ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 97

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 97

PROPERTIES OF CO-SPECTRA OF JOINT SPECTRA OF STRUCTURES

ALEXANDRA SOSKOVA

Two properties of co-spectrum of joint spectrum of finitely many abstract structures are presented: a minimal pair type theorem and an existence of a quasi-minimal degree for the joint spectrum.

Keywords: enumeration reducibility, enumeration jump, enumeration degrees, forcing 2000 MSC: 03D30

1. INTRODUCTION

Let $\mathfrak A$ be an abstract structure. The degree spectrum $DS(\mathfrak A)$ of $\mathfrak A$ is the set of all enumeration degrees generated by all presentations of $\mathfrak A$ on the natural numbers. In [6, 2, 5, 4, 9] several results about degree spectra of structures are obtained.

The co-spectrum of the structure $\mathfrak A$ is the set of all lower bounds of the degree spectra of $\mathfrak A$. Co-spectra are introduced and studied in [9].

In [10] a generalization of the notions of degree spectra and co-spectra for finitely many structures is presented - the so called joint spectrum and co-spectrum. A normal form of the sets which generates the elements of the co-spectrum of the joint spectrum in terms of some positive recursive Σ^+ formulae, introduced first in [1], is obtained.

Here we shall prove two properties of the co-spectrum of joint spectrum of structures - the Minimal pair type theorem and the existence of a quasi-minimal degree for the joint spectrum.

The proofs use the technique of regular enumerations introduced in [8], combined with partial generic enumerations used in [9].

2. PRELIMINARIES

Let $\mathfrak{A} = (\mathbb{N}; R_1, \ldots, R_k)$ be a partial structure over the set of all natural numbers \mathbb{N} , where each R_i is a subset of \mathbb{N}^{r_i} and "=" and " \neq " are among R_1, \ldots, R_k .

An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N} .

If $A \subseteq \mathbb{N}^a$, define

$$f^{-1}(A) = \{\langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in A\}.$$

Let
$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k)$$
.

For any sets of natural numbers A and B the set A is enumeration reducible to B ($A \leq_e B$) if there is an enumeration operator Γ_z such that $A = \Gamma_z(B)$. By $d_e(A)$ we denote the enumeration degree of the set A and by \mathcal{D}_e the set of all enumeration degrees. The set A is total if $A \equiv_e A^+$, where $A^+ = A \oplus (\mathbb{N} \setminus A)$. A degree a is called total if a contains the e-degree of a total set. The jump operation "'" denotes here the enumeration jump introduced by COOPER [3].

Given n+1 subsets B_0, \ldots, B_n of \mathbb{N} , $i \leq n$, define the set $\mathcal{P}(B_0, \ldots, B_i)$ as follows:

(i)
$$\mathcal{P}(B_0) = B_0$$
;

(ii) If
$$i < n$$
, then $\mathcal{P}(B_0, \ldots, B_{i+1})(\mathcal{P}(B_0, \ldots, B_i))' \oplus B_{i+1}$.

3. JOINT SPECTRA OF STRUCTURES

Let $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ be abstract structures on N. The *joint sSpectrum* of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set

$$DS(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_n)\{\mathbf{a}:\mathbf{a}\in DS(\mathfrak{A}_0),\mathbf{a}'\in DS(\mathfrak{A}_1),\ldots,\mathbf{a}^{(n)}\in DS(\mathfrak{A}_n)\}.$$

For every $k \leq n$, the i-th jump spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set

$$DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)\{\mathbf{a}^{(k)}:\mathbf{a}\in DS(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)\}.$$

In [10] we prove that $DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)$ is closed upwards, i.e. if $\mathbf{a}^{(k)} \in DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)$, b is a total e-degree and $\mathbf{a}^{(k)} \leq \mathbf{b}$, then $\mathbf{b} \in DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)$.

