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1. A CHARACTERIZATION OF THE RATE OF APPROXIMATION OF THE
BERNSTEIN-DURRMEYER OPERATOR

For x = (x1, . . . , xd) ∈ Rd we set |x| :=
∑d
i=1 |xi|. Let S be the standard

simplex in Rd given by

S := {(x1, . . . , xd) ∈ Rd : xi ≥ 0, i = 1, . . . , d, |x| ≤ 1}.

The Jacobi weights on S are defined by

wα(x) := xα1
1 · · ·x

αd
d (1− |x|)αd+1 , αi > −1, i = 1, . . . , d+ 1. (1.1)
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We have set α := (α1, . . . , αd+1). For p ∈ [1,∞) and a Jacobi weight wα we consider
the space Lp,wα(S) of Lebesgue measurable functions f defined on S such that

‖f‖p,wα :=

(∫
S

|f(x)|pwα(x) dx

)1/p

<∞.

Let, as usual, L∞(S) denote the space of the essentially bounded Lebesgue mea-
surable functions on S, equipped with the sup-norm on S. For brevity we set
L∞,wα(S) := L∞(S) and ‖f‖∞,wα := ess supx∈S |f(x)|.

We proceed to the definition of the multivariate Bernstein-Durrmeyer operators
with Jacobi weights given by Ditzian [13]. For n ∈ N0 and k = (k1, . . . , kd) ∈ Nd0
with |k| ≤ n we define the polynomials

pn,k(x) :=
n!

k1! · · · kd!(n− |k|)!

d∏
i=1

xkii (1− |x|)n−|k|.

The Jacobi-weighted Bernstein-Durrmeyer operators on Lp,wα(S) are defined by

Mn,αf(x) :=
∑
|k|≤n

pn,k(x)

(∫
S

pn,k(y)wα(y) dy

)−1 ∫
S

f(y) pn,k(y)wα(y) dy.

These operators in the univariate case and with no weight, i.e. wα = 1, were
introduced independently by Durrmeyer [16] and Lupaş [19]; their multivariate
generalization was given by Derriennic [11]; and their univariate weighted form was
considered by Berens and Xu [2, 3]. These operators were extensively studied by
many authors and it is very difficult to summarize all the results. That is why we
shall restrict our attention only to those which are directly and most closely related
to the subject of the present paper. In the next section we shall recall several of
their basic properties. They were proved by Ditzian [13] in the general case, and
earlier by Derriennic [11] and Berens and Xu [2, 3] respectively in the multivariate
unweighted case and the univariate weighted case.

Ditzian [13] introduced the K-functional

Kα(f, t)p := inf
g∈C2(S)

{‖f − g‖p,wα + t ‖Pα(D)g‖p,wα}

in order to characterize the rate of approximation of the Bernstein-Durrmeyer op-
erator in Lp,wα(S). Here Pα(D) is the differential operator that is naturally asso-
ciated to the multivariate Bernstein-Durrmeyer operators with the weight wα. It
is defined by

Pα(D) :=
∑
ξ∈ES

wα(x)−1
∂

∂ξ
d̃(ξ, x)wα(x)

∂

∂ξ
,

where ES is the set of the directions parallel to the edges of S and d̃(ξ, x) is the
distance introduced by Ditzian [12]

d̃(ξ, x) := sup
λ≥0

x+λξ∈S

d(x, x+ λξ) sup
λ≥0

x−λξ∈S

d(x, x− λξ),
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as d(x, y) is the Euclidean distance.
Ditzian [13] proved that there exist positive constants c1 and c2 such that for

all f ∈ Lp(wα)(S) and all n ∈ N there holds

c1Kα(f, n−1)p ≤ ‖Mn,αf − f‖p,wα ≤ c2Kα(f, n−1)p. (1.2)

The direct estimate, i.e. the right-hand side inequality, was established with
c2 = 2 independently by Chen and Ditzian [6] (see also [7, p. 38]) and by Berens,
Schmid and Xu [1, Theorem 2] in the unweighted case, and by Berens and Xu
[2, Theorem 3] in the univariate weighted case. A closer look at the proof of [13,
Theorem 3.3] shows that we can take c2 independent of the dimension d and the
weight wα. Actually, a slight modification of this argument shows that the direct
estimate holds with c2 = 2 in the general case. More precisely, we have

‖Mn,αf − f‖p,wα ≤ 2Kα(f, n−1)p. (1.3)

