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1. INTRODUCTION

This paper is concerned with the following initial-boundary value problems for
the one-dimensional heat equation on a semi-infinite interval:

Up — Uzr = —F1(uz(0,1)), 0<z <00, 0<t<T, T<o0,
(Pl) u(O,t)=0, OStST’
w(z,0) = h(z), 0<2< o0,

'The results of this paper were reported at International Conference ” Pioneers of Bulgarian
Mathematics”, 8 - 10.07.2006, Sofia.
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U = Uzr = P(2). Fo(uy(0,t),t), 0<x <00, 0<t<T, T <00,
(P2) u(0,t) =g(t), 0<t<T,
u(x,0) = ho(z), 0< 2 < o0,

where u = u(x,t) denotes the temperature distribution (the unknown), x and t are
the spatial and time coordinate respectively: 7" is a given positive constant. The
data functions hi(.r), ho(x), g(t) {representing initial and boundary conditions) and
®(x) are real, defined on R*. F| and F; are sink sources of heat energy, uniform in
z. Such problems can be thought as by the modelling of a system of temperature
regulation in isotropic media, with non-uniform source term Fj(u,(0,¢)) for ()
and ®(x).F>(u.(0,t),t) for (P), which provides a cooling or heating effect depend-
ing upon the properties of F or F,. related to the source of the localized heat flux
uz(0,t), see [13, 14].

In [3, 15] results on existence, uniqueness and asymptotic behavior of the so-
lution have been proved for problem (P;). Some results on the behavior of the
solution and explicit formula for the solution in special cases are obtained in {13]. .

The existence, uniqueness and asymptotic behavior of the solution of problem
(P,) are explicated in [14]. Also, the validation of the maximum principle for (P,)
and (Fz) is shown in [13, 14, 15]. ‘

The goal of this paper is to solve numerically problems (P;) and (/%) with
effective and accurate methods.

The remainder part of this work is organized as follows. In Section 2 properties
of the solutions to the considered problems are described. The original problems
are written in new, equivalent forms, more appropriate for numerical treatment.
In the next section we construct exact artificial boundary conditions of the new
formulated problems. Also, full discretizations are derived. In Section 4 we present
some numerical results, demonstrating the accuracy of the algorithms.

2. PRELIMINARY RESULTS

As observed in [13, 14], the heat flux
v(x, t) = uz(z,t), (2.1)

for problems (P;) and () satisfies the classical heat conduction problems with a
nonlinear convective condition at x = 0, which can be written in the forms:

v —Vr =0, 0<2<0, 0<t<T, T < o0,
(V1) vz(0,t) = Fi(v(0,¢t)), 0<t<T,

v(z,0) = hi(z), 0<x < o0,

vy — Ve = (). Fo(v(0,1),1), 0<x <00, 0<t<T, T < o0,
(V) v:(0,t) = ¢'(t) — ®(0).Fo(v(0,t),t), 0<t<T,

v(z,0) = hi(z), 0< 2 < o0,
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For problem (V;), it has been proved in [13] that the maximum principle holds.
A qualitative analysis of the problem (V3) is given in [14]. The authors show that
under some assumptions for Fo(v(0,t).t). ¢’(t), ®(x) and h(x), we have v(0,¢) > 0
for t > 0 and u,(2.t) > 0 for & > 0, t > 0. Also the monotonicity properties of the
solution of the problem (V3) are proved.

It’s worth to note that if 2j(x) > 0 in R*, ©(0,¢).Fy{v(0.t)) > 0, v(0,t) > 0,
t € [0,T] (for problem (V})) or for problem (V5): ha(z) > 0, ®(z) <0, ®'(z) = 0
in Rt v(0,t).Fa(v(0,t),t) >0,V v(0,t) #0,Vt >0 and g(t) > 0 or tlﬂl; g(t) =0,
¥Vt > 0, together with some other hypotheses, then the corresponding solutions of
(Py) or (P), u(x,t) — 0, as t — oc uniformly for 2 > 0, see {14, 15].

In the work done, we restrict our considerations to the case: hi{x) > 0,
supp hi(x) < oc, i = 1,2, ®(x) > 0 and supp ¥’'(x) < oo. The last constraint
we shall remove later. Many physical processes lead to models with compact sup-
ported initial datum. Such kind of problems are well studied in [4, 5. From
supp hi(xz) < oc, i = 1,2 follows that there exists L;, i = 1,2 and 0 < L; < +oc:
hi(x) =0 for r > L;, i = 1,2. Then v(x,t) — 0 when r — +o0, i.e. v(+oc,t) =0,
vit>0.

