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In the recent years a class of devices called compliant mechanisms is in the focus of
many investigations. Their use in the design of modern devices, especially in micro-
electro-mechanical systems (MEMS), is inevitable because of the difficulty in fabricat-
ing rigid-body joints and assembling parts. Compliant mechanisms rely upon elastic
deformation to perform their function of transmitting and/or transforming motion and
force. Flexural pivot-based designs use narrow sections connecting relatively rigid seg-
ments. Thus, compliance is lumped to a few portions of the mechanism. The introduc-
tion of the elastic pivots instead of the rigid-body joints leads to certain deviations in
the performance of the compliant mechanisms compared with the analogous rigid-body
linkages. These deviations are the object of study in the paper. Based on the graph
theory, a method for effective estimation of the accuracy of compliant mechanisms with
flexural pivots is elaborated and practical examples are considered.
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1. INTRODUCTION

The definition of compliant mechanisms can be found in the literature, based
either on the output motion, or on their design. Compliant mechanisms derive a
part or whole of the relative motion between its members from intentional elastic
deformation of the members rather than from conventional rigid body kinematic
pairs alone [1]. A compliant mechanism can be also defined, as a single-piece flexible
structure that delivers the desired motion by undergoing elastic deformation as
opposed to the rigid body motions in a conventional mechanism [2].
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Such mechanisms may be considered for use in a particular application for
a variety of reasons. The advantages of compliant mechanisms are considered in
two categories: cost reduction (part-count reduction, reduced assembly time, and
simplified manufacturing processes) and increased performance (increased preci-
sion, increased reliability, reduced wear, reduced weight, and reduced maintenance).

Generally, the categories of compliant mechanisms can be divided into three
kinds:

— Fully compliant mechanisms.
— Compliant. mechanisms in which only the joints are compliant.
—- Compliant mechanisms in which only the links are compliant.

Our interest is in the second one, in which the flexure hinges (flexure pivots)
act as of joints. A flexure hinge is a thin member that provides the relative rotation
between two adjacent rigid members through flexing (bending) where a conventional
rotational joint is compared to a flexure hinge [3]. Flexure hinge is a typical simple
and ingenious mechanical structure. Being made up of a monolithic material, it
possesses many outstanding properties which ordinary hinge does not have, and can
satisfies the demands for high accuracy and stability measurement and movement
[4].

The flexure hinges are incorporated in a large number of applications, both civil
and military, including translation micro-positioning stages, piezoelectric actuators
and motors, high-accuracy alignment devices for optical fibers, missile-control devi-
ces, displacement amplifiers, robotic micro-displacement mechanisms and so on.
Recently, increasing applications of monolithic flexure hinge mechanism have been
made to guide motions with precision. Micro-motion stages utilizing the flexure
hinge mechanism can have many advantages: negligible backlash and stick-slip
friction, smooth and continuous displacement, adequate for magnifying the output
displacement of actuation, and inherently infinite resolution [5].

One kind of the flexure hinges is called super elastic hinges. These hinges are
made of a super elastic material such as shape memory alloy (SMA) having an
effect of super elasticity, so that they have the capacity to perform large bending
displacements [6].

Generally, the accuracy of a mechanical system is the quality of the system
characterizing closeness of the results of the execution of certain operations by the
mechanical system to the result of the execution of the same operations by the
ideal mechanical system. In this paper the performance of mechanism with super
elastic hinges is compared with the performance of mechanism with normal joints,
considered as an ideal system. A mathematical model and compact analytical
expressions allowing the exact estimation of the deflections in link positions of the
mechanism with super elastic hinges are presented. Widely used mechanisms are
considered as examples for application of the theory presented.
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2. MATRIX DESCRIPTION OF THE INTERCONNECTION STRUCTURE

Let us consider a planar mechanism consisting of n.+ 1 links interconnected by
m rotational hinges. We replace each rotational hinge by a super elastic plate and
in this way we arrive to a mechanism with compliance for which the interconnection
structure of the links is the same but the hinges are not more rotational pairs. The
deviation in the position of an arbitrary link of the new (compliant) mechanism
in the absolute plane with respect to the position of the same link of the primary
(rigid) mechanism is the object of study in the paper.

There are always two basic links in each real mechanism: the stationary base
(fixed link or frame) and another link, which plays a special role in the mechanism
and performs a preliminary given motion. This is the motion for which the mech-
anism is actually designed. This link is called characteristic link. In the formalism
developed further each link can be considered as a characteristic one if its motion
is of special interest. The fixed link will be considered as a link number 0 and the
characteristic link gets number ¢*. The fixed link together with the characteristic
link determine the basic open chain (possibly not the only one) in the mechanism.
This basic chain is unambiguously determined for some mechanisms like industrial
robots and manipulators but for others the basic chain may be chosen under some
possibilities. The links belonging to the basic chain get numbers 1,2,...,i" starting
from the link next to the fixed link.