For the sake of completeness we give its proof in Section 3.
As for the converse estimate, that is, the left inequality in (1.2), Chen, Ditzian

and Ivanov [7, Theorems 6.1 and 6.3] established it in the unweighted case for all
d if 1 < p < ∞ and for d ≤ 3 if p = 1,∞ (a little bit weaker result was verified in
the larger dimensions). Then Knoop and Zhou [18, Theorem 3.1] proved it for all d
and 1 ≤ p ≤ ∞ in the unweighted case. Both proofs give constants c1 that decrease
to 0 when d increases. Heilmann and M. Wagner [17, Theorem 1] improved c1
for d ≤ 3. Ditzian’s proof of the general weighted case also yields a constant c1
that decreases to 0 when d or maxi |αi| increase. All these treatments are based
on the quite general and efficient method developed by Ditzian and Ivanov [14]. It
enables us to derive converse inequalities like the one on the left-hand side of (1.2)
by means of Voronovskaya and Bernstein-type inequalities. These inequalities are
important in themselves but their consecutive application leads to decreasing c1.

The main purpose of this paper is to demonstrate that by means of the mul-
tiplier theory we can derive strong converse inequalities with better absolute con-
stants than the methods previously used. Moreover, the arguments are very short.
The first result we state contains a strong converse inequality of a form that is a
combination of types B and C (according to the terminology introduced in [14]).
Quite similar results were previously established by Berens and Xu [2, Theorem 3]
(see also [2, Theorem 2]).

Set ρ := d+
∑d+1
i=1 αi.

Theorem 1.1. Let d ∈ N, 1 ≤ p ≤ ∞ and wα be given by (1.1) with αi > −1,
i = 1, . . . , d+ 1. Then for all f ∈ Lp(wα)(S) and all n ∈ N there hold

Kα(f, n−1)p ≤
(

4 +
2ρ

n

)(
‖Mn,αf − f‖p,wα + ‖M2n,αf − f‖p,wα

)
+

4

n

2n∑
k=n+1

‖Mk,αf − f‖p,wα .

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 55–73. 57



Remark 1.2. Let us explicitly note that the constant on the right-hand side
above is asymptotically independent of any parameters unlike the strong converse
inequalities obtained in [7], [13], [18]. More precisely, if n ≥ |ρ|, then

Kα(f, n−1)p ≤ 6
(
‖Mn,αf − f‖p,wα + ‖M2n,αf − f‖p,wα

)
+

4

n

2n∑
k=n+1

‖Mk,αf − f‖p,wα .

However, the inequalities established in [7, 13, 18] are of a stronger type than the
one above.

Let us mention that the K-functional Kα(f, t)p was characterized by a simpler
one in [8] for 1 < p <∞ (see also the references cited there).

It seems quite plausible that the strong converse inequality in (1.2) also holds
with c1, which is independent of p, d and wα. We were not able to show that.
However, a short multiplier argument yields a strong converse inequality of that
type in a special case. It is based on a result due to H. Pollard. Let d = 1 and
wα = 1. Let Snf be the n-th partial sum of the Fourier-Legendre series of f .
Pollard [20] proved that if 4/3 < p < 4, then the operators Sn : Lp[0, 1]→ Lp[0, 1]
are uniformly bounded on n, that is, there exists a constant ς ≥ 1 such that

‖Snf‖p ≤ ς‖f‖p, f ∈ Lp[0, 1], n ∈ N.

Here ‖ ◦ ‖p denotes the standard Lp-norm on the interval [0, 1]. We will omit
the subscript α in the notation of the K-functional and the Bernstein-Durrmeyer
operator when wα = 1.

We will establish the following result.

Proposition 1.3. Let 4/3 < p < 4. Then for all f ∈ Lp[0, 1] and all n ∈ N
there holds

K(f, n−1)p ≤ (1 + 2ς) ‖Mnf − f‖p.

The contents of the paper are organized as follows. In the next section we col-
lect the basic properties of Bernstein-Durrmeyer operator that we will use. Section
3 contains the proofs of the theorems and the proposition stated above. In the last
section we discuss how the same multiplier method can be applied in the general
case of weights wα with αi ≥ −1/2 for all i. This proof is not shorter than the ones
previously used; but it has the advantage of using elementary calculus and being
invariant in its technical part on the dimension—it depends only on that how large
ρ is.
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2. BASIC PROPERTIES OF THE BERNSTEIN-DURRMEYER OPERATOR

Here we shall recall the properties of the Jacobi-weighted Bernstein-Durrmeyer
operator that we need (see [13]).

First of all, it is a contraction on the space Lp,wα(S), that is,

‖Mn,αf‖p,wα ≤ ‖f‖p,wα . (2.1)

Mn,α is a self-adjoint linear operator w.r.t. the inner product

〈f, g〉wα :=

∫
S

f(x)g(x)wα(x) dx.

Its eigenvalues are

µn,` :=
n!

