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The conformal infinity of a quaternionic-Kahler metric on a 4n dimensional manifold
with boundary is a codimension 3-distribution on the boundary called quaternionic
contact structure. In order to study such structures O.Biquard [1] has introduced a
unique connection which preserves the structure and whose torsion tensor satisfies some
conditions. This paper is devoted to obtaining an explicit formula for the torsion tensor
and for the connection itself.
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1. INTRODUCTION

The quaternionic contact structures have been introduced by O.Biguard in [1]
and [2]. Namely, a quaternionic contact structure on a (4n+3)-dimensional smooth
manifold X is a codimension 3 distribution V such that at each point z € X the
nilpotent Lie algebra V, & T, X/V, is isomorphic to the quaternionic Heisenberg
algebra H™ & I'mH, where nilpotent Lie algebra structure is defined by

_ | mrxv.ab] ifa,beV,; |
la. 5] {0 otherwise (1.1)

and the Heisenberg algebra structure is given by the formula
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[i xiei,ixiei} = Im'znif,-y,-. (1.2)
i=1 i=1 i=1 .

This is equivalent to the existence of a 1-form 7 = (n1,m2,73) with values in
R3such that V = Ker 5 and the three 2-forms dn;y are the fundamental 2-forms
of a quaternionic structure on V. The 1-form 7 is given up to the action of SO3 on
R* and up to a conformal factor.

If we pick up such a 1-form 7 (globally defined), we obtain the quaternionic
structure on V defining the three endomorphisms I; = (dnklv)" O(dﬂj;v) V=V,
where (2, 7,k) is any cyclic permutation of (1,2,3). Obviously, this quaternionic
structure does not depend on the choice of 7. We also define the metric g on V by
9(X,Y) = dn.(X, I,Y). This metric is given up to the conformal factor because it
depends on the conformal factor of 5. Further, Biquard has shown ([1]) that there
exists a unique triple of vector fields {Ri, R, R3}, which satisfy ns(Rx) = sk,
(ir.dns)jv = 0 and (ig.dny)yy = —(ig,dns);v. Using this triple we define the metric
g on the whole T X, putting sp{R1, R2, R3} L V and g(R,, Ry) = &4. This metric
does not depend on the action of SO4 but it depends on the conformal factor of 7.
In my exposition I will assume that this metric is fixed. Also, in order to capture the
3-Sasaki structures, I will assume that the fundamental 2-forms of a quaternionic
structure on V are %dm |v instead of dry;yy,. Obviously, these assumptions make no
restriction to the general case.

I also assume throughout the paper that the dimension of the base manifold is
4m + 3 > 7. The case dim X=7 needs a special approach ([3]).

The interest in quaternionic contact structures is motivated by the result of
Biquard [1] on Einstein deformations of HH™, which asserts that if a quaternionic
contact structure on S4™~1 js close enough to the standard one, then it is a confor-
mal infinity of complete Einstein metric. This result of Biquard is a generalization
of a Graham-Lee [4] theorem on Einstein deformations of real hyperbolic space.

In the Salamon’s [5] construction of the twistor space of a quaternionic Kahler
manifold one uses the Levi-Civita connection to define the horizontal space for
the fibration. In the case of quaternionic contact structure, there is no canonical
connection. So using the analogy with the Tanaka-Webster [6] connection in CR
geometry, Biquard (1] has introduced a unique contact guaternionic connection
which I will call the Biquard connection.

This paper is devoted to study the properties of the Biquard connection. Many
of its properties have been proved by Biquard [1], but he did not prove an explicit
formula for the torsion tensor. This I have done in Theorem 5.3 - (i), corollary
5.1 (together with Theorem 5.4) and corollaries 5.4, 5.5 and 5.6. The key point
in calculating the torsion tensor is the formula for the tensor i (see Corollary 5.1)
which I have obtained redoing in completely different way the proof of the theorems
5.3 and 5.4.
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2. BASIC DEFINITIONS

Let (M, g) be an orientable Riemannian manifold of dimension 4n + 3 > 11.

Definition 2.1. A triple (V,Q, ) will be called an Almost Contact Quater-
nionic Structure on M if

(i) V is codimension 3 distribution on M

(ii) @ is an almost quaternionic structure on V' and

(iii) ¢ is a linear map from V+ to @) which preserves orientation and which
sends the unit sphere of V+ into a set of complex structures of Q.