We represent the mechanism structure by a graph, whose vertices s; (i =
0,1,...,n) and edges u, (a = 1,...,m) symbolize respectively the links and the
hinges of the system. The labeling of the links and vertices, as well as the hinges
and edges is identical and it will be clear from the context when there is a question
of link or vertex, respectively of hinge or edge. We are talking about rotational pair
and more generally about hinge when two links ar interacting directly, i.e. each
rotational pair (hinge) connects exactly two links. The three links given in Fig. 1
sharing one rotational axis define in this way two rotational pairs.

Fig. 1
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The edge of the basic chain, which is incident with the vertex number i (i =
1,...,1") gets the same number. The system graph is generally an arbitrary graph
and its transformation into a graph with a tree-like structure (so called skeleton
tree) can be reduced to the removing of n = m—n appropriately selected edges from
the graph. We assume that the removed edges do not belong to the basic chain. In
the tree obtained each pair of vertices is connected with one and only one simple
chain in which every vertex appears only one time. We label the vertices in such
a way, that the numbers of the vertices belonging to each simple chain beginning
from the vertex sp form a monotonously increasing sequence. Such labeling is called
reqular. In this labeling the numbers from 1 to n are assigned to the edges of the
skeleton tree in such a way that one of the two vertices connected by the edge
number a has the same number 7 = a and besides, this edge belongs to the simple
chain connecting sy with s;. The nonsceleton edges get numbers from (n 4+ 1) to
m. The simple chains which connect the vertices of the skeleton tree s; with the
vertex so will be called direct paths and denoted by the symbol [so, s;] [7].

When describing the relative motion in the hinge number @ it must be specified
unambiguously which motion relative to which link is meant. As a basic link when
describing the relative motion in hinge number a we choose the link with the smaller
number. After the choice is completed we can define two functions i*(a) and i~ (a)
(@ = 1,...,m) where it(a) means the number of the reference link and i~ (a) is
the number of the contiguous link. From the chosen rule of links labeling it follows
obviously that i~ (a) = a for = 1,2,...,n. By introducing the functions :*(a) and
i~ (a) we obtain the possibility to give a sense of direction to every edge and in this
way to transform it to arc assuming that i*(a) is the number of the vertex from
which the arc u, is pointing away, and ¢~ (a) is the number of the vertex toward
which the arc u, is pointing. The graph obtained is called oriented graph.

One of the basic matrices describing the structure of the introduced graphs is
the incidence matrix of the oriented graph I = (S;,) (i =0,1,...,n,a=1,...,m),

where
1 ifi=1%(a),

Sie =< —1 ifi=1"(a), (2.1)
0 otherwise,

ie. S;u = 1, if the arc u, starts at a vertex s;, Si, = —1, if the arc u, ends at
the vertex s; and S;, = 0 otherwise [8]. Obviously each column of the incidence
matrix contains exactly one element +1 and one element —1 because exactly two
vertices define each arc. The incidence matrix allows reconstructing entirely the
system graph and describes in this way unambiguously the system structure.

We introduce also the matrix It = (S}) (i = 0,1,...,n; a = 1,...,m) ac-
cording to the rule

St = { 1 ifi=1i%(a), (2.2)

0 otherwise.

This matrix is gained, obviously, from the matrix S replacing in it all —1
through zero.
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Let us represent now the incidence matrix in the form

A
0o So So
V = S ’

A
S S -

|~
[l
[n<

where:
Vv
So={(5.) (a=1,...,n);

So = (SOQ) (a= L---am);

>

§=(Sw) (i=l...ma=n+1,..m)
(Sia) (i=1,...,n;a=1,...,m).

[
li

Another important matrix is the fundamental loops matriz (cyclomatic matriz)
® [8]. Let @, 41, Pyy2,..., P, be the fundamental loops determined by the nonske-

leton arcs up4 1, Un4a,- .., Un. We choose the direction of the arc u,4; as a positive
direction in the loop ®,.;. The cyclomatic matrix is determined then as a 7 x m-
matrix ® = (@ n4ip) (i=1,...,7, b=1,...,m) in the following way:

1, if up € ®,4; and has the direction of u,4;,
Ontib =14 —1, if up € ®,4; and has the opposite direction of u, 44, (2.3)

0, otherwise .

The last structure matrix we introduce is the matriz of direct paths ¥ = (14;)
(a=1,...,m;i=1,...,n) [7], where

1 if u, € [s0, s:] and is directed towards sp,
Yai = —1 if u, € [s0,8;] and is directed from sg,

0 otherwise.

This matrix has the form

V=

T v
. A=m-n, T=8"1' T=(ru) (ai=1,...,n)

.thxn

because of the introduced regular labeling. Here and further 0 xxs denotes matrix
with all elements equal to zero.

Let us consider as a first example the four-bar mechanism with coupler point
presented in Fig. 2. The four-bar linkage is the simplest possible closed-loop
mechanism, and has numerous uses in industry and for simple devices found in
automobiles, toys, etc. The device gets its name from its four distinct links (or
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bars). Link 0 is the ground link (the frame or fixed link), and is assumed to be
motionless. Links 1 and 3 each rotate relative to the ground link about fixed pivots
(Ag and By). Link 2 is called coupler link, and is the only link a point C' of which
can trace paths of different shape (because the link is not rotating about a fixed
pivot). Usually one of the “grounded links” (link 1 or 3) serves as the input link,
which is the link which may either be turned by hand, or perhaps driven by an
electric motor or a hydraulic or pneumatic cylinder.