(n− `)!
Γ(n+ ρ+ 1)

Γ(n+ `+ ρ+ 1)
, ` = 0, . . . , n, (2.2)

where Γ denotes the gamma function and, to recall, we have set ρ := d+
∑d+1
i=1 αi.

For each `, to µn,` corresponds the same eigenspace for all n. We denote it by V`.
For ` ≥ 1 the space V` consists of those algebraic polynomials of x1, . . . , xd and total
degree ` that are orthogonal w.r.t. the above inner product to the polynomials of
degree `−1. The eigenspace V0, corresponding to µn,0 = 1, consists of all constants.
Now, if we denote the projections on V` by P`, then Mn,α can be represented in
the form

Mn,α =

n∑
`=0

µn,`P`. (2.3)

The operator Pα(D) is also self-adjoint and its eigenspaces coincide with those
of Mn,α. More precisely, there holds

Pα(D)P = −`(`+ ρ)P, P ∈ V`, ` ∈ N0. (2.4)

Finally, let us recall that Mn,α and Pα(D) commute on C2(S):

Mn,αPα(D)f = Pα(D)Mn,αf, f ∈ C2(S). (2.5)

3. PROOFS OF THE MAIN RESULTS

First, we will prove the direct estimate stated in (1.3) for the sake of complete-
ness of the exposition.

Proof of (1.3). Z. Ditzian’s proof of the direct estimate in (1.2), is based on
the elegant formula (see [13, (3.3)])

Mn,αf − f =

∞∑
`=n+1

1

`(`+ ρ)
Pα(D)M`,αf, (3.1)
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valid for all f ∈ Lp,wα(S). Using that Mn,α is a contraction (see (2.1)), we get

‖Mn,αf − f‖p,wα ≤ 2 ‖f − g‖p,wα + ‖Mn,αg − g‖p,wα (3.2)

for any g ∈ C2(S). Next, we apply (2.1), (2.5) and (3.1) to estimate the second
term on the right. Thus we get

‖Mn,αg − g‖p,wα ≤
∞∑

`=n+1

1

`(`+ ρ)
‖Pα(D)g‖p,wα . (3.3)

It is quite straightforward, to see that

∞∑
`=n+1

1

`(`+ ρ)
≤ 1

n
.

Now, substituting (3.3) in (3.2) and taking an infimum on g ∈ C2(S), we arrive at

‖Mn,αf − f‖p,wα ≤ 2Kα(f, n−1)p.

Thus the first inequality in (1.3) is verified; the second one is trivial. �

Proof of Theorem 1.1. The proof is a modification of a very short argument
due to Berens and Xu (see [2, Theorem 3]). Set

gn :=
1

tn

2n∑
k=n+1

Mk,αf

k(k + ρ)
, tn :=

2n∑
k=n+1

1

k(k + ρ)
.

Clearly, gn ∈ C2(S) for all n ∈ N and then

Kα(f, n−1)p ≤ ‖f − gn‖p,wα +
1

n
‖Pα(D)gn‖p,wα . (3.4)

We estimate the first term on the right above by means of

‖f − gn‖p,wα =

∥∥∥∥∥f − 1

tn

2n∑
k=n+1

Mk,αf

k(k + ρ)

∥∥∥∥∥
p,wα

≤ 1

tn

2n∑
k=n+1

‖Mk,αf − f‖p,wα
k(k + ρ)

≤ 4

n

2n∑
k=n+1

‖Mk,αf − f‖p,wα .

(3.5)

In order to estimate the second term on the right in (3.4), we apply (2.3) and (2.4)
to get the representation

Pα(D)gn = − 1

tn

2n∑
k=n+1

k∑
`=0

`(`+ ρ)

k(k + ρ)
µk,`P`.
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Next, we take into account the remarkable property of the multipliers µn,`

µk,` − µk−1,` =
`(`+ ρ)

k(k + ρ)
µk,`

to arrive at the formula

Pα(D)gn =
1

tn

2n∑
k=n+1

(Mk−1,αf −Mk,αf)

=
1

tn
(Mn,αf −M2n,αf).

