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1. INTRODUCTION
i

Let 2 be an abstract structure. The degree spectrum DS(2) of 2 is the set o'
all enumeration degrees generated by all presentations of 2 on the natural numbers.
In [6, 2, 5, 4, 9] several results about degree spectra of structures are obtained.

The co-spectrum of the structure 2 is the set of all lower bounds of the degiec

spectra of 2. Co-spectra are introduced and studied in [9].
- In [10] a generalization of the notions of degree spectra and co-spectra for
finitely many structures is presented - the so called joint spectrum and co-speci i 1na.
A normal form of the sets which generates the elements of the co-spectrum of the
joint spectrum in terms of some positive recursive 5+ formulae, introduced first in
(1], is obtained.

Here we shall prove two properties of the co-spectrum of joint spectriun of
structures - the Minimal pair type theorem and the existence of a quasi-minimal
degree for the joint spectrum.
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The proofs use the technique of regular enumerations introduced in [8}, com-
bined with partial generic enumerations used in [9].

2. PRELIMINARIES

Let A = (N; R;,..., Rx) be a partial structure over the set of all natural num-
bers N, where each R; is a subset of N™ and “=" and “#” are among R;,..., Rx.

An enumeration f of 2 is a total mapping from N onto N.

If A C N¢%, define

FYA) = {(z1...2.) : (f(z1),...,f(za)) € A}

Let f~1(2A) = f"Y(R1)®---® f~(Rx).

For any sets of natural numbers A and B the set A is enumeration reducible to
B (A <. B) if there is an enumeration operator I'; such that A=T (B) By d.(A)
we denote the enumeration degree of the set A and by D, the set of all enumeration
degrees. The set A is total if A =, AT, where A* = A®(N\A). A degree a is called
total if a contains the e-degree of a total set. The jump operation “’” denotes here
- the enumeration jump introduced by COOPER (3].
Given n + 1 subsets By,...,Bn of N, i < n, define the set fP(Bo, .,B;) as

follows:

(i) P(Bo) = Bo; . - K

\

(ii) If ¢ < n, then P(B,,..., B{+1)(?(Bo; coey B.‘))' Q_B,'.H.
%

!

3. JOINT SPECTRA OF STRUCTURES

Let g, ..., %A, be abstract structures on N.
The joint sSpectrum of 2y, ..., A, is the set

DS(%0,%1,...,%,){a:a € DS(%o),a’ € DS(%),...,a™ e DS(%,)}.
For every k < n, the i:-th jump spectrum of o, ..., %, is the set
DSy(%o,...,%n){a® : a € DS(o, .., An)}.

In [10] we prove that DS (%o, ...,y) is closed upwards, i.e. if al®) € DSy (%o,
., %n), b is a total e-degree and a(") < b, then b € DSk (%o, ...,%n).
The k-th co-spectrum of Ao, ...,An, k < n, is the set of all lower bounds of
DSk (Ao, ..., 2Ay), ie.

CSi(Ro,- .., %n){b : b € D.&(Va € DSk(Yo,...,%n))(b < a)}.
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From [10] we know that the k-th Co-spectrum for k < n depends only of the
first k structures: '

CSe(R0y- -+ M- -, An)CSk(Ho, -, Ar).

In [10] we give a normal form of the sets which generates the elements of
the k-th co-spectrum of DS(2o,...,%A,), i.e. for every A C N the following are
equivalent:

(1) de(A) € CSk(o, - - -, An);
(2) For every.fo,..., fx enumerations of 2y, ..., A, respectively,

A < P(f5 (o), - .- S (AMk));

(3) A is forcing k-definable on 2y,...,2,;
, (4) A is formally k-definable on 2o,...,%n.

In Section 4 we shall recall the definition of the forcing k-definable sets on

%1 ceey m‘n
The analog of the Minimal pair theorem, which we shall prove in Section 5, is

in the following form:

Theorem 3.1. Let k < n. There exist enumeration degrees f and g, elements
of DS(Ay, Ay, ...,Uy,), such that for any enumeration degree a:

a<f® & a<gh = aecCSi(o,%,...,%).

The proof uses the technique of the regular enumerations from [8], which we
will discuss in Section 6.

Given a set A of enumeration degrees, denote by co(A) the set of all lower
bounds of A. Say that the degree q is a quasi-minimal with respect to A if the
following conditions hold:

(i) q & co(A);
(ii) If a is a total degree and a > q, then a € A;
(i) Ifaisa total‘degree and a < q, then a € co(A).

The second property, we are going to prove in Section 7, is the existence of a
quasi-minimal degree with respect to DS(™o,21,...,%n).

Theorem 3.2. There exists an enumeration degree q such that: -
(i) o' € DS(AM1),-..,q™ € DS(An), g & CS(o, %1, .., An);
(ii) If a is a total degree and a > q, then a € DS(p,24,...,2,);
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(iii) If a is a total degree and a < q, then a € CS(¥p, Ay, ..., Ay).