The k-th co-spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n, k \leq n$, is the set of all lower bounds of $DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$, i.e.

$$CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)\{\mathbf{b}:\mathbf{b}\in\mathcal{D}_e\&(\forall\mathbf{a}\in DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n))(\mathbf{b}\leq\mathbf{a})\}.$$

From [10] we know that the k-th Co-spectrum for $k \leq n$ depends only of the first k structures:

$$CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k,\ldots,\mathfrak{A}_n)CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k).$$

In [10] we give a normal form of the sets which generates the elements of the k-th co-spectrum of $DS(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)$, i.e. for every $A\subseteq\mathbb{N}$ the following are equivalent:

- $(1) \ d_e(A) \in CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n);$
- (2) For every f_0, \ldots, f_k enumerations of $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$, respectively,

$$A \leq_e \mathcal{P}(f_0^{-1}(\mathfrak{A}_0), \ldots, f_k^{-1}(\mathfrak{A}_k));$$

- (3) A is forcing k-definable on A₀,..., A_n;
- (4) A is formally k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$.

In Section 4 we shall recall the definition of the forcing k-definable sets on $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$.

The analog of the Minimal pair theorem, which we shall prove in Section 5, is in the following form:

Theorem 3.1. Let $k \leq n$. There exist enumeration degrees f and g, elements of $DS(\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$, such that for any enumeration degree a:

$$\mathbf{a} \leq \mathbf{f}^{(k)} \& \mathbf{a} \leq \mathbf{g}^{(k)} \Longrightarrow \mathbf{a} \in CS_k(\mathfrak{A}_0, \mathfrak{A}_1, \dots, \mathfrak{A}_n).$$

The proof uses the technique of the regular enumerations from [8], which we will discuss in Section 6.

Given a set A of enumeration degrees, denote by co(A) the set of all lower bounds of A. Say that the degree q is a quasi-minimal with respect to A if the following conditions hold:

- (i) $\mathbf{q} \not\in co(\mathcal{A})$;
- (ii) If a is a total degree and $a \ge q$, then $a \in A$;
- (iii) If a is a total degree and $a \leq q$, then $a \in co(A)$.

The second property, we are going to prove in Section 7, is the existence of a quasi-minimal degree with respect to $DS(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_n)$.

Theorem 3.2. There exists an enumeration degree q such that:

- (i) $\mathbf{q}' \in DS(\mathfrak{A}_1), \ldots, \mathbf{q}^{(n)} \in DS(\mathfrak{A}_n), q \notin CS(\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n);$
- (ii) If a is a total degree and $a \ge q$, then $a \in DS(\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$;

(iii) If a is a total degree and $a \leq q$, then $a \in CS(\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$.

4. FORCING k-DEFINABLE SETS

Suppose that $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ are structures on N. Let f_0, \ldots, f_n be enumerations of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$, respectively.

Denote by $\bar{f} = (f_0, \ldots, f_n)$ and $\mathcal{P}_k^{\bar{f}} \mathcal{P}(f_0^{-1}(\mathfrak{A}_0), \ldots, f_k^{-1}(\mathfrak{A}_k))$ for $k = 0, \ldots, n$. Let W_0, \ldots, W_z, \ldots be a Goedel enumeration of the r.e. sets and D_v be the

finite set having a canonical code v.

For every $i \leq n$, e and x in \mathbb{N} define the relations $\bar{f} \models_i F_e(x)$ and $\bar{f} \models_i \neg F_e(x)$ by induction on i:

(i)
$$\bar{f} \models_{0} F_{e}(x) \iff (\exists v)(\langle v, x \rangle \in W_{e} \& D_{v} \subseteq f_{0}^{-1}(\mathfrak{A}_{0}));$$

$$\bar{f} \models_{i+1} F_{e}(x) \iff (\exists v)(\langle v, x \rangle \in W_{e} \& (\forall u \in D_{v})($$

$$u = \langle 0, e_{u}, x_{u} \rangle \& \bar{f} \models_{i} F_{e_{u}}(x_{u}) \lor$$

$$u = \langle 1, e_{u}, x_{u} \rangle \& \bar{f} \models_{i} \neg F_{e_{u}}(x_{u}) \lor$$

$$u = \langle 2, x_{u} \rangle \& x_{u} \in f_{i+1}^{-1}(\mathfrak{A}_{i+1}));$$

(iii)
$$\bar{f} \models_i \neg F_e(x) \iff \bar{f} \not\models_i F_e(x)$$
.