Consequently,

1

n
‖Pα(D)gn‖p,wα ≤

(
4 +

2ρ

n

)(
‖Mn,αf − f‖p,wα + ‖M2n,αf − f‖p,wα

)
. (3.6)

Combining (3.4)-(3.6), we complete the proof of the theorem. �

Let us proceed to the proof of the converse inequality in Proposition 1.3. The
method we use is quite straightforward. It is based entirely on standard techniques
in the multiplier theory and orthogonal series expansions. We will present it in the
general case of the multivariate Bernstein-Durrmeyer operator on the simplex. The
method is based on constructing a family of uniformly bounded operators Qn such
that

1

n
Pα(D)Mm

n,αf = Qn(Mn,αf − f)

with some fixed m ∈ N. Then the strong one-term converse inequality in (1.2)
easily follows from

Kα(f, n−1)p ≤ ‖Mm
n,αf − f‖p,wα +

1

n
‖Pα(D)Mm

n,αf‖p,wα
= ‖(Mm−1

n,α +Mm−2
n,α + · · ·+ I)(Mn,αf − f)‖p,wα + ‖Qn(Mn,αf − f)‖p,wα

≤ (m+ q) ‖Mn,αf − f‖p,wα ,

where I denotes the identity and q > 0 is such that ‖QnF‖p,wα ≤ q‖F‖p,wα for all
F ∈ Lp,wα(S) and n ∈ N.

That approach to converse inequalities has been applied before (see e.g. [14,
(2.13)], and also cf. [p. 32][2]). The proof of the direct inequality, we recalled above,
was realized in a similar way (see (3.1)). There is a general comparison principle
that underlies this technique. It was formulated independently, in two different
settings, by Shapiro [21] (see also [22, Section 9.4]) and Trigub [24, § 4] and [25, § 4]
(see also [27, Chapter 7] and [26, p. 4]. The author tried to present systematically
that method of verifying direct and converse estimates in terms of K-functionals
in [15] (see also the references cited there).

The earlier proofs of the converse inequality of the type given in (1.2) for the
Bernstein-Durrmeyer operator also employed orthogonal expansions, but in a lesser
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degree and within the framework in [14]. Berens and Xu [2] also extensively used
multiplier techniques (see also [2, Theorem 2]).

Proof of Proposition 1.3. Let us begin with several observations valid in the
general multivariate weighted case. They will be useful for our discussion in the
next section.

We first note that (2.3) and (2.4) yield

Pα(D)Mn,αf = −
n∑
`=1

`(`+ ρ)µn,`P`f.

We introduce the linear operator on Lp,wα(S)

Qnf :=

n∑
`=1

νn,`P`f,

where

νn,` :=
`(`+ ρ)µn,`
n(1− µn,`)

. (3.7)

Note that µn,` < 1 for ` = 1, 2, . . . , n. With that operator we have

1

n
Pα(D)Mn,αf = Qn(Mn,αf − f).

Thus to establish a one-term strong converse inequality, it is enough to show that

‖Qnf‖p,wα ≤ c ‖f‖p,wα
for all f ∈ Lp,wα(S) and n ∈ N.

After this general remark, we proceed to the proof of the proposition. Now,
Snf coincide with the nth partial sum of the orthogonal expansion of f on P`, that
is,

Snf :=

n∑
`=0

P`f.

We use the representation

Qnf =

n−1∑
`=1

(νn,` − νn,`+1)S`f + νn,nSnf − νn,1S0f.

In Lemma 3.4 below we will show that νn,`−νn,`+1 > 0 for all `. Then, taking also
into account that the ν’s are positive and νn,1 = 1, we deduce the estimate

‖Qnf‖p,wα ≤ ς

(
n−1∑
`=1

(νn,` − νn,`+1) + νn,n + νn,1

)
‖f‖p,wα

≤ 2ςνn,1‖f‖p,wα = 2ς ‖f‖p,wα ;

hence the assertion of the proposition follows. �
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Lemma 3.4. Let ρ > −1. For νn,` defined in (3.7) there holds

νn,` > νn,`+1, ` = 1, . . . , n− 1, n = 2, 3, . . . . (3.8)

Proof. Relation (3.8) is equivalent to

1− µn,`
`(`+ ρ)µn,`

<
1− µn,`+1

(`+ 1)(`+ ρ+ 1)µn,`+1
,

which can be written in the form

1

`(`+ ρ)µn,`
− 1

`(`+ ρ)
<

1

(`+ 1)(`+ ρ+ 1)µn,`+1
− 1

(`+ 1)(`+ ρ+ 1)
.

We group the terms with µ’s on the left-hand side and those without on the right-
hand side, and substitute the value of the µ’s given in (2.2). After straightforward
calculations, using that ρ > −1 and

Γ(n+ `+ ρ+ 2) = (n+ `+ ρ+ 1)Γ(n+ `+ ρ+ 1), (3.9)

which follows from Γ(z + 1) = z Γ(z), z > 0, we deduce that (3.8) is equivalent to

(n− `− 1)! Γ(n+ `+ ρ+ 1)[n− `(`+ ρ+ 1)] < n! Γ(n+ ρ+ 1)

for ` = 1, . . . , n− 1, n = 2, 3, . . . . To verify this inequality, we shall show that the
quantity on the left-hand side is decreasing on ` and it is valid for ` = 1. The latter
is a matter of a direct check—it reduces to (ρ+ 1)(ρ+ 2) > 0. To verify the former,
we set

ξn,` := (n− `− 1)! Γ(n+ `+ ρ+ 1)[n− `(`+ ρ+ 1)].