Let Jy,Ja.Js € Q,J2 = J? = J} = —1,J1J, = —JoJ; = J3 be the usual
quaternionic basis of Q. Then the set of all complex structures in Q could be
thought as a two dimensional sphere { 5_.a'J; | 3. (a')®> =1 }. It is easy to see
that another triple Ja, Ja, Ja € Q, Ji = Yok a¥ J,. forms quaternionic basis, too, if
and only if the matrix (af )33 belongs to SO(3).

We will denote with W the 3 dimensional distribution ¥V and with S? the
unit sphere in W . Let &, &, & € §%. Then by definition (p(&;))? = —1 and

Lemma 2.1. The triple o(&1), 9(&2).9(€3) forms a quaternionic basis of Q if
and only if &), &2,&3 1s orthogonal and oriented basis of W.

We will say that the map ¢ originates from the exterior derivative if across
any point in M one can find orthonormal local basis {£,£2,&3} of W such that
glp(&)X,Y) = %d(bf,-)(X,Y), X, YeV, i=1,2,3, where b§;(X) =g(§,X), X €
TM.

Definition 2.2. An almost contact quaternionic structure (V,Q, ) on M is
called contact quaternionic structure if ¢ originates from the exterior derivative.

3. THE STRUCTURE GROUP

We consider the space R*"+3 = R1" x R? =V 4+ W}, with standard quaternionic
structure Qg on Vp = R*". Let Iy, Jy, Ko be the standard quaternionic basis on Qo
and {ey,e2.e3} the standard basis on Wy = R? . We consider the map ¢y : Wy —
Qo, woler) = Lo, wole2) = Jo, woles) = Ko. So we obtain a constant contact
quaternionic structure (Vp, Qo, o) in R,

Let G denote the group of all endomorphisms of O(4n + 3) which preserve the
structure (Vp, Qo, o). Obviously G is a subgroup of SO(4n + 3).

Theorem 3.1. The manifold M admits an almost contact quaternionic struc-
ture if and only if its structural group could be reduced to the subgroup of G.
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Let A € Sp(n)Sp(1) and

AI()A_I = a{ Iy + G%Jo -+ a'}Ko
AJ()A_I = aéf() + a%Jo + agKo
AKoA™Y = ally + a2y + a3 Ky .

Then the matrix (a¥)s,s belongs to S0(3) and we obtain a homomorphism 7 :
Sp(n)Sp(1) — SO(3).
Lemma 3.1. The group G can be represented by
G={(A,71(4)) | A€ Sp(n)Sp(1) }
Corollary 3.1. The group G is isomorphic to Sp(n)Sp(1).

We denote this isomorphism with A : Sp(n)Sp(1) — G, A\(4) = (A4,7(A)), A€

Sp(n)Sp(1). ,
Let g be the Lie algebra of G. We will identify R* with sp(1). For any matrix
A € sp(n) & sp(1) let a = (a1,a2,a3) be its projection in sp(1).

Lemma 3.2. An endomorphism t € gl(4n + 3,R) belongs on g if and only if
there exists a matriz A € sp(n) ® sp(1) such that

t(x+y) =Ar —2aAy, x €R", yeR>

Proof: We compute (/\.1A)(.’l? -+ y) = Ax + 1 [A, I()] + yz[A, Jo] +,y3[A, Ko] =
Ar +2a Ay, where a is the sp(1) component of A, considered as an element
Of R; D

4. CONTACT QUATERNIONIC CONNECTIONS

Let on the Riemannian manifold M be fix an almost contact quaternionic
structure (V, Q, o).

Definition 4.1. A Riemannian connection is called contact quaternionic con-
nection if its holonomy group is contained in the group G.

Theorem 4.1. An arbitrary Riemannian connection V is contact quaternionic
if and only if it satisfies the conditions:

(i) for any vector fields X € TM and v € V, Vxv € V (i.e. V preserves V
and W = V+4), .

(ii) V preserves Q,

(iii) Vo = 0.