Fig. 2. Four-bar mechanism with coupler point C

For the given mechanism one possible choice of the functions i*(a) and i~ (a)
is represented in the following table

a 1 2 3 4
i (a) 0 1 0 2
i (a) 1 2 3 3
The corresponding oriented graph is given in Fig. 3.
2
iy Uy
]
Sy
u Uy
So

Fig. 3. Graph of the four-bar mechanism
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The structure matrices I, @ apq ¥ have the form, respectively:

1 0 1 0 -1 -1 0
-1 1 0 0 I S T
=19 -1 o 1]"%=[11 -1 1J.25| ¢ o -

0 0 -1 -1 0 0 0

As a second example we consider the sjx-bar Stephenson-I mechanism (Fig. 4).

%

Fig. 4. Six-bar Stephenson-I mechanism with coordinate systems

The six-bar mechanism is considered as a multibody system consisting of six
bodies (including the frame) interconnected with seven revolute joints as shown in
Fig. 4. The moving links are numbered from 1 to 5 while the frame gets the number
0. The joints are numbered from 1 to 7. One possible choice of the functions it (a)
and i~ (a) is given through the following table

a 1 2 3 4 5 6 7
i (a) 0 1 0 3 3 1 2
i~ (a) 1 2 3 4 5 5 1

The graph of the six-bar mechanism is a cyclic graph (Fig. 5). It can be
reduced to a graph with a tree-like structure by cutting exactly two appropriately
chosen arcs, for instance ui and uz. '
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Uy

5o

Fig. 5. Graph of the six-bar mechanism

The structure matrices have the form:

1 0 1 0 0 0 0]
-1 1 0 0 0 1 0
= 0 0-1 1 1 0 o0/~ -1 .= ’

0 0 0 -1 0 0 -1
| 0 0 0 0 -1 -1 0]

-1 =1 0 0 0]

0 -1 0 0 0

0 0 -1 -1 -1

¥=}| 0 0 0 -1 0

0O 0 0 0 -1

0 0 0 0 o0

0 0 0 0 0|

The last example is the mechanism shown in Fig. 6 with nine links and ten
revolute joints (planar platform).
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Fig. 6. Nine-bar mechanism with the coordinate systems

One possible choice of the functions it (a) and i~ (a) is given in the following
table:

a it(a) i~ (a)
1 0 1
2 1 2
3 2 3
4 3 4
5 4 5
6 5 6
7 3 7
8 7 8
9 0 6
10 0 8

The corresponding oriented graph is given in Fig. 7.
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S

Fig. 7. Graph of the nine-bar mechanism

The graph of the mechanism is a cyclic graph and can be reduced to a graph
with a tree-like structure by cutting exactly two appropriately chosen arcs, for
instance ug and ujg. The corresponding structure matrices have the following
form:

1 0 0 O 0O 0 0 o0 1 1
-1 1 0 0 o0 O 0 0 0 O
0 -1 1 0 O O O O o0 O
o 0 -1 1 o O 1 O 0 O
I = o o o0 -1 1 0 O o0 o0 01},
0O 0 0 0 -1 1 0 0 0 0
o o0 o 0 O -1 0 0 -1 0
O 0 o0 0 o 0 -1 1 0 0
. 0 0 0 0 0o 0 0 -1 0 -1
& — -1 -1 -1 -1 -1 -1 0 010
=!1-1 -1 -1 0 0 0 -1 -1 01
[ -1 -1 -1 -1 -1 -1 -1 -1
0 -t -1 -1 -1 -1 -1 -1
0 0O -1 -1 -1 -1 -1 -1
0o 0 0 -1 -1 -1 0 O
U= o 0 0 0 -1 -1 0 0
= o 0 O 0 0 -1 o0 O
o 0 O o 0 0 -1 -1
o 0 o0 o o0 o0 o0 -1
o 0 o0 0 0 o0 o0 o0
0 0 0 0 0o 0 0 0]
In link number i (i =0,1,...,n) we chose a coordinate system O;x;y;z; in the

following way. The axis z; is the rotation axis of link 7 with respect to the previous
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link in the direct path from sp to s;. All axes z; are parallel and orthogona] to
the common motion plain of the links. If the link number ¢ is an inner one for
the skeleton tree and besides it is connected with one or more following links with
numbers j, k,...,l (j < k < --- <), then the axis z; is a common normal of z;
and z; in the motion plain, directed towards z;. The axis z; intersects the axes z;
and z; in points O; and Oj, respectively. We chose the first point as an origin of
the coordinate system O;r;y;2; in which the axis y; lays in the motion plane and
complements the axes z; and z; to right-hand system. Analogously, on each of the
axes belonging to the link 7 with numbers j < k < -+ <1 points O;, Ok, ..., Oy are
defined (Fig. 8).