To see that
ξn,` > ξn,`+1, ` = 1, 2, . . . , n− 2, n = 3, 4, . . . , (3.10)

we again apply (3.9) to deduce that (3.10) is equivalent to

(n− `− 1)[n− `(`+ ρ+ 1)] > (n+ `+ ρ+ 1)[n− (`+ 1)(`+ ρ+ 2)].

Now, direct computations yield

(n− `− 1)[n− `(`+ ρ+ 1)]− (n+ `+ ρ+ 1)[n− (`+ 1)(`+ ρ+ 2)]

= (`+ 1)(`+ ρ+ 1)(2`+ ρ+ 2) > 0,

which verifes (3.10) and completes the proof of the lemma. �
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4. AN EXTENSION

In this section we will demonstrate that the multiplier method can be used to
verify the one-term converse inequality in (1.2) in a more general situation than
the one considered in Proposition 1.3.

To this end, we represent Qn as a linear combination of the Cesàro means of
the partial sums of the orthogonal expansion of f on P` (see [4, Theorem 3.2]). We
set

S̃nf :=
1

n+ 1

n∑
k=0

Skf,

where

Skf :=

k∑
`=0

P`f.

Then we have

Qnf =

n−2∑
`=1

(`+ 1)(νn,`+2 − 2νn,`+1 + νn,`)S̃`f

+ n(νn,n−1 − 2νn)S̃n−1f + (n+ 1)νn,nS̃nf + (νn,2 − 2νn,1)S̃0f. (4.1)

As usually, if the range of summation is empty, we set the sum to be equal to zero.
Dai and Xu [9, Theorem 2.8 with δ = 1] (or see [10, Theorem 13.4.4], as we

also apply the Riesz-Thorin interpolation theorem) showed that if 1 ≤ p ≤ ∞,
αi ≥ −1/2, i = 0, . . . , d + 1, and ρ − mini αi < 3/2, then the Cesàro means are
uniformly bounded on n, i.e. there exists a constant κ such that

‖S̃nf‖p,wα ≤ κ ‖f‖p,wα , f ∈ Lp(wα)(S), n ∈ N. (4.2)

Lemma 3.4 yields νn,2 ≤ νn,1 = 1. Then we have by (4.1) and (4.2)

‖Qnf‖p,wα ≤ κ

(
n−2∑
`=1

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`|

+ (4n+ 1)νn,n−1 + 3

)
‖f‖p,wα .

We will prove that

n−2∑
`=1

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`| ≤ c

and
n νn,n−1 ≤ c.
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Above and henceforward, c denotes a positive constant, not necessarily the same
at each occurrence, whose value is independent of n.

Thus we will have shown that if 1 ≤ p ≤ ∞, αi ≥ −1/2, i = 1, . . . , d+ 1, and

d+

d+1∑
i=1

αi − min
1≤i≤d+1

αi <
3

2
,

then for all f ∈ Lp(wα)(S) and all n ∈ N there holds

Kα(f, n−1)p ≤ c ‖Mn,αf − f‖p,wα .

In order to treat the general case, we can still apply the same method but use
Cesàro means of higher order (see [5, Theorem 7.1] or [23, Theorem 3.3]). Their
uniform boundedness was established by Dai and Xu [9] (or see [10, Theorems
13.2.7 and 13.4.6]).

We proceed to establishing the auxiliary results.
We set for τ ∈ (0, n]

µn(τ) :=
Γ(n+ 1)Γ(n+ ρ+ 1)

Γ(n− τ + 1)Γ(n+ τ + ρ+ 1)
, νn(τ) :=

τ(τ + ρ)µn(τ)

n(1− µn(τ))
.

We will make use of the following formula of the derivative of the gamma function

Γ′(z) = Γ(z)ψ(z),

where ψ(z) is the digamma function, defined as the logarithmic derivative of the
gamma function

ψ(z) :=
Γ′(z)

Γ(z)
.

We have
µ′n(τ) = −µn(τ)Cn(τ), (4.3)

where
Cn(τ) := ψ(n+ τ + ρ+ 1)− ψ(n− τ + 1).

We will use the following estimates.