3. NUMERICAL METHOD

We focuss our attention to problems (V;) and (V3). Having obtained their
numerical solutions, it's very easy to find the solutions of (P;) and (%), using
(2.1) and the well-known numerical integration formulas (by Trapezoidal rule, for
example).

The most widely used methods are the finite element and the finite difference
schemes. Since the grids are finite, then on the grid boundary the same type
boundary conditions as on the infinity in the differential problem, are often imposed,
see for example [1. 2]. This, however, leads to the loss of accuracy, especially in the
case, when the solution does not go to zero as £ — oc or the compact support of the
solution become large in time. More accurate are artificial houndary conditions.
For linear parabolic problems with linear boundary conditions such results can be
found in [6, 16] and for semi-linear one and two-dimensional heat problems, see
[7, 10]. Also, the comparison with other methods is available.

Having in mind all those results, our approach will be to use an artificial bound-
ary method. Generally, it means to introduce artificial boundaries, construct exact
boundary conditions on the artificial boundaries and reduce the original problem to
an equivalent or approximate problem, defined on a bounded domain. In general,
the boundary conditions on the artificial boundaries are obtained by considering
the exterior problems outside the artificial boundaries.
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3.1. EXACT ARTIFICIAL BOUNDARY CONDITIONS

The idea is employed from [10, 16].

Let supp hj(z) = [0,L;], ¢ = 1,2 and supp ®'(x) € [0, L2]. For computing
the numerical solutions of any of the problems (V;) and (V2), we introduce an
artificial boundary: I'; = {(z,¢t)lx =1, | > L;, i=1,2; 0<t <T}. Then
the domain Q = {(2,t)|0 < ¢ < 400, 0 < t < T} is divided into the bounded
part ° and unbounded part Q° = {(z,t)l < £ < +00, 0 <t < T}. On the
domain Q¢, Ai(x) = 0,1 = 1,2 and ®'(z) = 0. We first consider the restriction of
the solution of the considered problems on the domain Q¢ (counterpart domain).
In this domain, the solutions of hoth problems (V}) and (V;) satisfy one and the
same initial-boundary value problem (V).

Uy ""U:r:r:()a (Tvt) GQC.'
(V) v(z,0) =0, | <z < +oo,
v(x,t) — 0, when z — +o0.

If v(l,t) is given, then (V) is a properly posed problem. We can get the solution
(v(x, 1)) for given (v(l,t)), see [12].

r—1)2

o(z,t) = \/_/L(z A)(t — A)~3e w0 dA, (3.1)

Next we shall obtaln the artificial boundary condition, using (3.1). Setting p =

x —1)/(2V/t — A), then we have

vz, t) = \/17? 71: (l.t - %;Tl)z) e~ dp,

v
du(z,t) 1 o2 1 [ o (- 1)2\ !
v(x,t) ' 2-0) 1 v _{x - —T _ 2
e —\/{L(l 0)e™ + w/ t(l’t Py ) s e " dp

Returning to the variable A, we get

f
Ou(a.t) _ 1 [y 1 e -5 dn.
ox VT 9 Vi
0

Taking the limit z — +{, we obtain the following exact boundary condition, satisfied
by the solution v(z,t) on the artificial boundary = = .
ou(l.t) 1 [tov(l,A) 1
or Ty OA VE-A

d\, 0<t<+0o0. (3.2)
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Using (3.2), we reduce original problems (V}) and (V2) to problems on the bounded
domain Q° = {(z,t)jo < x <. 0<t<T}.

, - 0, (r,t) € Q0,  for (V)
Ut = Uz =N @/(2).Fa(v(0, ), t), (z,t) € Q0. for (Va),
(0. 1) — Fy(v(0,t)), 0<t<T, for (V1),
w00 =3 g(t) - 90).Fa(v(0,6),8), 0<t<T, for (Va),
1 t 1 |
(Ri) ) =-— JRXEY TS 0StsT,
1]

[ W(x), o0<a<l, for (W),
v(z,0) = { Ry(xz), 0<z<l, for (Va).