Note: In fact, the condition (ii) follows from the other two.
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5. THE BIQUARD CONNECTION

For the rest of the paper we will assume that the fixed structure (V,Q, ) on
M is contact gnaternionic, i.e. the map ¢ originates from the exterior derivative.
This means that in some neighborhood of any point on M we can find a 1-form
n = (m,n2,73) with values in R?, such that V = Ker n , the three 2-forms w;,
defined by

1 .
wily = §d7h]V (5.1)
'ixw,; = O, X € W

are the fundamental 2-forms of the quaternionic structure @ and the three vector
fields (#m1, #n2. #n3) form an orthonormal basis of W such that g(p(#n:)(X),Y) =
wi(X,Y). We fix this form 7 and denote & = #mn;, I; = #w;. In particular we have

Iﬂur =0, [,’Ij = Ik, and I|“ = - dv (52)

where (i,j,k) is any cyclic permutation of (1,2,3)

Let D denote the Levi-Civita connection on M and let m be the orthogonal
projection from T'M to V. We define VxY = w(DxY) for any two vector fields
X,Y € V. We may regard V as a part of Riemannian connection which preserves
the distribution V. Our purpose is to extend V to the connection on all TAl which
preserves our contact quaternionic structure.

Let T denote the torsion of V. It is easy to see (Biquard [1]) that

T(X,Y)=-[X,Y]w, X YeV. (5.3)

Theorem 5.1 (Biquard [1). | V preserves the quaternionic structure Q of V
if and only if

(i) te,dnoyv =0, a=1,2,3 and

(i) g, dngyy = —ig,dnav, a # .

More precisely. if these two conditions hold, we have

Vxwa = —dna(&s, X)wﬂ + dn, (éa X)wy, (5.4)

where X € V and (o, 3,7) is a cyclic permutation of (1,2,3).

For any p-form w we denote mw(Xy,..., X,) = w(nXy,...,TXp).

Lemma 5.1. We have

. 3
th- = 7rd7h~ — d'lh- —_ Z 773 25 d’l’h z d"h '53: §t)7)9 A Nt
s=1

1<s<t<3
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Proof: We have 2w;(X,Y) = dni(X — n(X),Y —n(Y)) =
= dni(X,Y) = dni(X.n(Y)) = di(n(X),Y) + dni(n(X),n(Y)), etc. O

From now on we assume that the conditions of the Theorem 5.1 hold. Using the
equation Vi = 0, we are able to determine (Biquard [1]) the covariant derivative
Vxé€ X e V. € W. We have

Vx€&=[X, Elw (5.5)

Let H be a subgroup of GI(4n,R) and h be the corresponding Lie algebra.
Suppose that on V is given an H-structure and an extension of our connection in
form V¢ X wich preserves the H-structure. Then, for the torsion T, we obtain

T X)=VeX -Vx€-[£,X]=V X -[(,X]yv €V (5.6)
In particular, we may regard T'(,.) as an endomorphism T of V.

Lemma 5.2 (Biquard [1]). For any H-structure on V there exists a unique
extension of our connection in form V¢ X which preserves this structure and such

that
T: € h'L, EeWw.

Proof: Let V be an arbitrary extension of the covariant derivative which pre-
serves the H-structure. Then for any other extension V which preserves the H-
structure we have Ve X = VeX + a¢(X), where a¢ is an endomorphism of V and
ag € h. We obtain

TEY)=T(EX)+ae(X), E€cW,X e V.

Obviously the tenzor ag(X) might be chosen in a unique way. [

It follows the main theorem.

Theorem 5.2 (Biquard [1]). If the conditions

(l) ’t'gnd'flalv = 0, a =1, 2,3

(ii) t¢, dngy = —ig,dngv, a # 3
are satisfied, there exists a unique contact quaternionic connection V with torsion
T such that

(i) T(X, Y)= —[X, Y]w, X, YeV

(ii) T¢ € (sp(n) @ sp(1))*, E€ W

We call this connection the Biquard connection.

One may decompose the tensor T¢(we regard it as an.endomorphism of V
which by the definition belongs to (sp(n) @ sp(1))*) in two components: T - the
symmetric one and ag - the anti-symmetric. We have

Te =T + ag (5.7)
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Note: Through the Lemma 5.2 one can construct connection V° using the
group H = SO(4n) instead of H = Sp(n)Sp(1). Then, according to the Lemma,
T, € so(4n)L, where T” is the torsion of V°. We have

Te(X) = Te(X) + be(X), E€W, X eV (5.8)

and since V and V' both preserve the metric, be € so(V). So we obtain again the
decomposition (5.7) and in particular T = T.

My next aim is to calculate the torsion tensor 7' of the Biquard connection.
Theorem 5.3 (ii) and (iii) and Theorem 5.4 were originally proved by Biquard [1],
but in order to obtain an explicit formula for 7' I will remake there proofs in
completely different way.