Lemma 4.5. Let ρ ≥ 0. Then:

Cn(τ) ≤ 2τ + ρ

n− τ
, τ ∈ (0, n); (4.4)

Cn(τ) ≥ 2τ + ρ

2(n− τ + 1)
, τ ∈ (0, (n− ρ)/3), n > ρ; (4.5)

C ′n(τ) ≤ 2n+ ρ

(n+ τ + ρ)(n− τ)
, τ ∈ (0, n); (4.6)

C ′n(τ) ≥ 2n+ ρ+ 2

(n+ τ + ρ+ 1)(n− τ + 1)
, τ ∈ (0, n); (4.7)

C ′′n(τ) ≥ 2(2τ + ρ− 1)(2n+ ρ+ 1)

(n+ τ + ρ)2(n− τ + 1)2
, τ ∈ (0, n). (4.8)
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Proof. As is known,

ψ(x) = −γ − 1

x
+

∞∑
k=1

x

k(k + x)
, x > 0, (4.9)

where γ is Euler’s constant. Therefore

Cn(τ) = (2τ + ρ)

∞∑
k=1

1

(n− τ + k)(n+ τ + ρ+ k)
. (4.10)

Interpreting the sum above as a Darboux sum, we arrive at the estimates

log

(
1 +

2τ + ρ

n− τ + 1

)
≤ Cn(τ) ≤ log

(
1 +

2τ + ρ

n− τ

)
. (4.11)

To complete the proof of the first two estimates, it remains to take into account
the inequalities

log(1 + x) ≤ x, x ∈ R,

log(1 + x) ≥ x− x2

2
≥ x

2
, x ∈ [0, 1].

In order to estimate the derivatives of Cn, we use that for m ≥ 1 we have

ψ(m)(x) = (−1)m+1m!

∞∑
k=0

1

(x+ k)m+1
, x > 0.

Therefore

1

x
≤ ψ′(x) ≤ 1

x− 1
; (4.12)

− 2

(x− 1)2
≤ ψ′′(x) ≤ − 2

x2
; (4.13)

(4.14)

for x > 1. These inequalities directly yield (4.6)-(4.8). �

Lemma 4.6. Let ρ ≥ 0, b > 0 and 0 < δ ≤ 1. Let also n ∈ N be such that
n ≥ 3 and 1 ≤

√
bn ≤ n− 1. Then

n2νn,` ≤ c, δn ≤ ` ≤ n, (4.15)

τ |ν′n(τ)| ≤ c, τ ∈ [1, n− 1], (4.16)

and

τ2|ν′′n(τ)| ≤ c, τ ∈ [1,
√
bn], (4.17)

where the constant c is independent of n.
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Proof. First, we estimate from below the difference 1− µn,`.
By means of the property Γ(z + 1) = zΓ(z), z > 0, we represent µn,` in the

form

µn,` =
n(n− 1) · · · (n− `+ 1)

(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)
.

Consequently,

1− µn,` ≥
(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)− n`

(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)
.

We expand the numerator, take into account that ρ ≥ 0, and use the well-known
formulas for sums of powers of consecutive positive integers, to arrive at the estimate

(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)− n` ≥ c(`2n`−1 + `6n`−3).

Hence we get the inequalities

1− µn,` ≥
c `2n`−1

(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)
(4.18)

and

1− µn,` ≥
c `6n`−3

(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)
(4.19)

for 3 ≤ ` ≤ n.
Inequality (4.15) for ` ≥ 3 follows directly from (4.19) and ` ≥ δn:

n2νn,` ≤ c
n`+2

`4n`−2
≤ c.

For ` = 1, 2 (4.15) is trivial.
We proceed to the second assertion of the lemma. Making use of (4.3), we

arrive at

τν′n(τ) =
τ(2τ + ρ)µn(τ)

n(1− µn(τ))
− τ2(τ + ρ)µn(τ)Cn(τ)

n(1− µn(τ))2
. (4.20)

The function µn(τ) is monotone decreasing on τ for each fixed n. For the rest
of the proof let ` ∈ {1, . . . , n− 2} be such that ` ≤ τ ≤ `+ 1. Then

µn(τ) ≤ µn,`, (4.21)

1− µn(τ) ≥ 1− µn,`. (4.22)

These two inequalities, the property Γ(z + 1) = zΓ(z), z > 0, and (4.18) imply the
following estimate of the first term on the right in (4.20)

0 ≤ τ(2τ + ρ)µn(τ)

n(1− µn(τ))
≤ (`+ 1)(2`+ ρ+ 2)µn,`

n(1− µn,`)

≤ c (`+ 1)(2`+ ρ+ 2)

`2
n!

n`(n− `)!
≤ c, τ ∈ [1, n− 1].