i

Fig. 8

In the peripheral links the axes x and y of the coordinate systems are chosen
arbitrarily but so that they built right-hand systems with the rotation axis z of the
peripheral link with respect to the previous one. In the fixed (zero) link the axis zo
is chosen to coincide with the axis z; and the axes xo and yo are chosen arbitrarily.
In addition to the coordinate system O;z;y;z; in each of the links except the zero
one we will use a coordinate system with an origin in an arbitrarily chosen point
C; of the link and parallel axes with unit vectors egi), e.(;), egi) . The position of the
link i~ (a) with respect to the link i*(a) we determine with the angle g, between

. .4 .
the z-axes of the coordinate systems C;e(*) introduced, ¢, = £ (e’l (@) gt (@),

Let us replace now the revolute hinges in the motion plane through thin plates
with lengths [, having super elasticity, while the system is in a certain position ¢*.
We assume that the rotation centers R, are located at the centers of the lengths
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of the elastic hinges and that the lengths of the plates are small quantities [, < 1
(Fig. 9).

Link i"(a)

e{ (a)a

Fig. 9

3. RELATIVE DEVIATION

The basic considerations begin with the description of the relative motions in
the hinges. The relative positions of the links will be determined by a method
that is more complex than it is necessary when considering only a mechanism
with rotational (rigid) hinges, but the method is equally applicable to the both
mechanisms. This approach gives us the opportunity to realize the desired compa-
rison. For this purpose for each hinge two hinge points Cis (4), in the corresponding
contiguous links are specified and the hinge vector z, = ,+(,,)aC ~(a)a 18 introdu-
ced. We denote the radius vectors of the hinge points C; i* (a)a IN the corresponding
bases by ¢i, = C;Ci, (i = i%(a), a = 1,...,m) (Fig. 10). In order to describe the
relative motion in hinge a we introduce in each of the contiguous links additional
reference frames Cx ,), e(i*(@9) rigidly attached to the correspondmg links i*(a).

The position of the system C; zi(a)ag(’ (a)a) with respect to C; :t( )e( *(a)) is determi-

+ .
ned by the position of its origin C+ (,), and the angle aF =/ ( (@) e’l+(")a),
= ( : e, (@a ) We choose as hinge points the ends of the super elastic
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plate. The axes er(“)“ and e’ (Y% are directed along the plate when it is in

undeformed state in position ¢* and then they remain fixed in the corresponding
links (Fig. 9, Fig. 10, Fig. 11, Fig. 12).

Link (i*(a)) Link (i (a))

_0_'» (a)a \/ z, gi “(a)a

C e @

grm /

i“(a)

i*{a) i"(a)

Fig. 10

The vector z, and the basis e' () are functions of the chosen parameter of the
relative motion in hinge number a, i.e.

Zo = 2a(qa), € () =eli"(@)(g,).

The position of the plate itself in undeformed state with respect to the coordinate

+/ (@it (@) git(a)a
systems in the contiguous bodies is determined by the angles o} £ (e} ', e]

and o L( i) g (a)a) (Fig. 9). For the initial (rigid) mechanism the relative

motion in hinge a is a rotation around the center R, which is the middle of the
plate and the vector z, has the form (Fig. 12)

2] = Ci+(2)aCi-(a)a = 'i+(a)aRa + RaCi‘(ﬂ)a

l la it(a)a l +a.a.
= <-§+§cosqa) (a) + (2 smqa> (a)
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Here and further the index (r) (from rigid) is used for quantities connected with
the initial (rigid) mechanism. For the corresponding quantities of the mechanism
obtained after replacing the rotational hinges through super elastic plates we will
use designations without index.

The relative motion in hinge number a is realized by virtue of the elastic
deformation of the plate which replaces the rotation Pair. The position of the system
Ci-(aya€’ (W® with respect to the system Ci+ (4),€" (% is determined through the

angle 6, = / (e’f‘“’“,e;“‘“)“) (Fig. 11, Fig. 12).

.
e: {a)a

Fig. 11

Let ¢, mean in the elastic mechanism again the angle /£ (ei+(a),ej-(a)). The
following relationship is evident (Fig. 11, Fig. 12, Fig. 13):

Go=0) +0, —a; =0,+q,.

The links of the both mechanisms in an undeformed state when 8, = 0 take identical
position ¢* in the absolute frame.
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{a)

Y
¢

> @

Fig. 13

We assume that the form of the deformed plate is determined through the angle
0o Then the translational displacement z, of the coordinate system Cj- (5),e! ()

Ann. Sofia Univ., Fac. Math. and Inf., 98, 2008, 203-229. 217



with respect to the coordinate system C,;+(,,)ae"+(“)"' can be written down in the
form

= C- — _ 0 it(a)a 0 it (a)a : 3.2
2, = it(a)a“i~ (a)a — fa( u)el +ga( n)e'z ) ( . )

where functions f,(6,) and g,(6,) are known through the equation of the neutral
line of the deformed plate found theoretically or from the experiment. The deviation
to be determined between the links of the elastic mechanism with respect to the
links of the initial mechanism is the difference between (3.1) and (3.2) (Fig. 12):