We will use the following well known lemma:

Lemma 5.3 (Biquard [1]). Any endomorphism u of V might be decomposed
uniquely:
v=uttt put T Tt 4w,

where utt commutes with all three I;, ut~— commutes with I, and anti-commutes
with the others two and etc. In fact we have

4u+++ =Uu- 1111,11 - I2u12 - I’;‘U,I‘;

qut™" = u— Luly + Iuly + Isuls.
du~t" = u+ Liuly = Iuly + Isuls.
qu~" " =u+ Liuly + Luly — Izuls.

We define L'X(Y) = nwLx(Y), X,Y € TM, where L denotes the Lee differ-
entiation. If we regard the distribution V as a vector bundle over M, then we
may regard L'y and Vx as two differentiations of the tensor algebra of this vector
bundle. In fact, for any differentiation of V' we have the following useful lemma.

Lemma 5.4. Let D be any differentiation of the tensor algebra of V. Then
we have

(1) D([z)lz = '—It'D(Ii)a i = 112)3

(i) L D(I)~t~ = LD(Ix)*~~ (The other two identities could be obtained
through cyclic permutation of (1,2,3)).

Proof : We calculate
0 = D(-Idv) = D(I,I;) = D(LI)I; + I; D(L;)
and we obtain (i). To get (ii), we calculate
0= D(I,I; + I1,) = L D(I;) + D(Ih)I2 + D(Ix) I, + I D(I,) =

= I,(D(I;) = LD(I1)5) + L/(D(I2) — 1 D(I2) 1) =
= LD(L)"* + LD(L)*". O
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Theorem 5.3. For any X,Y € V the symmetric component T® of the torsion
T satisfies:

(i) 9(TE(X),Y) = 5Le,9(X,Y), i =1,2,3;

(i) (Biquard [1]) T{ (LX) = —LT (X), i=1,2,3;

(iii) (Biquard [1]) Ig(ng)*“* =1 (Tg)“*”‘ (The other two identities could be
obtained through cyclic permutation of (1,2,3)).

Lemma 5.5.

Le I = 2T ™" L—2Lya+dn, (52,51)11+%(d7h (§2,€3)—dn2(&3,&1)—dn3(§1,62)) I3
(5.9)

: —— . 1
L¢, I, = 2T, +11+213U+d772(€1,52)12—5(-f1771 (&2,83)+dn2(&€s, 1) —dns (61, €2)) I3
(5.10)

Le, Iy = —2T2 I + dm (€1, &2) ]2 + dm (61, &) ] (5.11)

and siz more identities which may be obtained through cyclic permutation of (1,2, 3).
Here u is symmetric endomorphism of V which commutes with I,,I, and Is.

Proof : (Theorem 5.3 and Lemma 5.5) Let X,Y € V. Using (5.6), we calculate

1
9TEX,Y) = S(9(TeX,Y) + g(T,Y, X)) =

= %(Q(VE' [£¢X]v, Y) +g Vf [§1Y]V’ ) =

1
= 5&9(X,Y) - g([6: X]v,Y) - g([&:Y]v, X)) = —Le 9(X,Y).
We also have
quwj(Xa Y) = é'ig(IjX’ Y) - g(Ij[&;,X], Y) - g(Ian Kia Y]) =
= Le g X, Y) + (L, ;) X, Y)
which leads to
#Lewj = 2T 1; + L I (5.12)

On the other hand, using Lemma 5.1 and the well known 1dent1ty Le,w; = i¢,dw; +
dig,w;, we compute

Le,wiyy = dni(&i,&5)w; + dni(&i, &k )w, (5.13)

where (1, 7, k) is cyclic permutation of (1,2, 3). So we obtain
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L Ii = =20 Ii + dni(&i, &) 15 + dmi(§i: Gk ) I (5.14)

Now we apply Lemma 5.4 (i) for D = L’ and this completes the proof of Theorem
5.3, (i) and (ii).