The solutions of the problems (V7) and (V) in Q¢ can be computed by formula
(3.1) for v{l,t) already known.
If supp @'(x) = oc, then the problem (V¢), corresponding to (V5) becomes

(V) vy — vy = ' (x). Fo(v(0,1),t), (x,t) € Q°,
-u(:r,O) =0, [ <x<+x.

Now, for the solution v(z,t) of problem (V) for given v(l, ) we have (see [12)):

.rlz

t
v(x,t) = ';\;}_rl/v(l,/\}(t—)\)“’e = ”d/\

Fo(v((] A)A) , ~ ,(',l :)‘ B "Z(_:ij))z
N / / @(5)[ dedr  (3.3)

As before, applying the technique: 1° change of variable; 2° differentiating with
respect to z: 3° returning to the original variable; 4° taking a limit = — [, for the
first addend of (3.3) and only 2° and 4° for the second one, we obtain the following
artificial boundary condition at z = I:

au(l,t) 1 [tov,A) 1

o~ TV ox viea®
F(v(0,A), A) ,
2\/-/ (t — \)3/2 /5@ (e 7iTsdfdz\ (3.4)

Again, the assumption »(I,0) = 0 is an essential one.
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3.2. DERIVATION OF THE DIFFERENCE SCHEMES

Let V}, is a piecewise linear finite element space, defined on an uniform mesh
with size h in D = [0,{}: @, = {z;, #; = (i — 1)h, i = 1,2,..,N: (N =1)h = l}.
For a discrete function, defined on @y, we introduce the following norms:

1

N 2
o111 o0y = maxfo(as)| and [[ollza ) = (th) .
1=

The standard finite element discretization of the problems (Ri), i = 1,2 is to find

N
e, ot = Z Vi(f-v)%(f),
1=1

satisfying the weak forms of the problems (R;).
Now, after doing a mass lumping, we obtain for V; = Vj(t), i = 1,..., N and
0 <t < T the following system of ordinary integro-differential equations

V __2 [1/2_‘/1 __{ F](Vl), for (Rl) ] (35)
S g'(t) — ©(0).Fa(Vi,t) — b®'(0).Fz(V1,t), for (R2) | '

: 1 . , 0, for (R1)
o — [V _ . /. - — .
‘/1 -— h2 [‘,.._l 2vl + ‘1-{-1] + { @’(3‘1)_F2(‘[I1t)‘ for (RQ) N 2, veny .N 1,(3 6)
t .
. 21 1 [ V() Vn — Vot
Vv = —— d\+ —888 3.7
YR VA ] VE=X h (3.7)

In the case supp ®'(x) = 20 (concerning the problem (V5)), using (3.4), the equation
(3.7) becomes
t

. 211 VA(/\) VN_VN-l _h_, i
o= -2 7= JF_X e = S 2(0). (Vi)
¢]
F(Vi (A (e
2\/_/ 2( 3/2 /§<I> (€)e” T *)d{d,\ . (3.8)

Next, in order to obtain the full discretization of (3.5)-(3.7)(or (3.8)) we define an
uniform mesh in time:

th, =n7, n=0,1,..M, Mrt=T.

The following lemma we also need

Lemma 3.1 ([16]). Suppose f(t) € C?0,t,]. Then

t,

"(t)d - (10v2 — 11)
/ ft(:)-tt _ Z f(t’\) tk ]) / \/_6 02}(23;" |fll t)lT*.

o k=1
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Lemma 3.1 ground on the approximations of the integrals in the formulas (3.7)
and (3.8). The integrals (obtained applying this lemma) are calculated exactly.
This semi-analytical integration rule has better accuracy and stability properties
than the Trapezoidal rule yet involves about the same computational effort. This
is the best possible integration rule, since no additional information on Vx () is
available in the interval [t,_1,1,], see [11].