4. FORCING k-DEFINABLE SETS

Suppose that o, ..., 2, are structures on N. Let fo,..., fn be enumerations

of Ao, ...,%A,, respectively. )
Denote by f = (fo,...,fn) and ?i?(fgl(ﬁo),...,fk_l(ﬁk)) fork=0,...,n.
Let Wy,...,W,,... be a Goedel enumeration of the r.e. sets and D, be the

finite set having a canonical code v. : -y ~
For every i < n, e and z in N define the relations f |=; Fe(z) and f |=; ~F.(z)
by induction on i:

(i) f o Fe(z) <= (3v)((v,2) € We & Dy C f5 ' (%0));
f'::i-}l Fe(z) <= 3v)((v,z) e W, & (Vu € D,)(
. , u = (0,e4,Zu) & f i Fe (zu) V
(n) ' U= (l,eu,zu) & f F:g ﬂFe“(xu) V ‘ ',
u= (2’ 2u) &z, € fi;-l(mﬂ'l)))’ ! '

(m) f|=t "'Fe(x) Sl fbé{ F,(a:).

If ACN and k < n, then R .
\

42.9] > @)= FRARED. |

The forcing conditions, which we shall call finite parts, are n + 1-tuples 7 =
(7o,-..,7n) of finite mappings 7y,...,7, of N in N. We sn}ppose' that an effective
coding of the finite parts is fixed, and by the least finite part with a fixed prqperty .
we mean a finite part with a minimal code. ‘

For every i < n, e and z in N and every finite part 7 we define the forcing
relations 7 IF; Fe(z) and 7 I; —F,(z) following the definition of relation ” |=;".

Definition 4.1. (i) 7l Fe(z) <= (3)({v,z) € W, & D, C 75} (No));

T IFiga Fe(IB) == Bv((v, .'B) eW. &
Gi (Vu € Dy)(u = (0, ey, Zu) & 7 ki Fe, (zu) V
i) u=(1,ey,Ty) & 7 IFi ~Fe (Tu) V

= (2,2y) & zy € T5L @i41)));
(iii) 7l =Fo(z) <> (V62 7)(p WV Fu(z)).
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Given finite parts & = (dp,...,0,) and ¥ = (7o,...,Tn), let
Sg? < 6og7'0,...,5n§1‘n.

For any i < n,e,z € N denote X¢, ., = {p: plhi Fe(z)}.
If f =(fo,-..,fn) is an enumeration of 2y, ...,%An, then

FCf <> 1C fo,--3T C fa-

Definition 4.2. An enumeration f_ of Ag,..., A, is i-genen’c if for every 7 < ¢,
e, €N

From [10] we know that:
(1) Iffisa Ic-generi;: enumeration, then
e Fua) & (37 S D he Fe(2).
(2) If f is a (k + 1)-generic enumeration, then
|  FReRE) e G0 hR)

Deﬂmtlon 4.3. The set 4 C N is forcing k- deﬁnable on Ay,..., A, if there
exist a finite part 4 and e € N such that

Gt L z€A <= (37 2 §)(7 Ik Fu(z)).

Proposxtion 4.1. Let {Xk}r, K =0,...,n, be (n + 1)-sequences of sets of
nafural numbers. There ezists an (n + 1)-generic enumeration f of o,...,%An
such that for any k < n and for all r € N, if the set X¥ is not forcing k- deﬁnable

on g, .. thenX"ﬁ,?k.

Proof. We shall construct an (n -+ 1)-generic enumeration f such that for all »

and all k = 0,...,n, if the set X¥ is not forcing k-definable, then X* £, fPf Let
~ call the last condltlon an omitting condition.

The construction of the enumeration f ~will be carried out by steps. On each
step j we shall define a finite part §/ = (83,...,0%), so that 69 C §*1, and take
fi = U;87 for each i < n.

On the steps j = 3¢ we shall ensure that each f; is a tota.l surjective mapping
from N onto N. On the steps j = 3¢ + 1 we shall ensure that f is (n + 1)-generic.
On the steps j = 3q + 2 we shall ensure the omitting condition.

Let §° = (0,...,0).
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Suppose that &7 is defined.

Case j = 3q. For every i, 0 < i < n, let z; = pz|zr & dom(s})] and y; = pyly ¢
ran(67)]. Let 677 (z;) = y; and & 'H(x) ~ §(z) for z # =;.

Case j = 3{e,i,z) + 1, i < n. Check 1fthere exists a finite part 5 2 §7 such
that g lF; Fo(z). If so, then let 8+! be the least such p. Otherwise, let i1 = §3,

Case j = 3(e, k,7)+2, k < n. Consider the set X*. If X} is forcing k-definable
on g, ..., A, then let 611 = . 3.

Suppose now that X is not forcing k-definable on 2, ...,%, and let

C = {z: (37 2 §)(F Ikx Fe(x))}.

Clearly, C is forcing k-definable on %o, ...,%,. Hence C # X¥*. Then there
exlstsanxsuchthateltherzeX"and:cg!Cora:eCanda:¢X" Take
 §7%1 = §7 in the first case.

If the second case holds, then there exists ¥ 2 7 such that 7 Iy Fc(a:) Let
67+1 be the least such 7.