We use the well known formula L¢,wo = i¢, dw2 + dig,w2 and Lemma 5.1 to
compute

| S . .
(Lf,wg)lv . §(d(z€,d1’]2) —ig,dnz A zfiidm)IV' (5.15)

Next we apply the condition (ii) of Theorem 5.1 to obtain

[N

(Lg,wa + Lewn )y =

= dm (€2, &)wy + dna (&1, &2)wa + (di (€2, &3) + dn2(€1,€3) Jws (5.16)
On the other hand, (5.12) leads to
2T812 + L;llg + 2T£02]1 - L;,II =

= dny (2,601 + dna(€1,62) 12 + (dm (€2, &3) + dn2(61,&3)) 3. (5.17)

Now we decompose (5.17) according to Lemma 5.3 to get

Ll = =218 "I +dm(&, &) (5.18)
Lol = =208 I+ dm(6, @)D (5.19)
(Le, o+ Legh) = (dm(62,€5) + dma(61,6)) . (5.20)
/9 4 27 h=0 (5.21)

Obviously, (5.21) completes the proof of Theorem 5.3. Using (5.20), we define

2= L, L+ %(dm(fz,ﬁa) — dnp(€3,61) — dma(ér,&2))ldv = (5.22)

= "ISL’&II--+ + %(—dm(ﬁz,fa) +dna(63,€1) — dns(&1,62)) v

Applying Lemma 5.4 for D = L', we obtain the formulas in Lemma 5.5.
Now we shall show that i is symmetric. For any X,Y € V according to (5.12)
we have :

Le,wo(X,Y) = 29(T X, Y) + g(Le, L X,Y).
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But L¢,wo(X,Y) is skew-symmetric and applying (5.9) we get
0= symm(2T§0] I + Ll& Iy) = —Isantisymm/(2a) O

Let (7,7, %) be any cyclic permutation of (1,2,3). We define three 2-forms

A = %w{d(w(i@. dne)) + (ie,dn;) A (ie,dme)} = (5.23)

1 ) . .
= gl d(ig dnk) + (ie,dn;) A (ig.dnk)} — de (&5, G Jwr + dni(€:, € )wi
We put this into (5.15) to get
(Lg,wa)yy = Az + dn2(&1, €2)w2 — dna(€3,61)ws

On the other hand, using (5.9) and (5.12) we calculate

' —t— 1
#Lewy =270 " 12*213'ﬁ+d771(€2,51)11+§(d771(€2,53)—d7rz(€3,€1)—dﬂa(§1,€2))13

We decompose the last two identities to obtain

Lemma 5.6.

#ATH =210 7L

#AT T =dm(&,.6)

#ATTT = —dm(&,6) 1,

#A; T = —2I3u + 3(dm (&2,&3) + dna(&s, 1) — dma(€1,€2)) 3

Analogous formulas for Ay and Ay may be obtained through cyclic permutation of
(1,2,3).

Corollary 5.1. For the symmetric tensor @ we have

2u=L#AT " + %(—dm (&2,&3) + dné(fs,ﬁl) + dna(61,82))ldy =

= L#A; T + %(dnl(§2563) = dn2(&s,&1) +dm (6, 62))1dy =

= AT + (60,6 + dmalEs, &) ~ (61,62 Tdy
and also

tr(a) = %tr(ll#Al) + n(—dn (&2,€3) + dn2(&3,&1) + dns(61,&2)) =

- %tr(Iz#Az) +n(dm(§2,€3) — dna(€s, &) + dns(€i,&2)) =

- %tT(Ig#A:;) + n(dni (§2,&3) + dn2(€3,&1) — dns (&1, &2)).
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Theorem 5.4 (Biquard [1]). For anyi =1,2,3 we have
Tg'. = Tg + Lu.

trli
Here u = u — T'(u)
n

Proof: First we denote with £? the space of symmetric endomorphisms of V
and with “ant” the projection

ant : End(V) = #52(V) @ #A2(V) — #A%(V).

Idy and @ is given in Corollary 5.1.

We have

ATe ) 2 @epny = = 3ant(Te, )+ Iant(Te, ) I + Lant(Te, ) Io + Izant(Tg, ) I3 = (5.24)

3 .
=Y (ant(Te,) + Lant(T, ) ).
s=1

We apply (5.6) and for any X,Y € V, we obtain

9(A[Te ) s2@spny - X5 Y) Z 9((Ve, I) X, 1LY )+ (5.25)

+5 Z{g (Le, 1) X, LY) = g((Le. )Y, LX)}

q“l

We have also

0
Te, = [Te)spmasn* = Te, + Tedm2ame s — Telswo):

Now we apply Lemma 5.5 and the theorem follows. [

Corollary 5.2. I3(Te,)" ™ = Ii(T¢, )"~ (The other two identities could be
obtained through cyclic permutation of (1,2, 3)).