Consequently we obtain the full discretization of the system (3.5)-(3.7), V" =
vz t,). i=2,..N=-L.n=1,...M

2T n 2T ..
2‘r Fi(v"), for (R1) _ yn-l
q'(t, )—cp(o ).E2 (V' t,) — 2'(0 FZ(V,",t,L) for (R2) 1

2T n n n (Rl) _ /n—1
2\/— r. h 2\/— n—1
(§+ﬁ h)L hv”“_(z \/‘)VN

n—1

Z (\/tn tk—1 — \/tn - fk) (VN - Vk I) (39)

To obtain the full discretization of (3.8) we need, in addition to (3.9) (approxima-
tion of the first addend of (3.8)), the approximation of the second addend of (3.8)

w2
Lemma 3.2 ([16]). Let f(t) € C?[0,t,] and g(t) = (t, —t)~3/%e " Ta—0 with
a>0. Then

[ 1090 =3~ 31500+ st [ ot
0 b

k=1

2 JT 713

C ™ . . 2
< [ =€ vt " 2 — R .
= (a3 ohax O+ - omax () I)T , where c /l2 pe| e dp

0
r. |
Calculation of the integrals [ g¢(¢)dt exactly, leads to the semi-analytical
Lty

integration approximation, which was commented earlier. Lemma 3.2 is essential
for deriving the following discretization:

Vi(A), A
‘)\/_/Fz( 1/\)?’/2)/5@(6) _ﬁ(l{dA
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~ h’Z q)/(xi)z FZ(I"I (tk-—l),tk-lz) -+ FQ(VI (tk)rtk) . [I(fk) _ I(tk—l)] . (3‘10)
i=1 k=1

where  I(t)) = erf (‘2—‘”——*— ,Z:?:T;) and erf (x) = %/e_pzdp.
0

- The calculations are tedious, but standard, and we shall outline the main steps:
1. Use Lemma 3.1 for integral with respect to time:
2. Rearrange the integrals and integrand functions;

3. Change the variable A: p = W?Lf\’;
4. Involve the erf integrals;

5. Approximate the integral [ by Rectangular (Trapezoidal or some other

0
quadrature is also possible) rule. At this stage, using Lemma 3.1 would lead to
unduly complication of the approximation. Moreover, in contrast to F», the inte-
grand function @’ is a known function of the known argument, thus the usage of
Lemma 3.1 can he avoided.

Finally, the full discretization of (3.8) is

2f ht ] =,
(442f h)u,»«~hvn~l__pz(v,,t.,>[wwzw(l-erf(zf))]

—(9+'\‘//;) el =~ ‘/-ZV'V Vi) (Wt = teot = Vi ~ 1)

-

S e [t (1 (2

n—1
+ 3 [BVi ) + BV )] () - I(tk_l)]} :

k=1

For numerical implementations, the infinite series is truncated at a large number
of terms, say S, depending on the function ®'(z).

The solutions in counterpart domain (z > [) can be computed, using integral
formulas

n

" _1 r—1 _ -1l ko k—1y
l(r-.tn)——zg[erf(zm) erf(Qm)](Kv Vi)

o 0, for problems (Vi) and (V2) with supp @'(z) < oo,
A,  for problem (V) with supp ®’'(z) =

where A is the second addend of (3.3), if it can be calculated exactly, otherwise we
use it’s approximation, obtained in the similar way as (3.10). We trace the main
points of the calculations:
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1. Present as a difference of two integrals (the difference between two integrals
is only in the exponential power). Both integrals we treat in mush the same manner;

2. Apply Lemma 3.2:

3. Rearrange the integrals and integrand functions;

4. Apply Green formula in order to generate the term (t — )32,

Next, we follow the same steps as before, but the change of the variable A is
pP= ﬁ% for the corresponding integrals. Thus we obtain:

S . n
1 p Fy(Vi(tk—-1)th—1) + Fo(Vi(te), tx) 5
= o= 1 - - at 3
A Qﬁgwmg 5 I(tk-1,tx)
= ) ‘ - .’L’—‘l:tl‘i 2
I{ti—1.tk) = It (th—1.te) — 1 (tk_l,tk), Pi(ts) = (4(t 3 )) )

IF(teo1,te) = 2/t, — tk-le'Pi(t"‘“’) — 2y/tn — tke_Pt“")

r—1+z;)\J/7
+( 5 T {erf(\/P*(tk_l)) — erf (y/ Pi(tk))} .

Remark 3.1. The discrete maximum principle and convergence of the nu-
merical schemes can be proved, as it’s already done for similar problems in our
previous works {8, 9].