In all other cases let §7+1 = §7.

The so received enumeration f = U15’ is (n+1)-generic. Leti < n, e,z € Nand
suppose that for every finite part ¥ C f there is an extention g IF; F.(z). Gonsider
the step 7 = 3(e,i,z) + 1. From the construction we have tha &6"“ ks Fe(z).

To prove that the enumeration f satisfies the omitting cbndition, let the set
X¥ be not forcing k-definable on 2y, ...,%, and suppose that X} <, fPjr Then
Xk = {z: f = F.(z)} for some e. Consider the step j = 3{e, k, r) +2. FYom the
construction there is an  such that one of the following tyo'casw holds:

(a) z € X¥* and (Vp 2 §7)(5 Wk Fe(z)). So, &7 Ik ~Fe(x).

Since f is (n+ 1)-generic, and hence (k+ 1)- gene‘hc, r € XA& f Fer Fe(z). A
contradiction.

(b) z ¢ X* & §*! Ik, Fe(z). Since f is (k + 1)- g‘enenc, f Ex Fe(:c) A
contradiction. [J

e

5. MINIMAL PAIR THEOREM

First we need a modification of the “type omitting” version of Jump inversion
theorem from [8]. In fact, one can see the result from the proof of Theorem 1.7
in [8]. But in this form it is not explicit formulated there. We shall postpone the
proof for Section 6, where the technique of regular enumerations will be discussed.

- Theorem 5.1. Let By, ..., By be arbitrary sets of natural numbers. Let {A},,
k=0,...,n, be (n+ 1)-sequences of subsets of N such that for every r and for all
k,0 < k <n, AF £, P(By,...,Bx). Then there erists a total set F' having the
following properties: ' e

(i) For alli <mn, B; <. FU;
(ii) For allr, for allk, 0< k <n, Ak £, F(®).
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Proof of Theorem 3.1. We shall construct total sets F' and G such that
de(F) € DS(2o,...,2%,), d.(G) € DS(2o,...,%,) and for each k < n if a total
set X, X <. F*® and X <, G¥), then d.(X) € CSk(2o,-..,%n). And take the
degree f = d.(F) and g = d.(G).

First we construct enumerations f and h of 2y, .. ., ™, such that for any k < n
ifaset ACN, A<, ?{ and A <, ?ﬁ, then A is a forcing k-definable on 2y, . .., %A,.

- Let go,...,9n be arbitrary enumerations of 2o, ...,2,. By Theorem 5.1 for
By = 90 1(210) .y Bn = g7 1(A,) there exists a total set F' such that: g5 (o) <.
F,g7 (%) <. F’ o 971 (,) <. F™. Since DS(™o, N1, -..,Ay) is closed up-
wards, then de(F) € DS(A0,%,, ...,%,), i.e. de(F) € DS(%),d,(F’) € DS(%,),

., de(F™) € DS(A,). Hence, there exist hg, h1,..., hy enumerations of Ao, A;,

,m,,, respectively, such that hy'(2) =. F, h;‘(ml) = F',...,h;}(%,) =.
' F(") Notice that for each k < n, F(® =, Pk,

For each k, 0 < k < n, let {X* "},. be the sequence of all sets enumeration
reducible to PP
- By Proposmon 4.1 there is an (n + 1)-generic enumeration f such that for all

rand all k =0,...,n if the set X* is not forcing k-definable then X* £, P/,

Suppose now that the set A 5,_?{ and A < (P,i‘ Then A = X¥ for some
r. From the omitting condition of f it follows that A is forcing k-definable on

mo, i mﬂ

- .Now we apply Theorem 5.1. Let By = f3 ' (%0);---,Bnf (An) and Bpyy =
N. For each k < n consider the sequence {A¥}, of these seta among the sets {X*},,
which are not forcing k-definable on 2o, ..., %n. From the choice of the enumeration
f it follows that each of these sets A%, A% £, iP Then by Theorem 5.1 there is a
total set G such that:

(i) For alli <n, f{'(%;) <. GY;
(ii) For all 7 and all k < n, A% £, G®,

Note that since G is a total set and because of the fact that each spectrum is
closed upwards, we have that d,(G) € DS(Ap),...,de(G"™) € DS(%,), and hence
de(G) € DS(o, ..., %n).

Suppose now that a total set .X X <. F®) and X <. G®) | k < n. From X <,
F®) and F®) =, PP it follows that X = XF for some r. It is clear that X <, ?f
Otherwise, from the choice of G it follows that X €. G*). Hence X is forcmg
k-definable on Ag,...,2%,. By the normal form of the sets, which enumeration
degrees are in CSi(2o, .. .,2A,), we have that d.(X) € CSp(2o,...,%,). O

6. REGULAR ENUMERATIONS

We shall remind the notion of regular enumerations from [8]. Let By,..., By
be non empty subsets of N..
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" Finite parts are as usual finite mappings of N into N. The notion of i-regular
finite parts is defined by induction on i < n.

