8 = (p2,¢2)

ql

H = 9.993599000;

- -
-t " -,

-
‘:.Q.‘o.o‘

-1

05 0 05 1

pl

Fig. 3. ¢; =2.2,c0 = =23,y = 0,ha = 1.5,5 = (p1,q1)
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AW\Avees
' \\“3{«'0'“3({{9!;

oy
x ¢ ‘&"

ql

Fig. 4. c1 = =1.2,¢c2 = 1.3,hy = L,ha = —-1.5,8 = (p1, 1)

H « 7.199939000;

.+

Q5

. .
d o

-05

R

-5

-3 -2 -1 0 1 2 3
p!

Fig. 5. ¢1 = —-1.2,¢c = 1.3, h‘1 = 1.5,h2 = -—1.5,5 = (pl.,ql)
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Fig. 6. cp =-12,c0= 1.3, h] - 1.5,h2 = “1.5,5 = (pz,q;z)
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