4. NUMERICAL EXAMPLES

In this section we verify numerically the efficiency, convergency and accuracy of
the algorithm, based on the construction of artificial boundary condition (ABCM).
The results are compared with ones, obtained by standard method: solving numer-
ically the original problem on a large enough finite interval D € [0, L] and imposing
zero Dirichlet boundary condition on the remote boundary.

Example 1. The test problem is (P), ®(z) = —e ¥, Fy(uz(0,t),t) =

—uz(0,t) — %_—\/}%—, g(t) = erfe(}) and hp(x) = 0. Then, the exact solution is

u(x,t) = e“xerfc(%). This example is favourable for standard method, because the
solution goes to zero (x — 00, t — oc) rapidly. On the other hand, since v(z,0) =0
in the equivalent problem (V,), we may take any line x = [ > 0 as the artificial
boundary. Let [ = 1, § = 20 and the ratio {5 = 1 is fixed. In Table 1 we present
the errors under different discrete norms, convergence rates and CPU times (in
seconds) of the algorithms - ABCM and standard method at ¢ = 0.5. The errors
are defined as follows:

Ego = flu— U“L.x(c;,,) and E{,‘ = flu— U"L-z(d);,) .
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The convergence rate is computed, using the formula

CR = log,

h

h

E‘Z(or )

2(or x)

TABLE 1. Errors in different norms, convergence rates (CR) and CPU times (sec)

ABCM,!=1,L=5 Standard Method. u(L.t) =0
h
CR | Eh L=5 L=10
CPU EL | E} e ER
0.1 7.23721e-4 | 6.923436e-1 || 7.96384e-4 | 7.43435e-4 | 7.53891e-4 | 7.02529¢-4
CPU 3.8441 0.5940 0.9372
0.05 1.97566e-4 | 1.87719¢-4 || 2.41093c-4 | 2.20404e-4 | 2.11617e-4 [ 1.95553c-4
CR 1.8731 1.8829 1.7238 1.7541 1.8329 1.8450
CPU 48.3750 3.4380 5.7970
0.025 || 5.31497e-5 | 4.96847¢-5 || 8.21020e-5 [ 7.45691e-5 | 6.70987e-5 | 6.14957e-5
CR 1.8942 1.9177 1.5541 1.5635 1.6571 1.6690
CPU 6.5449e+2 25.6561 41.7352
0.0125 || 1.37550e-5 [ 1.26190¢-5 || 3.95401e-5 [ 3.57905¢-5 | 2.45255¢-5 | 2.18145¢-5
CR 1.9501 1.9772 1.0540 1.0590 1.4520 1.4951
CPU 4.5971e+3 1.9002e+2 3.4294e+2
0.00625 || 3.47663¢-6 | 3.17846¢-6 | 3.55344e-5 | 3.21402c-5 | 9.80202e-6 | 8.58736¢-6
CR 1.9842 1.9892 0.1541 0.1552 1.3230 1.3452
CPU 7.6963¢+4 1.3051e+3 2.9707e+3

Even for a fast vanished solution, L is not large enough and we "lose” con-
vergence of the standard method. The reason is that the main source of error:
Dirichlet boundary condition, u(L, t) = 0, remain one and the same, independently
of the mesh step size. If L is bigger, the computational efforts become unjustifi-
able large. The convergence rate is O(r + h?), if we compute the solution with
ABCM. For problem (V3), supp ®'(x) = oo (just as in this case), the algorithm of
ABCM implicate two type convolution integrals: concerning V;*~' and Vi ~'. Due
to this terms, which makes the problem nonlocal in time and the interaction of the
integrals and different terms, the solution process involves, at any given time step,
the history of V"™, V,{,"l and ¢. For problems (V) and (V2), supp ®'(z) < oc,
the convolution integrals concern only Vi ~'. Also the summation by S is missing.
Thus the CPU time of the computations is approximately two times less, than this,
shown in Table 1,2.