The 0-regular finite parts are finite parts 7 such that dom(7) = [0,2¢ + 1} and
for all odd z € dom(7), 7(2) € Bo.

Let 7 be a O-regular finite part. If dom(7) = [0,2¢ + 1], then the O-rank of 7
|7log + 1 - the number of the odd elements of dom(7). -Let Bf be the set of the
—--odd-elements of dom(7). If p is a 0-regular extention of 7, we shall denote thxs fact

- by 7 Co p. It is clear that if 7 Co p and [T]o|plo, then 7 = p. Let

T lko Fe(z) <= 3v({v,z) € We & (Vu € D,)(1((u)o) =~ (u)1)),

7 Ik =Fe(z) <= Y(o)(r Co p = pfo Fe(2)).

Suppose that for some i < n we have defined the i-regular finite parts and for
every i-regular 7 — the i-rank |7|; of T, the set B} and the relations 7 I-; F.(z) and -
7 ki ~Fe(z). Suppose also that if 7 and p are i-regular, 7.C p (we write 7 C; p)
and |T|t 'plh then 7 =p- 3

Denote by X(e ={p:pis z-regula.r & plki Fe(z)}. h
_____For any i-regular finite part 7 and any set X of s-regular finite parts, denote
by pi(7, X) = pplr C;i p & p € X] if any, and pi(7, X) = pp[r C; p), otherwise.

Definition 6.1. Let  be a finite part and m > 0. The ¥inite part 4 is called
an i-regular m omitting extension of 7 if § 2; 7, dom(d) = [0, ¢ — 1] and there exist
natural numbers go < *++ < gm < gm+1 = g such that:

(a) dlgo = T; v

- (b) For all p < m, 5f9p+1m(5f(¢1p+ 1), X(pq ) S W

Lo ) - PO ~

ST Denote by K¢ the sequence qo, .. ., gm. If 5 and p are%wo z—regular m oxmttmg‘
extenmonsofra.ndJCp,thenJ p. . B
- Let R; denote the set of all z-regu]a.r finite parts. vaen an index 7, by S‘ ]
shall denote the intersection R; N I';(P(Bo, .. Bg)), where T'; is the j-th enumer~ '
ation operator.
‘Let 7 be a finite part defined on [0,q — 1]andr>0 Thenrxs(z+1) regulor
with (i + 1)-rank r + 1 if there exist natural numbers

0<no<‘lo<bo<n1<ll <b1<--~<n,._<t,.<b,<n,+1-_-q

such that 7[no is an i-regular finite part with i-rank equal to 1 and for all j,
0 < j <, the following conditions are satisfied:

(8) TH > pi(r(n; +1),8%);
(b) T[b;j is an i-regular j omitting extension of 7{l;;
(c) 7(b;) € Bugs; |
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(d) 7|nj4+1 is an i-regular extension of 7[(b; + 1) with i-rank equal to |7{b;; + 1.

Let BI,; = {bo,-..,b.}. By K7, we shall denote the sequence K T[[lb’

Let for every (i + 1)-regula.r finite part 7

T lbip1 Fe(z) <= Fv({v,z) € W, & (Vu € Dy)(\u = (ew, Zu,0) & 7 IF; Fe, (zu))V
(u = (eu, Ty, 1) & 7 I ~F, (T4))))-
T lFig1 ~Fe(z) <= (Vp)(r Cit1 p = p Wit Fe(T)).

Definition 6.2. Let f be a total mapping of N in N. Then f is a regular
enumeration if the following two condxtxons hold:

(i) For every finite part § C f, there exists an n-regular extension 7 of 4 such
that 7 C f.

(ii) If i <n and z € B;, then there exists an i-regular extension 7 C f such that
z € 1(B]).

Let f be a total mapping on N. We define for every i < n,e,z the relatxon
f i Fe(z) by induction on i:

Definition 6.3. |
(1)f o Fe(z) <= Fv({v,z) € W, & (Vu € Dy)(f((u)o) =~ (u)1));
(i) f Fis1 F,(:z:) <> J((v,z) € W, & (Vu € Dy)((u = (eu, 24, 0) &

f ki Fe, (m.;)) V(2= (eu, Tu, 1) & f Wi Fe,(24))))-

In [8] it is proven that for evety regular enumeration f:

L BOSef-

2. If i < m, then Bijy1 <. f ® P(Bo,...,B;), and P(By,...,B;) <¢ f%, for
i1 <n. : ,

3. If ACN, then

A < fO <= (Be)A={z: f i Fe(2)}.
4. Foralli<n (for negation i < n),
f i (O)Fe(z) <= (3r C f)(7 is i-regular & 7 I; () Fe(2)).
Notice that if f is a regular enumeration, then B; <. f, i <n.
Given a finite mapping 7 defined on [0,q — 1], by 7 * 2 we shall denote the

extension p of 7 defined on [0, g] and such that p(g) ~ z. We shall use the following
Lemma, proved in [8].
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Lemma 6.1. [8] Let Aq, . .., An—1 be subsets of N such that A; £, P(Boy, ..., B;).
Let T be an n-reqular finite part, defined on [0,q — 1]. Suppose that |7|, = r + 1,
vyEN, 20 € By,...,2n € By, and 8 <r+ 1. Then there is an n-regular extension p
of T such that: :

(i) lpln =1 +2; ‘
(ii) p(q) >y, 20 € p(BE),---,2n € p(BY);
(iii) #fi<n and Ky =qhy.--,Q3s- -+ Qs then

(a) p(gi) € A; = plFi ~Fy(ql);
(b) plgl) & Ai = plF: Fu(qt).