Az, =z, — 2] =

la la it{a)a la . it (a)a
- [fa(oa.) - (5 + —Q—cosqa)J el (Mo [ga(()a) — Esmqa} el (e,

(3.3)

4. DEVIATION OF THE COMPLIANT MECHANISM

We choose as an absolute coordinate system Oe (reference frame) the coordi-
nate system in the fixed (zero) link Ope®. The position of each link of the mechanism
in this system is determined with the help of the radius-vector R; of the point C;,
fixed in this link, and the orthonormal basis e; i = 1,...,n, introduced above
(Fig. 10). The relative motion in each hinge has only one degree of freedom and
in this way the position of the mechanism is determined by m generalized param-
eters ¢ = (q1,...,¢m)". We can write down for each pair of contiguous bodies the
formula (Fig. 10)

(R‘i*(d) + ci+(lz)a) - (Ri“(a) + C;- (“,)a) = ~Zga, a=1,...,m. (4.1)

Taking into account the incidence matrix (2.1), we rewrite this relation in the
following way:

n n
Z Sia (Ri + €ia) = SpaCoa + Z Sia (Ri + Cia) = —2q, a=1,...,m. (4.2)
i=0 i1

Let us define now with the help of the incidence matrix the following matrix

J=(Siecia) (i=0,1,....,n;a=1,...,m), (4.3)

where the vectors c;, are defined only for i = i*(a). We put them zero for the
remaining indices. The last matrix has the same structure as the incidence matrix:

]-(2]
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where

A
= (Sf)acﬁa) (O, =1,.. ~s")v ._C_..O = (SO(LCOQ) (a' =n+1,.. '1m)
A
= (SiaCia) (i,a=1,...,n), C=(SiuCia) (=1,....ma=n+ 1,...,m),

IO Q<0<
e o

= (Spacos) (a=1,...,m), C=(Siaciu) (i=1,...,n5a=1,...,m)

We define in the same way the matrix

J* = (S}z,), (i=0,1,....,n; a=1,...,m) (4.4)

where S} are quantities defined in (2.2). The last matrix has the form

v AL
J = -QO Q() _ g(')
= v A o »
g* g* Q
where
v A
Co=(Shaa) (@=1..,n), Cp=(Shza) @=n+1....,m),
v A
Q* g* (Sza (2=1,.--,n;a=n+1,...,m)‘

a=1,....,m), C' = (S:;z,,) (i=1,...,n;a=1,...,m).

The vector z, can be represented in the form:

n
_ § : +
- Siaza

i=()

From here for the matrix z = (z1,... ,z,,,,)T follows the relation

z=(3") 1,41, (4.5)

where 1, is a column [(n + 1) X 1]-matrix of unit elements. Now, defining R =
(Rq,...,R,)7T we are able to represent (4.2) in the following form:

_l.T [ g ] +lTln+l = —Z

or:

] g [+ @ L = 0 (4.6

Multiplying this relation from the left with ¥7 and taking into account the

relation (7]
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LT = (~1n, Ey,),
Where E,, is a unit n x n matrix, we find that

R=-¥"J+3)7L,,,. (4.7)

This expression represents the radius-vectors R; (i = 1,...,n) of the points
C; fixed in the links with respect to the absolute coordinate system through the
hinge vectors and eventually through the generalized parameters of the mechanism.
Without loss of generality we can choose Cy = C; and then ¢g; = 0. Partlcularly,
we have for the characteristic link

it -1

Rz Zzz + Z(ct i+1 = cu) (48)

The last relationship determmes the radius-vector of point Cj« of the characte-
ristic link with respect to the absolute coordinate system. Outgoing from (4.8)
and taking into account that the quantities c¢;, are identical for both mechanisms
and the differences in the attitudes are due to the different values of the vectors
2z, in both mechanisms, we obtain the following expression for the deviation of the
characteristic point

AR;- = 5: Az;.
1=1

The matrices (4.3), (4.4) J and J* for the four-bar mechanism have the follow-
ing form (Fig. 2):

Co1 0 Co3 0 z, 0 z3 O
J -—Ci11 Ci12 0 0 J = 0 Z 0 0
- 0 —C22 0 C4 o= 0 0 0 2z
0 0 —C34 —C34 0 0 0 0
The formula (4.7) is now
R, Z1 + Co1 — C1y
Ry | = | z1+22+c¢cp1+c12—c11 — €22
R; Z3 + Co3 — C33

The radius-vector R¢ of the characteristic point (coupler point) C is (Fig. 2)

Re =Ry +r3e( )

and
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AR¢c = ARy = Az,

Let us consider now the second example. For the six-bar mechanism the ma-
trices (4.3), (4.4) J and J” are (Fig. 4):

[ co 0 Co3

[t
i

(zy 0 z3 0 0 O O
0 Z 0 0 0 Zg 0
Jm — 0 0 0 0 0 1] Z7
- 0 0 0 z; z 0 O
o 0 0 0 O o0 O
0 0 0 0 0 0 0|
The expression (4.7) has the form
[ R; | [ Co1 + 21 — €11 ]
R; Z) + Z2 + Cg1 — C11 + €12 — €22
R; | = Co3 + Z3 — €33
R4 Z3 + 24 — €33 + Co3 + C34 — Cyq
| Rs | | 23 + 25 + Cp3 + €35 — C33 — C55 |

Choosing point D as a characteristic point we have for its radius vector the
expression (Fig. 4)

Rp =Ry +hel®, h

TD),
or
Rp =z, + 22 + Co1 — €11 + C12 — C22,
and finally
ARp = ARy = Az + Az,.