Corollary 5.3. Forany X,Y €V
1
9(Ve, X,Y) = §L£.-9(X, Y) +g([&, X),Y) + g(LiuX,Y).

Corollary 5.4.

Ve, i = —dni(&3,60) 13 + dm (&1, 52)12
Ve, I = —dm (&, &)L + (- 2O 4 Ldn (&, &) — dna(3,6) — dn(61,€2))) 13
Ve Iy = —(— 58 + %(dfh(fz,fs) dﬂz(ﬁa,ﬁl) dns(§1, &N 12 + dni(€3.61) N
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Ve, [y = (-5 4 3(=dny (&2, &) + dna(€3,€1) — dns (€1, £2))) +dne(&1,&2) 12
Ve, I = —dna(&1,62) 1, +dm(§2,€3)1s

Veals = —dna(a, &) 1o + (=52 + L (~dm (&3, &) + dna(&5.61) — dms(€1, &)1
Ve i = —dma(€3,6) I + (=52 4 L(—dp,y (€2, €3) — dna2(83,&1) + dns(é1,€2))) 1>

Ve Io = = (=8 4+ L(—dpy (€, 65) - dn2(&3,&1) + dns (€1, 62)) 1 + dns (&2, €3) 15
Ve Is = —dna(§2,€3) 2 + dns(€3,6)

Of course we may write all this formulas briefly as follows

Ve Ii = —a; (&) I + aw (€)1, (5.26)

where a; (&) = *dis(%(;,@ + 5(dm (&2, &) + dna(€3,61) + dnz(§1,62))) + dns (€5, &),
s =1,2,3 and (i, 5, k) is any cyclic permutation of (1,2,3).

Proof: According to (5.6) we have
Veli = [Te., L) + Le I = [T, L) + ull,, I) + L;_I..

We apply Lemma 5.5 to get the corollary .

Corollary 5.5.
Vﬁ.\fi = =y (fs)gk + ak(fs)gj,
Here a;(&) is the same as in (5.26), (1,7, k) is any cyclic permutation of (1,2,3)
and s = 1,2, 3.
Corollary 5.6.
tr(i)
n

T'(&,&5) = - & — [&i, &]v.
Here 1,3,k is any cyclic permutation of (1,2,3).
Proof: Using Corollary 5.5 we compute

tr7(:2)£k -, &lv. O

T({z,{]) = V&ng - V£,§1 - [61»63] = -

6. THE 3-SASAKIAN CASE

Let on the Riemannian manifold (M, g) be given a 3-Sasakian structure. This
means there are given three Killing vector fields {£1,€2.&3}, which satisfy

(1) g(&la&]) = J‘ijﬁ ls] = 1».213

(i) [&, €] = —2¢&, for any cyclic permuatation (2,5,k) of (1,2,3) i

(ii) (Dx L;)Y = 9. Y)X-g(X,Y)&, i =1,2,3, X,Y € TM. Where Li(X) =
Dx&; and D denotes the Levi-Civita, connection.

We denote V = {¢;, &, {3}l. We shall use without proof the next well known
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Lemma 6.1. Let (i,].k) be any cyclic permutation of (1,2,3). We have

Ii(&)) = &: (6.1)
Lo[[(X)=I1X, XeV; (6.2)
Loli(X)=-X, X€V; (6.3)

dni(X.Y)=2¢(I;X,Y), X,Y €V (6.4)

If we define W = space{é1,&2,&3}, Ly = fﬂv, Liw = 0 and @(&) = I we
clearly obtain a contact quaternionic structure (V,Q = {Ii,15,I3},¢) on M. In
this case it is easy to calculate

Lemma 6.2.

ig,dmlv =0 foralli,j=1,2,3; (6.5)
dn(€2,&3) =2, dm(&r,63) = dm(&i,62) =0 (6.6)
AI = A2 = A3 = O; (67)
Q= ~1d . (6.8)

U= 2 Ve .

Theorem 6.1. The contact quaternionic structure (V,Q, ) satisfies the con-
ditions of the Theorem 5.2 and therefore it admits the Biquard connection V. We
have

)YV =0,X eV,

(it) V¢, I; = 0.

(iii) V¢, I; = =21, Vg, I, = 21, here (i, j, k) is cyclic permutation of (1,2,3).

(iv) T(&,&;) = =26k

(v) T, X)=0, X eV.
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