Now we turn to the proof of Theorem 5.1. Set Byp4+1 = Nand P(By,...,Bn41) =
P(Bo,...,Bn) ® Bp4+1. By a regular enumeration f we mean a regular one with
respect to By, ..., By, Bp41.

Proof of Theorem 5.1.

Let {A},, k < n, be seqences of subsets of N such that A* £, P(By,..., Bx).

We shall construct a regular enumeration f such that f “omits” the sets A*
for all r, k <, ie. A* £, f. \

The construction of f will be carried out by steps. At each step s we sha.ll
construct an (n+ 1)-regular finite part 4,, so that |§,|n+1 = s+ 1 and'd; Cpy1 Jss1.
On the even steps we shall ensure the genericity of f, i.e. conditions (a) and (d)
from the definition of i-regular finite part, and on the odd steps we shall ensure the
omitting conditions, the conditions (b), (c).

Let R,4+1 be the set of all (n + 1)-regular ﬁmte‘qmrts and ST = Rpyy N
I';(P(Bo,..., Bnt1)). Let ag,...,0n41 be recursive in ‘.‘P(Bo, ,,.,,1) enumera
tions of the sets Bo,. .., Bny1, respectively.

Let 4o be an arbltrary (n + 1)-regular finite part with (n + 1)-rank equa.l to 1
Suppose that §, is defined.

Case s = 2m. Check whether there exists a p € S™*! such that §, C p. If
80, let 4,41 be the least such p. Otherwise, let §,41 be the least (n + 1)-regular
extension of §, with (n + 1)-rank equal to |ds|n+1 + 1.

Case s = 2m + 1. Let |[§4lny1 = 74+ 1 2> s+ 1. Let m(p,e). We may
assume that e < m and then e < r + 1. Let go(m) =~ 2p,...,0n+1(M) =~ 2p41.
Set 70 =~ pn(ds * Zn41,571). Let Iy = lh(7ng) and ¢f = lr41. For j < e, let
Ti+1l = Wn(Tj * O,X(';.q;.)) and ¢}, = Ih(7j4+1). So, 7. and ¢ are defined. Let

1

C={z:(3Er27)(r €Rp & 7(q )~a:&rl!- Fe(gz))}-

The set C <. ?(Bo, .y Bn+1) and Ap ﬁe P(Bo,-..,Bnt+1). Then there is an a
such that ‘ .
- a€C&agApVagC &ac Ay (6.1)

Let ag be the least a satxsfymg (6.1).
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Next we extend the finite 7, *ag to a finite part 7, so that 7 is an n—regular r+1
omitting extension of 79. Set b,4+1 = lh(7). Now consider the sets Ap Ap’
By Lemma 6.1 we can construct an n-regular extension p of 7 such that:

(i) loln = |7la +1;
(ii) p(br4+1) = zn41 and zg € p(BE), ..., 2n € p(BE);
(i) if k <n and Kf,, =q§,...,q5,...,d5,, then
(2) p(gk) € Af = plkk ~Fe(gf);
(b) p(gk) & Ak = plby Fe(gB).

Set 53+l = p.

- Let f =JJ,. From the construction it follows that f is a regular enumeration.
For every e,z, {7 : 7 € Rp41 & T lFp41 Fe(z)} is e-reducible to P(By,..., Bat1).
From here, by the even stages of the construction, it follows that for all e, z,

f Ent1 (O)Fe(x) <= (37 C )T € Ray1 & 7 lrnya (D) Fe(2))-
Since f is regular, we have that if k < n, then for all e and z,

fEx (IF(2) <= Br ST € R & 7k ()F(2))

Now suppose that for some k < n and p, Aﬁ <. f*). Then the set C,',‘ = {z:
f(x) € Ak} is also e-reducible to f*). Fix an e such that for all z,

f(z) € Af <= z€CF <= f = Fu(n). (6.2)

‘Consider the step s = 2(p,e) + 1. By the construction, there exists a ¢ e
dom(d,41) such that

(f(g8) € A5 = f b=x ~Fe(al)) & (f(a2) & Ay = f b=k Fe(g2))-

Clearly, 8,+1(q¥) = f(g¥). Now assume that f(g%) € Af. Then §s41 I ~Fe(gZ)-
Hence f |=x —Fe(g¥), which is impossible. It remains that f(g¥) ¢ A%. In this
case 8,41 IFx Fe(g¥) and hence f |=x Fe(g¥). The last again contradicts (6.2). So

A7 Ze f"‘
7. QUASI-MINIMAL DEGREE

Definition 7.1. Let Bo C N. A set F of natural numbers is called quasi-
minimal over By if the following conditions hold: ‘

(i) By <. F;
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(ii) Foranytot.a.lsetAQN,-ifASeF,thenASeBo-

‘The .following theorem we shall prové in the next section using the technique
of partial regular enumerations.