The matrices (4.3), (4.4) J and J* in the last example - the nine-bar mechanism
(Fig. 6) are:
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Cn 0 0 0 0 0 0 0 Co9 Co10
-=C1 Ci2 0 0 0 0 0 0 0 0
0 —C29 Cag 0 0 0 0 0 0 0
0 0 —C33 C34 0 0 Ca7 0 0 0
l = 0 0 0 ~—~Cq4 C45 0 0 0 0 0 y
0 0 0 0 —Cs5 Cs6 0 0 0 0
0 0 0 0 0 —Cg6 0 0 —Cg8 0
0 0 0 0 0 0 —C77 C7g 0 0
i 0 0 0 0 0 0 0 —CRR 0 —Cg10 )
[2, 0 0 0 O O O O 29 2z |
0 z 0 0 O O O O O O
0O 0 z3z 0 0 0 O O O O
0O 0 0 zz 0 O z O O O
J=({ 0 0 0 0 zz 0 0 0 O O
0 0 0 0 O 2z O 0 O O
O 0 0 0 0 0 O O O O
0 0 0 0 O O O zz O O
| 0 0 0 0 0 0 0 O O 0 |
The formula (4.7) takes the form:
R, I Z1+Cp1—C11 |
R, Z1+22+Cp+C12—C11—C22
R, Z1+22+23+Cp1+C12+C23—C11 —C22—C33
R, 21+22+23+24+Co1+C12+C23+C34—C11 —C22—C33—Caq4
R, = | 2, +22+23+24+2Z5-+Cp1 +C12+C23+C34+Cy5—C11 —C22—C33 —6044 —Cs5
Rg 21+29+23+24+25+26+Co1 +C12+C23+C34+Ca5+C36— (Z cii)
=1
g; Z)+22+2Z3+27+Cp1+C12+C23+C37—C11 —C22—C33—C77
- | 21 +22+23+27+2Zg+Co1 +C12+C23+C37+C78 —Cy1 —C22—C33 —C77—Cg8 |

Choosing point F as a characteristic point we have for the position vector the
expression (Fig. 6)

Ry =Ry +hel?,  |BF|=h,

or

ARr = AR2 = Az + Az,.
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5. CONSTRAINT EQUATIONS

The availability of loops in the considered mechanisms leads to the appearance
of constraints between the generalized parameters g, imposed on the mutual motion
of the links forming a system of fundamental loops. Each of the fundamental loops
imposes 3 scalar constrains independent of the remaining loops. These coustraints
express the trivial circumstance that the radius-vector of the origin of one {(no
matter which) of the coordinate systems fixed in the links of the loop with respect
to this origin is the zero vector and, similarly. that the angular position of this
coordinate system with respect to itself is given by the unit matrix. Following
from an arbitrary link of the loop in one direction and expressing these quantities
through the coordinate systems of the passed links, we find a formal record of
the constraints after accomplishing the cyecle. Let us derive first the constraint
connected with the angular attitude of the links of the loop considered. Let the
loop @, consist of arcs uy, ..., up, (@ =n+1,....m) and the sense of direction is
determined by the direction of the arc u, . Let i and j be the contiguous links for
the hinge number by and let « be the angle hetween the r-axes of the coordinate
systems fixed in the contiguous links, Obviously, if the link i is chosen as a reference
link and the value of the parameter b, 1s «x. then the value of gy, will be {-a) if
the link j is chosen as a reference link. Therefore. starting the calculation from an
arbitrary link we find that the constraint, imposcd hy the loop, will have the form

g, +q;, +--- + Q. =Gk, + Qo ot Gk, (5.1)

where jy,....jp, are the numbers of the arcs with the same sense of direction as
the arc up, and k.. ... kg, are the numbers of the arcs with the opposite sense of
direction.

This result can be obtained in a formal way. as well. Let the transition matrix
in hinge bx be G, and let the link number i be chosen as a reference body. Let
the value of the parameter gy, be a, then the matrix G, has the form:

. . Ccosn ~sinn
G, =eW T ) ,
=bh —= = sinn COS O

If we choose as a reference link the umts;,uous link, then the value of ¢, is
(=a) and the transition matrix is Q Q_,, Outgoing from the definition (2.3)
for the quantities y,;, we can write down the relation

Q;""' ,Qf;“’,... ,Q::'b“ =K, fa=n+1,....m). (5.2)

where E, is 2 x 2 unit matrix. Each of the matrices in this relation is an anti-
symmetric one. It is an easy task to prove that the product of two antisymmetric
matrices is commutative

ap ]___[ a b21; ay b
—b, -bz as —bs az || =by a1 |°
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Consequently, in the left side of (5.2) we can first write down the matrices with
positive exponents ¢, and then — those with negative exponents. The product of
the former matrices has the form