If $A \subseteq \mathbb{N}$ and $k \leq n$, then

$$A \leq_e \mathcal{P}_k^{\bar{f}} \iff (\exists e)(A = \{x : \bar{f} \models_k F_e(x)\}).$$

The forcing conditions, which we shall call finite parts, are n + 1-tuples $\bar{\tau} = (\tau_0, \ldots, \tau_n)$ of finite mappings τ_0, \ldots, τ_n of N in N. We suppose that an effective coding of the finite parts is fixed, and by the least finite part with a fixed property we mean a finite part with a minimal code.

For every $i \leq n$, e and x in \mathbb{N} and every finite part $\bar{\tau}$ we define the forcing relations $\bar{\tau} \Vdash_i F_e(x)$ and $\bar{\tau} \Vdash_i \neg F_e(x)$ following the definition of relation " \models_i ".

Definition 4.1. (i)
$$\bar{\tau} \Vdash_0 F_e(x) \iff (\exists v)(\langle v, x \rangle \in W_e \& D_v \subseteq \tau_0^{-1}(\mathfrak{A}_0));$$

$$\bar{\tau} \Vdash_{i+1} F_e(x) \iff \exists v(\langle v, x \rangle \in W_e \& (\forall u \in D_v)(u = \langle 0, e_u, x_u \rangle \& \bar{\tau} \Vdash_i F_{e_u}(x_u) \lor u = \langle 1, e_u, x_u \rangle \& \bar{\tau} \Vdash_i \neg F_{e_u}(x_u) \lor$$
(ii)

 $u = \langle 2, x_u \rangle \& x_u \in \tau_{i+1}^{-1}(\mathfrak{A}_{i+1}));$

(iii)
$$\bar{\tau} \Vdash_i \neg F_e(x) \iff (\forall \bar{\rho} \supseteq \bar{\tau})(\bar{\rho} \not\Vdash_i F_e(x)).$$

Given finite parts $\bar{\delta} = (\delta_0, \dots, \delta_n)$ and $\bar{\tau} = (\tau_0, \dots, \tau_n)$, let

$$\bar{\delta} \subseteq \bar{\tau} \iff \delta_0 \subseteq \tau_0, \dots, \delta_n \subseteq \tau_n.$$

For any $i \leq n, e, x \in \mathbb{N}$ denote $X_{\langle e, x \rangle}^i = \{\bar{\rho} : \bar{\rho} \Vdash_i F_e(x)\}$. If $\bar{f} = (f_0, \dots, f_n)$ is an enumeration of $\mathfrak{A}_0, \dots, \mathfrak{A}_n$, then

$$\bar{\tau} \subseteq \bar{f} \iff \tau_0 \subseteq f_0, \dots, \tau_n \subseteq f_n.$$

Definition 4.2. An enumeration \bar{f} of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is *i-generic* if for every j < i, $e, x \in \mathbb{N}$

$$(\forall \bar{\tau} \subseteq \bar{f})(\exists \bar{\rho} \in X^j_{\langle e, x \rangle})(\bar{\tau} \subseteq \bar{\rho}) \Longrightarrow (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \in X^j_{\langle e, x \rangle}).$$

From [10] we know that:

(1) If \bar{f} is a k-generic enumeration, then

$$\bar{f} \models_k F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_k F_e(x)).$$

(2) If f is a (k+1)-generic enumeration, then

$$\bar{f} \models_k \neg F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_k \neg F_e(x)).$$

Definition 4.3. The set $A \subseteq \mathbb{N}$ is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ if there exist a finite part $\bar{\delta}$ and $e \in \mathbb{N}$ such that

$$x \in A \iff (\exists \bar{\tau} \supseteq \bar{\delta})(\bar{\tau} \Vdash_k F_e(x)).$$

Proposition 4.1. Let $\{X_r^k\}_r$, $k=0,\ldots,n$, be (n+1)-sequences of sets of natural numbers. There exists an (n+1)-generic enumeration \bar{f} of $\mathfrak{A}_0,\ldots,\mathfrak{A}_n$ such that for any $k\leq n$ and for all $r\in\mathbb{N}$, if the set X_r^k is not forcing k-definable on $\mathfrak{A}_0,\ldots,\mathfrak{A}_n$, then $X_r^k\not\leq_e \mathfrak{P}_k^f$.