(4.23)
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To estimate the second term we argue in a similar way, as we also use (4.4).
We have

τ2(τ + ρ)µn(τ)nCn(τ)

(n(1− µn(τ)))2
≤ c (`+ 1)2(`+ ρ+ 1)(2`+ ρ+ 2)

`4

× n! (n+ ρ+ 1) · · · (n+ ρ+ `)

n2`−1(n− `)! (n− `− 1)

≤ c
(

1− 1

n

)
· · ·
(

1− `− 2

n

)(
1 +

ρ+ 1

n

)
· · ·
(

1 +
ρ+ `

n

)
≤ c

`−2∏
i=1

(
1− i

n

)(
1 +

i+ ρ

n

)
.

As usually, we set an empty product to be equal to 1.
Next, we take into account that(

1− i

n

)(
1 +

i+ ρ

n

)
= 1− i2

n2
+
ρ

n

(
1− i

n

)
≤ 1 +

ρ

n
(4.24)

and the inequality (1 + ρ/n)n ≤ eρ to deduce

0 ≤ τ2(τ + ρ)µn(τ)Cn(τ)

n(1− µn(τ))2
≤ c, τ ∈ [1, n− 1]. (4.25)

Relations (4.20), (4.23) and (4.25) imply the second inequality in the lemma.
In order two prove the last assertion of the lemma, we use the representation

ν′′(τ) =
2µn(τ)

n(1− µn(τ))
− 2(2τ + ρ)µn(τ)Cn(τ)

n(1− µn(τ))2

− τ(τ + ρ)µn(τ)C ′n(τ)

n(1− µn(τ))2
+
τ(τ + ρ)(1 + µn(τ))µn(τ)Cn(τ)2

n(1− µn(τ))3
. (4.26)

Just similarly to (4.23) and (4.25), we establish

0 ≤ τ2µn(τ)

n(1− µn(τ))
≤ c, (4.27)

0 ≤ τ2(2τ + ρ)µn(τ)nCn(τ)

(n(1− µn(τ)))2
≤ c (4.28)

for τ ∈ [1, n− 1].
Again, similarly to the proof of (4.25), but this time using (4.6), we get

τ3(τ + ρ)µn(τ)C ′n(τ)

n(1− µn(τ))2
≤ c (`+ 1)3(`+ ρ+ 1)

`4

× (2n+ ρ)n! (n+ ρ+ 1) · · · (n+ ρ+ `− 1)

n2`−1(n− `)! (n− `− 1)

≤ c
`−2∏
i=1

(
1− i

n

)(
1 +

i+ ρ

n

)
≤ c.
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Consequently,

0 ≤ τ3(τ + ρ)µn(τ)C ′n(τ)

n(1− µn(τ))2
≤ c, τ ∈ [1, n− 1]. (4.29)

In order to estimate the last term in the representation of ν′′n we use (4.4) and
µn,` ≤ 1 to deduce

τ3(τ + ρ)(1 + µn(τ))µn(τ)Cn(τ)2

n(1− µn(τ))3
≤ c (`+ 1)3(`+ ρ+ 1)(2`+ ρ+ 2)2

`6

× n! (n+ ρ+ 1)2 · · · (n+ ρ+ `)2

n3`−2(n− `)! (n− `− 1)2

≤ c
`−3∏
i=1

(
1− i

n

)(
1 +

i+ ρ

n

)2

.

It remains to observe that, by virtue of (4.24) and the inequality (1 + ρ/n)n ≤ eρ,
we have

`−3∏
i=1

(
1− i

n

)(
1 +

i+ ρ

n

)2

≤ c
[(

1 +
`+ ρ

n

)n]`/n
≤ c e`

2/n ≤ c.

�

Lemma 4.7. Let ρ ≥ 0. There holds

`(νn,` − νn,`+1) ≤ c, ` = 1, . . . , n− 1,

where the constant c is independent of n.

Proof. The inequality follows readily from (4.15) for ` = n− 1. Let ` ≤ n− 2.
Then, by virtue of (4.16), we have

`(νn,` − νn,`+1) = −`
∫ `+1

`

ν′n(τ) dτ

≤ sup
1≤τ≤n−1

|τν′n(τ)| ≤ c.

�

Lemma 4.8. Let ρ ≥ 0. There holds

n−2∑
`=1

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`| ≤ c,

where the constant c is independent of n.
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Proof. Clearly, it is sufficient to verify the lemma for large n. Its assertion for
n ≤ n0, where n0 ∈ N is fixed, is trivial.

We split the sum into four parts:

1 ≤ ` ≤
√
an− 2,

√
an− 2 < ` ≤

√
bn,

√
bn < ` ≤ n

4
,

n

4
< ` ≤ n− 2,

where 0 < a < b will be fixed in appropriate way to be indicated in the course of
the proof. We denote these parts with Σi, i = 1, . . . , 4, respectively.