[ cos(gj, +qj, + -+ +¢;,,) —sin(g, + ¢+ +45,) ]
sin(g;, +qj, +--+45,,)  cos(g;, +qi, +-+4q5,) |’

and the product of the latter — the form

cos(qk, + qr, + -+ + Gk,,)  sin(qk, + Gk, + 0+ qk,,)
~sin(qk, + gk, + 4 Qk,,) €0S(qk, + G, + o+ qr,,) |

After multiplying these matrices the relation (5.2) obtains the form:

) (5] ()G,
— sin (g:, (1.7‘,-) - (g:l qk")} o8 (121 Qj') - (z‘

3
Qk,)
1 ]
what leads us again to the relation (5.1).

The remaining two constraints express the equality to zero of the radius-vector
of an arbitrary origin with respect to itself, or in other words, the radius-vector
of the coordinate origin of the link chosen as an initial one, expressed through the
sequence of vectors c;+(,) and z, along the arcs u, belonging to the considered
loop, is equal to zero. We can find these constraints by multiplying the relationship
(4.6) from left with the cyclomatic matrix ® following [7]. We find, after simple
calculations, the formula

S
g

|
S
=]

&
w

.(b_JTer-] + 8z =0;,4;-
Using (4.5) we rewrite this relation in the form
®J" 1,4, + 22 = O5x1.
This relationship is fulfilled for both mechanisms, therefore
DI -J)"L,,, + @Az = 05x;
The vectors ¢;, have identical values for both mechanisms, i.e. J = J" and finally

PAZ = 04x1. (5.3)

Projecting (5.3) on the axes x and y in the motion plane we obtain 27 scalar
relations which are the constrain equations together with (5.1).

As an example, let us consider again the four-bar mechanism. We have only
one loop and the equations (5.3) are now (Fig. 2)

224 Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 203-229.



racosqr + 76 cos(q1 + g2) — T4cosgz — 11 =0 (5.4)
rosingy + 76 8in(q1 + g2) — r4 singz = 0.

On the other hand, the relation (5.4) takes the form

M +q2—¢q3+qs=0. (5.5)
From (5.4) we obtain

g3 = arctan ( rzsingy + 6 sin(gy + ¢2) ) . (5.6)

r2cosq + 16 cos(qr + q2) — T
Eliminating g3 by squaring and adding the equations (5.4), we get

rj — (7,.19. + r% - r?;) = 2roT6 COSga — 27172 COS g1 — 27176 cos(q1 + G2).

This formula allows representing g2 as a function of ¢; and further ¢3 and g4 through
(5.6) and (5.5). Finally the constraint equations (5.3) have the form

AZ;

AZQ .
[1 1 -1 1] Az, | =0
AZ4

or

Az, + Azy — Azz + Azy = 0.

Let us now find the parameters of the displacement for the six-bar mechanism

through the generalized parameters q1, q2, g3, q4, g5, g6 and g7 (Fig. 4). To that

end, we use the loop-closure equations. The loop-closure equations of first four-bar
linkage O 4 ABOp are written as:

acos(q; —a) —bcos(q; +¢gs) —ccos(qgs + 3) —d=0 (5.7)
asin(q1 — a) — bsin(q1 + g¢) — csin(gz + 3) =0 '

g1 —q3—gs + g =0, (5.8)

where o = Z(04A,04C), 8= L(OE,OB), a =|044|, b = |AB|, ¢ = |OpB]|,
d = |040g|. From (5.7) we get the formula

asin(q; — a) — bsin(q1 + g¢)
— arets - 3. 5.9
g3 = arctan (acos(m — o) —beosla + 70) —d B3 (5.9)

In order to get rid of the angle g3 in (5.7), we square and add the equations.
We obtain

¢ — (a® +b% + d*) = —2abcos(gs + ) — 2ad cos(qy — ) + 2bd cos(q1 + gs). (5.10)

Ann. Sofia Univ., Fac. Math. and Inf., 98, 2008, 203-229. 225



As q; is the input data and can be chosen as a generalized coordinate, then ¢g is
determined from (5.10) as a function of ¢, hence g3 through (5.9) is a function of
q1. The relation (5.8) gives finally ¢5 = ¢ — ¢3 — ¢ as a function of ¢;.

The closure equations for the second loop — the five-bar linkage OaCDEOg
are given as:

ecosq, + hcos(qy + q2) — gcos(qs + q4) — fcosqgz —d =0 (5.11)
esing, + hsin(qy + q2) — gsin(gz + q4) — fsings =0 ‘

Gi+qp—-—g—qg+qg =0 (5.12)

where e = |04C|, f = |OE|, ¢ = |ED| and h = |CD| are dimensions of the
six-bar Stephenson-I mechanism.
After squaring and adding the equations (5.11) we obtain

h? — (d* + €2 + f*? + g%) = —2egcos|q: —(q3+q4)]—2ef cos(q1+q3) +2f g cos 4
— 2de cos q; + 2dg cos(qs + q4) + 2df cos qs.
(5.13)

From (5.11) we get

esing, — gsin(gs + q4) — fsings (5.14)
ecosq) — gcos(qs +qq) — feosqs —d '

g2 = —q1 + arctan

The parameter g4 can be expressed from equation (5.13) as a function of the gen-
eralized coordinate q;. The generelized parameter ¢, is expressed as function of ¢
from (5.14). Finally, the last parameter ¢7 can be derived as a function of ¢; from
(5.12).