Theorem 7.1. Let By,...,B,,n 2 1, be arbitrary sets of natural numbers.
There exists a set F' having the following properties:

(i) BO <e Fv
(ii) Foralll1<i<n, B; <. F®,
(iii) For any total set A, if A <. F, then A <. By.

In fact, the set F' from Theorem 7.1 is a quasi-minimal over By.
- Let the structures 2o,...,2, be fixed.
Proof of Theorem 3.2. By (9], there is a quasi-minimal degree q, with

respect to DS(™Ap), i.e.:

(i) ao & CS(o);
(it) Ifaisa total degree and a > q,, then a € DS(2); -
(iii) If a is a total degree and a < qg, then a € C'S(%p). | \ ’

Let Bo.C N such that d,(Bo) = qq, and f,, .» f be fixed total enumerations
of 2y,...,2%,. Denote By = f; (5211), B, = f~ 1(2(,.) By Theorem 7.1, there
. is a quasi-minimal over By set F' such that

(i) Bo<e F; N \
(ii) For all 1 <i<n, £ (%) <. FO; oy
(iii) For any total set A, if A <. F, then A <. By. T
We will show that q = d.(F) is a quasi-minimal with respect to DS(2,...,%5),
ie.:.
(i) o € DS(P1), .. ,q‘"’ € DS(%) q ¢ C'S(ﬁo,ﬁx,  2n);
(i) If a is a total degree and a>q, thena € DS(% 211, HAn);
(i) If a is a-total degree and a < q, then a € CS(2o,%;,...,2,).

In order to prove (i), suppose that q € CS(2o). By Theorem 7.1, qy < q and thus
qp € CS(Ao). A contradiction with the fact that q, is quasn—minima.l with respect

For each i, 1 < i < n, the set F® js total and f‘l(ﬁ ) <. F®. Since
any degree spectrum is closed upwards, it follows that d,(F(‘)) S DS(Ql,), ie.
q¥ € DS(%;). ‘

t
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For (ii) consider a total set X such that X >, F. Then d¢(X) > q,. From
the fact that q, is quasi-minimal with respect to DS(%) it follows that d.(X) €
DS(2o). Moreover, foreach 1 <i <n, X% >, F® >, f71(2;), and X is a total
set. Then for each i < n, d(X®) € DS(;), and hence do(X) € DS(o, .. .,%n)-

For (iii) suppose that X is a total set and X <. F. Then, from the choice
of F, X <. By. Because q, is quasi-minimal with respect to DS(2), it follows
that d.(X) € CS(™o). But CS(2o,...,%An) = CS(Ao) and therefore d.(X) €
CS(%o, ..., %) O

8. PARTIAL REGULAR ENUMERATIONS

Let Bo C N.

Definition 8.1. A partial enumeration f of Bois a partml surjectxve mapping
from N onto N with the following properties:

(i) For all odd z, if f(z) is defined, then f(z) € Bo;
(ii) For all Y€ By, there is an odd z such that f(z) ~y.
It is elear that if f is a partial enumera.txon of Bo, then Bg <e f since

ueBo = (3ﬂ)(f(2ﬂ+1)"‘y)

Let.L¢N

Deﬂmtionsz ApartzalﬁmtepanrmaﬁmtemappmgometoNU{.L}
| suc!lthat (Vz){xedom(r)”&zmdddeb(f(z) L vr(z) € By)). -

If T i8 a partial ﬁmte pa.rt and f is & partial enumeratwn of By, say that-

rC f e (Vz ¢ dom(r))((r(z) L = f(z) is not defined ) &
(r(z) # L = r(z) ~ f (:z:))

" Let By, .. .. B, be ﬁxed sets of natural numbers. Combmmg the techmque of
the regular enumeratlons with the partial (generic) enumerations on the 0-level for
By, we shall construct a partial regular enumeration f, which will be quasi-minimal

over the set By and such that B; <. f for i < n.
' A 0-regular partial finite part is a partial finite part 1' such that dom(7) =
[0,2q + 1] and for all odd z € dom(r), 7(2) € By or 7(z) =
- Let Bf be the set of all odd elements z of dom(7) such that 7(z) € Bo. The
O-rank of 7, |T|op = ¢ + 1, we call the number of the odd elements of dom(7). If p
is a O-regular partial extention of T, we shall denote this fact again by 7 Cg p. It is
clear that 1f T Co P and l'rlo)pio, then T = p. Let

rll-pF,(:c) <=> Bv((v a:)GW &(VueD,,)(u-(s t) &'r(s)~t&t7£.L)),
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7 Ik ~Fe(z) <= V(p)(T Co p = p o Fe(z)).