Note that the choice of time step: 7 = h? (Table 1) leads to long time com-
putations and CPU time of ABCM is large. If for example 7 = h, the CPU time
of ABCM and standard method is ~ p: % <p< _2}{_2 (k=1for h=0.1, k =
2 for h = 0.05,...) and ~ % times less, respectively, but the accuracy of ABCM
ia still better (in comparison with standard method). For example: CPU time for
computations with ABCM, r = h, t = 0.5, L = 5 and h = 0.025 is 0.719 and the
corresponding one with standard method is 0.625 (also for L = 5).
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TABLE 2. Max errors and CPU times

l=05 =1 l=1.5 =2
EY. [ 6.719980-4 | 6.753166-4 | 6.77910e-4 | 6.82012e-4 [ S = 10
CPU 0.359 0.469 0.594 0.609
EZ || 6.70188¢-4 | 6.738150-4 | 6.75822¢-4 | 6.79556e-4 || S = 20
CPU 0.610 0.719 0.875 0.891
E |l 6.69881e-4 | 6.735790-4 | 6.75601c-4 | 6.79273e-4 || S = 40
CPU 1.0381 1.093 1.266 1.390
EY |l 6.69876e-4 | 6.73573e-4 | 6.755920-4 | 6.79266e-4 || S = 80
CPU 2.047 2.109 2.172 2.281
El | 6.69876e-4 | 6.735730-4 | 6.75592e-4 | 6.79266e-4 || S = 1000
CPU 19.766 19.844 20.125 20.657
10 mﬂvogooo b 9??7?9?98?9??‘393???????OOOQ{?QQQQJPQQ@@Q
- Vv 000000000 -‘...‘..*.“**n
10 - vvvvv ooooooo N
) Vvvvv Ooooooo
10 Vvv oooo
vvv oooooo
VV o
e Vvvv 0000&
10 ‘”F V‘Vvv N
vvv
10 Mo 1 2 3 s s e ; 8 ) 10

"ox

Fig. 1. Exact solution at different time

In Table 2 we give the max errors and CPU times of the numerical solution at
t = 0.5, computed with ABCM for different values of l and S, 7 = h, h = 0.025
and L = 5.

Example 2. Let ®(2) = 1, Fp(u,(0,1),t) = ug(0,t) + —lme‘%, g(t) = erfc ——1\/-;
and hy(x) = 0. Then the exact solution of problem (P,) is u(z,t) = erfc ;—3% The
shape of the solution’s profile stretches in x (as ¢ — o), see Figure 1. Using the
standard method, we take a risk: to compute the solution in large enough (for some
t) interval and then it turns out that this interval is not enough large for bigger ¢.
In this situation the ABCM is still effective. On Figure 2, 3, 4 are plotted exact
solution and numerical one, obtained by standard method and ABCM for different
time levels, 7 = h = 0.025, ] = 0.5 and L = 5.
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 Standard Method | -
Exact Solution
ABC at x=0.5
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Fig. 2. Numerical and exact solution at ¢t =1

Standard Method
- Exact Sotution
< ABC at x-0.5
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Fig. 3. Numerical and exact solution at t =5
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Fig. 4. Numerical and exact solution at ¢ = 10
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Below we summarize advantages and disadvantages of our numerical algorithms
in comparison with known ones: using approximate finite boundary or infinite
quasi-uniform grids (uniform or quasi-uniform), etc.

On the positive side are the following features of the schemes:

© The high accuracy of the numerical solution.

> The scheme on the bounded sub-domain has second order local truncation
error in space and first in time. It is not difficult to construct the scheme from high
order accuracy as well in time, using three level time scheme, see [1, 16];

> The solution in counterpart domains can be computed at any point directly,
using formula.

> The computations can be performed on a very small region.

> The artificial boundary, say I, can be chosen in a very simple way:

supp hi(x) < [. Since our boundary condition is exact, the smaller the [, the
smaller the computational domain and consequently the less the computational
amount.

On the negative side are the following three main disadvantages:

> The construction of artificial boundary condition is possible for a restricted
class of problems and it’s derivation is often not easy;

> Geometrically not universal.

> Algorithmically simple, but numerically expensive, because of involving
the convolution integral with 'memory property’, but related only with one point:
x = 1. We could not succeeded to cope with this problem because of the singularity
of the integrals kernels. Straightforward evaluation of those convolution requires
storing the information along the artificial boundary for all times since t = 0 and
re-processing this information a each time step. Nevertheless, the performance of
the presented schemes (in terms of CPU time or number of operations) is less than
that of a standard finite element scheme with no artificial boundary condition, but
with sufficiently long domain and zero Dirichlet boundary condition on the remote
boundary, such that the the accuracy of both schemes is about the same (the mesh
density is one and the same), see [10]. The CPU time of the erf (z) integral is the
same as the one of the function sinz or coszx.
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