The constraint equations (5.3) for this mechanism have the form

Az, — Azg — Az + Azg =0
Az + Azy — Azg — Azg + Az7 = 0.

The nine-bar mechanism has nine links and ten revolute joints, consequently
10 generalized parameters ¢; (i = 1,...,10) (Fig. 6). As the mechanism has two
independent loops, the number of the degrees of freedom is four. We choose as
generalized coordinates the first generalized parameters ¢; (i = 1,...,4). We have
from the loop (OABFGHI), the following constraint equations:

G+q+g+q+g+g—q =0 (5.15)

by cosq1 + bz cos(qy + g2) + hy cos(g1 + g2 + g3)+
4 5
bs cos (Z q,-) + bs cos (Z qi) + bgcosqg —a =0
1=1

i=1

by sin gy + by sin(qy-+ g2) + hysin(g; + g2 + g3)+
4 5
b4 sin ( qi) + bs sin (Z q,-) + bgsingg = 0,
=1 i=1

3

(5.16)
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where hy = BF. From relation (5.16) we get

3 4 5
b1 cos g1 +b2 cos(q1+¢2)+h; cos (Z q,-) +b4 cos (Z qz) +b5 cos (Z qz) —a

i=1 =1 =1

3 4 5
b1 sin g1 +b2 sin(q1+g2)+h; sin (E q,-) +b4 sin (}: Qi) +bs sin (Z Qi)
i=1

i=1 i=1

arctan

(5.17)

Now, é,dding after squaring the equations (5.16), we get
— (b2 + b3 + h? + b3 + b2 +a?) =

4
2b1b3 cos g + 2b1hy cos(ge + q3) + 2b1 b4 cos (Z q,)
2

+2b, b5 cos (E qi) + 2bohy cos g3 + 2bgby cos(gs + qa)
i=2

5

+2b2b5 cos (Z q.;) + 2h1b4 cos s + 2h1bs cos(qa + gs)
1=3

+2b4bs cos g5 — 2ab; cosq; — 2abs cos(qy + g2)

3 4 5
—2ah, cos (Z qi) — 2aby4 cos (Z qi) ~ 2abs cos (Z Qz‘) :
i=1

=1 i

This relation determines generalized parameter g5 as a function of the gen-
eralized coordinates, gs = h(q1,¢2,93,94). Hence, from (5.17) we have qo =

f(q1,92,93,94) and from (5.15) we get g6 = 9(q1,92,93,94).
The second loop (OABCDE) delivers the equations (Fig. 6)

1 +q+q3+97+gs—quo=0 (5.18)

+bgcosqio—c=0
1

3 3
by sing; + by sin (g1 + q2) + bz sin (}: qt) + b7 sin ( Z ) + bgsingyo = 0.
i=1 i=1
(5.19)

by cos g1 +b2 cos(q1+q2)+b3 cos (Z q,) +by cos (

From (5.19) we obtain the relations

3
by sing; + bosin(g; + g2) + b3 sin (Z q,,) + b7 sin (q-,v + > Qi)

=1

g10= arctan

’

3
b1 cos g1 +bs cos(gy +g2)+bs cos (Z q,-) +b7 cos (q7+ > Qz') -
1=x] =1
(5.20)
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b7 — (b + b3 + b3 + b3 + b2 + a?) =
2b1 by cos ga + 2b1b3 cos(qa + ¢3) + 2b1b7 cos(q2 + g3 + g7)
+2bsb3 cos g3 + 2baby cos(qs + q7) + 2b3by cos gy
+2b3bs cos g4 + 2b3bs cos(qs + q5) — 2byccos

3 3
—2bsc cos(qy + o) — 2bzecos (Z q,-) — 2brc cos (q-,v + > qi) )
i=1

=1

The last relation determines the generalized parameter ¢g; as a function of
three generalized coordinates, g7 = hi(q1, g2, q3). Hence, from (5.20) we have ¢;¢ =

f1(q1,92,q3) and further from (5.18) we get gz = g1(q1,q2,q3).
The relations (5.3) for the planar platform are:

—(A21 + Azy + Azy + Azy + Azs + AZG) -+ AZg = 0
—(Azl + Azs + Azs + Az7 + AZS) +eAzg =

6. CONCLUSIONS

The displacement of the mechanism with super elastic hinges is compared with
the displacement of the mechanism with traditional joints, considered as an ideal
system. Using the graph theory a mathematical model is suggested and compact
analytical expressions are given allowing an exact estimation of the deflections in
links positions of the mechanism with super elastic hinges. The results obtained
are applied on three famous mechanisms widely used in technics.
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