The definition of (i + 1)-regular partial finite part 7, the set B, ;, the (i + 1)
rank of 7 and the relations 7 Iy Fe(z) and 7 k41 —Fe(x) are defined in the same
way as in Section 6, the only difference is that instead of i-regular finite parts we
use j-regular partial finite parts. Notice that again if 7 is an i-regular partial finite
part, then 7 is a j-regular partial finite part for each j < 1.

'Definition 8.3. 4 partial regqular enumeration is a partial mapping f from N
onto N such that the following two conditions hold:

(i) For every partial finite part  C f, there exists an n-regular partial extension
T of § such that 7 C f.

(ii) If i < n and z € B;, then there exists an i-regular pa.rtnal finite part 7 C f
such that 2 € T(B7).

If f is a partial regular enumeration and i < n, then for every § C f, dom(d) C
[0,g — 1], there exists an i-regular partial 7 C f such that § C t-r, and for every
z € [0,g — 1] if f(z) is not defined, then 7(z) = L. Moreover, there exist z-regular
partial finite parts of f of arbitrary large rank.

The relation f |=; Fe(z) is the same as in Definition 6.? By mductxon on i
one could check that for any A C N, A <. f® iff there exists'e such' that for all z,

T€A & = Fo(). ’
Lemma 8.1. Suppose that f is a partial regular enuineration. Then:
(1) For qll i<n,f |;=,- Fe(z) <= "(31' C is"bf‘z_'egular &\ Ik Fe(z)).
(2) Foralli<n, f =i ~Fe(z) <= (3r C f)(7 is i-regular & 7 IF; ~Fe(2)).

The proof follows from the definitions by induction on 7 as in the total case.
Let R; be the set of all i-regular partial ﬁmte parts. It is clear that Ri<, Pi,
where P; = P(By, .. n)

Definition 8.4. A partial enumera.tion [ is i-generic if for any j < i and
for every enumeration reducible to P; set S of j-regular partial finite parts the
following condition holds:

BrC eSSV (¥p2;7)p ¢S)).

~ Proposition 8.1. Every partzal reqular enumeration s (i + 1)- generzc enu-
meration for every i < n.

Proof. Let S be a set of i-regular partial finite parts such that S <, P;. Then
there exists an e such that § = R;NI'.(P;). Consider an (i+ 1)-regular partial finite
part 7 C f with (i + 1)-rank greater than e. From the definition of (i + 1)-regular
partial finite part it follows that there is an i-regular partial finite part o C; 7, and
hence o C f such that o € Sor (Vp 2; 0)(p € S). O
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Proposition 8.2. Suppose that _f is a partial regular enumeration. Then:
(1) For eachi<n, B; <. f¥.
(2) Ifi<n, then f L P

Proof. We know that By <. f. Let i < n. Suppose that for each j < i,
Bj <e f(j)- Then P; <e f(‘)' '

Since f is partial regular, for every partial finite part § of f there exists an
(¢+1)-regular partial finite part 7 C f such that § C 7, where if f(z) is not defined
and z € dom(7), then 7(z) = L. For each ¢ denote by f[, the partial finite part
7 with dom(7) = [0, — 1], 7 C f, and for each z < ¢ if f(a:) is not defined, then
7(z) =

Let

O<nop<lp<bp<m<h<b< ---<n <l <b <npy1<...

be the numbers satisfying the conditions (a)-(d) from the definition of the (i +
1)-regular partial finite part 7. Clearly, if B; ; = {bo,b1...}, then f(B +1) =
Biy1. We shall show that there exists an eﬂ‘ectwe in f (“‘") procedure which lists
no, lo,bo, - .. In an increasing order.

Using the oracle f', we can generate consecutively the partial finite parts f[q
for g = 1,2.... Notice that f[ng is i-regular and |fno|; = 1, and it is the first
element of this sequence which belongs to R;. Clearly, ng = Ih(f[ng).

Suppose that ng, lg, by, . . ., n, have already been listed. Since f[l, =~ u:(f[(n .+
1),5%), we can find effectively in f0+1) the partial finite part f|l.. Then I, =
Ih(f[l,). Next fib, is an i-regula.r partial r omitting extension of f[l.. So, there
exist natural numbers I, = gy < -+ < gy < gp41 = by. Using the oracle f (“”) we
can find consecutively the numbers qo; - - - ,Qr,gr+1-= br. By definition, f [n,-+1 is
an i-regular partial extension of f[(b, + 1) having i-rank equal to | f[b.|; +1. Using
f’, we can generate consecutively the partial finite parts f[(b, +1+¢), ¢ =0,1,..
Then f [n,...; is the first element of this sequence which belongs to :R

Then B I, 1 is effective in f(+1) and Bjy, <, f('“)

To prove (2), assume that f <. P;. Then the set

S={r:7€R & (32,11 #v2 € N)(7(2) 2 11 & f(2) =~ 32)},

S <e P;. Using the fact that f is (i + 1)-generic, there is an i-regular partial finite
part 7 C f such that either 7 € S or (Vp 2; 7)(p & S). It is obvious that both of
these cases are impossible. A contradiction. [J :

Lemma 8.2. Let i < n and 7 be an i-regular partial finite part with domain
[0,g —1].