As is known

νn,`+2 − 2νn,`+1 + νn,` =

∫ `+2

`

M(τ − `)ν′′n(τ) dτ, ` = 1, . . . , n− 2,

where

M(τ) :=

{
τ, 0 ≤ τ ≤ 1,

2− τ, 1 ≤ τ ≤ 2.

By virtue of (4.17), we have

Σ2 :=
∑

√
an−2<`≤

√
bn

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`|

≤ c
∫ √bn+2

√
an−2

τ |ν′′n(τ)| dτ ≤ c.

Let mn be the integer part of n/4. We apply (4.15) to get

Σ4 :=
∑

n/4<`≤n−2

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`| ≤ c n2νn,mn ≤ c.

We proceed to estimating Σ3. Let
√
bn ≤ τ ≤ n/4 + 2. Let n be so large that

we have n/4 + 2 ≤ (n − ρ)/3. We will show that if b is fixed large enough, then
ν′′n(τ) > 0 for all large n. Hence νn,`+2 − 2νn,`+1 + νn,` ≥ 0 if

√
bn < ` ≤ n/4− 2.

Let `n be the smallest integer greater than
√
bn. Then, by virtue also of Lemmas

3.4 and 4.7, we deduce that

Σ3 :=
∑

√
bn<`≤n/4

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`|

= `n(νn,`n − νn,`n+1) + νn,`n − (mn + 1)νn,mn +mnνn,mn+1

≤ c.
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Thus, to complete the proof of the estimate of Σ3 it remains to show that
νn,`+2 − 2νn,`+1 + νn,` ≥ 0 if

√
bn ≤ ` ≤ n/4 − 2 for all n large enough an

appropriately fixed b. By (4.26) we have

ν′′n(τ) =
µn(τ)

n(1− µn(τ))3
N(τ),

where we have set

N(τ) := 2(1− µn(τ))2 − 2(2τ + ρ)Cn(τ)(1− µn(τ))

− τ(τ + ρ)C ′n(τ)(1− µn(τ)) + τ(τ + ρ)C2
n(τ)(1 + µn(τ)).

By virtue of Lemma 4.5, we arrive at the estimate

N(τ) ≥ µn(τ)

(
2(2τ + ρ)2

n− τ
+

τ(τ + ρ)(2n+ ρ)

(n+ τ + ρ)(n− τ)
+
τ(τ + ρ)(2τ + ρ)2

4(n− τ + 1)2

)
− 2(2τ + ρ)2

n− τ
− τ(τ + ρ)(2n+ ρ)

(n+ τ + ρ)(n− τ)
+
τ(τ + ρ)(2τ + ρ)2

4(n− τ + 1)2
. (4.30)

In order to show that N(τ) > 0 it is enough to prove that the quantity on the
right-hand side of the last relation is positive. Using that n − τ + 1 < n + τ + ρ,
we see that this follows from

µn(τ)[8(2τ+ρ)2(n+τ+ρ)2+4τ(τ+ρ)(2n+ρ)(n+τ+ρ)+τ(τ+ρ)(2τ+ρ)2(n−τ)]

> 8(2τ +ρ)2(n+τ +ρ)2 +4τ(τ +ρ)(2n+ρ)(n+τ +ρ)−τ(τ +ρ)(2τ +ρ)2(n−τ).

To complete the proof it remains to observe that if b is fixed large enough, then the
quantity on the right-hand side of the inequality above is negative for large n. To
see this, we observe that the sum of the terms in the polynomial on the variables
τ and n on the right-hand side that determine its sign for large τ and n is

40n2τ2 + 72nτ3 − 8ρnτ3 − 4nτ4 + 4τ5.

Since

40n2τ2 + 72nτ3 − 8ρnτ3 − 4nτ4 + 4τ5 ≤ 4τ2(10n2 + 18nτ − nτ2 + τ3),

to complete the proof it is sufficient to show that

10n2 + 18nτ − nτ2 + τ3 < 0

if
√
bn ≤ τ ≤ n/4 with an appropriately fixed b. But this readily becomes clear

from the estimate

10n2 + 18nτ − nτ2 + τ3 ≤ 10n2 +
9

2
n2 − nτ2 +

1

4
nτ2

≤ 29

2
n2 − 3b

4
n2.
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To estimate Σ1 we use similar but more lengthy considerations than those for
Σ3. They are based on the inequalities stated in Lemma 4.5 as we have to use
instead of (4.5) its refinement that follows from log(1 + x) ≥ x − x2/2. This time
we show that there exists a ∈ (0, 1) such that N ′(τ) < 0 at least for large n if
1 ≤ τ ≤

√
an; hence N(τ) ≤ N(1) < 0. Consequently, νn,`+2 − 2νn,`+1 + νn,` ≤ 0

if 1 ≤ ` ≤
√
an− 2 and n is large. �
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