(1) For every y € N,zp € By,...,2 € B;, we can find effectively in P;_, an
i-regular partiel extension p of T such that |p|; = |7|; + 1 and p(q) ~ y,2 €
p(BE), - .., 2 € p(BY). |
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(2) For every sequence @ = ay, . . ., am of natural numbers, one can find effectively
in P} an i-regular m omitting partial extension & of T such that 6(K?) = a.

Proof. The proof is as in the total case [8]. By induction on i, (1) and (2) are
proven simultaneously. O

Proof of Theorem 7.1. By Proposmon 8.2, it is sufficient to show that there
exists a partial regular enumeration f which is quasi-minimal over By.

We shall construct f as a union of n-regular partial finite parts 4, such that
for all s, 8, C,, 8,41 and |d,|n, = s+ 1. Suppose that for i < n oy is a recursively in
B; enumeration of B;.

- Let §p be a O-regular partial finite part such that |§|, = 1. Suppose that
0, is defined. Set 29 = 0o(s),...,2p0n(8). Using Lemma 8.2, we can construct
effectively in P;,_, an n-regular partxal finite part p Dn 0, such that |p|n|dsn + 1,
p(th(8,)) = s and z € p(Bf),...,2n € p(BE). Set §,41 =
. The obtained enumeration f is surjective on N and 1t is a union of n-regular
partial finite parts. From the construction is obvious that for every z € B; there is
an i-regular partial finite part 7 of f such that z € B]. Hence f i$ a partial regular
-enumeration. By Proposition 8.1, f is (i + 1)-generic for each i < n. '

Then by Proposition 8.2, for ¢ < n, B; < f). Moreover, fisa partm]\}-genenc
enumeration and hence By <, f. o

To prove that f is quasi-minimal over By, it is suﬂicie\xtj. to show that if ¢
is a total function and ¥ <. f, then ¢ <. By. It is clear that for any total set
A C N one can construct a total function ¢, ¢ =, A. Let ¢ be a total function and
1/1 Pe(f ) Then : \ ' | AN

o (Ve €N o Rl ) w\g(z) y)\
& ,Consxder the set » _ , 5
" So={p:pERo & @nn F 1 €N o Rel(E ) k oo F,«z,y,m;

Since S <. Bo,wehavethatthereexmbBaO-reguhrputialﬁnMpartrogjm :
thateltherroeSoor(VPDO"b)(P¢So) Assume that 75 € Sp. Thenthereexxst

T,y1 # y2 such that f |=o Fe((z,¥2)) and f =0 Fe({z,v2)). Then ‘W(z) p and
- .'l'(w)Le y2, which is impossible. So, (Vp 20 To)(P & So)- T
t
S = {p p e fRo & (31’ 20 7‘0)(351 2o 1')(352 20 1’)
(37,1 # y2 € N)(T Co p& 61 ko Fe((x, yl)) & 62 Iko F, ((-'01312» &
dom(p) = dom(4;) U dom(d;) & :
(Vz)(z € dom(p) \dom(f) = p(z) ~ 1))}.

- We have that S; < Bo and hence there exists a O-regula.r partxal ﬁmt.e pa.rt ut C f ’
. such. that either 1'1 € S; or (Vp 30 T )(p & S1). | ,
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Assume that 73 € S;. Then there exists a 0-regular partial finite part 7 such
that 79 Co 7 Co 71 and for some §; D¢ 7, 62 Do 7 and zo,¥1 # Y2 € N we have

61 IFo Fe({zo,¥1)) & 02 ko Fe({Zo,y2)) & dom(71) = dom(d;) U dom(&z) &
& (Vz)(z € dom(my) \ dom(7) = n1(z) ~ 1).

Let ¢(wo) ~ y. Then f ko Fe({zo,y)). Hence there exists a p 2o 7 such that
pFo Fe({zo,y)). Let y # y1. Define the partial finite part pp as follows:

_ Joi(z) if z € dom(dy),
po(z) = { p(z) if z € dom(p) \ dom(d;).

Then 79 Co po, 81 Co po and notice that for all z € dom(p) if p(x) ¥ -then
p(z) =~ po(z). Hence py ko Fe({zo,¥1)) and pp ko Fe({zo,¥)). So, po € Sp. A
contradiction.

Thus, (Vp)(p 20 11 = p & S1).

Let 7 = 1 UTp. Notice that 7 C f. We shall show that

PY(z) >y <= (36 0 7)(8 IFo Ful(z, y)))-

And hence ¥ <. Bp.

If Y(z) ~ y, then f |=¢ F.(z), and by Lemma 8.1 (3p C f)(p ko Fe(z)) and p
is O-regular. Then take § = 7U p.

Assume that §; 29 7, 61 ko Fe({z,11)). Suppose that Y(z) ~ y2 and y1 # y2.
Then there exists a 82 Do 7 such that & IFg F.((z,y2)). Set °

(@) = 7(z) if z € dom(r),
A= 1 it e (dom(fy) Udom(E) \ dom(r).

Clearly, p 20 11 and p € S;. A contradiction. O
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