Proof. We shall construct an (n+1)-generic enumeration \bar{f} such that for all r and all $k=0,\ldots,n$, if the set X_r^k is not forcing k-definable, then $X_r^k \not\leq_e \mathcal{P}_k^{\bar{f}}$. Let call the last condition an omitting condition.

The construction of the enumeration \bar{f} will be carried out by steps. On each step j we shall define a finite part $\bar{\delta}^j = (\delta^j_0, \dots, \delta^j_n)$, so that $\bar{\delta}^j \subseteq \bar{\delta}^{j+1}$, and take $f_i = \cup_j \delta^j_i$ for each $i \leq n$.

On the steps j=3q we shall ensure that each f_i is a total surjective mapping from N onto N. On the steps j=3q+1 we shall ensure that \bar{f} is (n+1)-generic. On the steps j=3q+2 we shall ensure the omitting condition.

Let
$$\bar{\delta}^0 = (\emptyset, \dots, \emptyset)$$
.

Suppose that $\bar{\delta}^{j}$ is defined.

Case j = 3q. For every $i, 0 \le i \le n$, let $x_i = \mu x [x \notin \text{dom}(\delta_i^j)]$ and $y_i = \mu y [y \notin \text{ran}(\delta_i^j)]$. Let $\delta_i^{j+1}(x_i) = y_i$ and $\delta_i^{j+1}(x) \simeq \delta_i^j(x)$ for $x \ne x_i$.

Case $j = 3\langle e, i, x \rangle + 1$, $i \leq n$. Check if there exists a finite part $\bar{\rho} \supseteq \bar{\delta}^j$ such that $\bar{\rho} \Vdash_i F_e(x)$. If so, then let $\bar{\delta}^{j+1}$ be the least such ρ . Otherwise, let $\bar{\delta}^{j+1} = \bar{\delta}^j$.

Case $j = 3\langle e, k, r \rangle + 2$, $k \leq n$. Consider the set X_r^k . If X_r^k is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ then let $\bar{\delta}^{j+1} = \bar{\delta}^j$.

Suppose now that X_r^k is not forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ and let

$$C = \{x : (\exists \bar{\tau} \supseteq \bar{\delta}^j)(\bar{\tau} \Vdash_k F_e(x))\}.$$

Clearly, C is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$. Hence $C \neq X_r^k$. Then there exists an x such that either $x \in X_r^k$ and $x \notin C$ or $x \in C$ and $x \notin X_r^k$. Take $\bar{\delta}^{j+1} = \bar{\delta}^j$ in the first case.

If the second case holds, then there exists $\bar{\tau} \supseteq \bar{\delta}^j$ such that $\bar{\tau} \Vdash_k F_e(x)$. Let $\bar{\delta}^{j+1}$ be the least such τ .

In all other cases let $\bar{\delta}^{j+1} = \bar{\delta}^{j}$.

The so received enumeration $\bar{f} = \bigcup_j \bar{\delta}^j$ is (n+1)-generic. Let $i \leq n, e, x \in \mathbb{N}$ and suppose that for every finite part $\bar{\tau} \subseteq \bar{f}$ there is an extention $\bar{\rho} \Vdash_i F_e(x)$. Consider the step $j = 3\langle e, i, x \rangle + 1$. From the construction we have that $\bar{\delta}^{j+1} \Vdash_i F_e(x)$.

To prove that the enumeration \bar{f} satisfies the omitting condition, let the set X_r^k be not forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ and suppose that $X_r^k \leq_e \mathfrak{P}_k^{\bar{f}}$. Then $X_r^k = \{x : \bar{f} \models_k F_e(x)\}$ for some e. Consider the step $j = 3\langle e, k, r \rangle + 2$. From the construction there is an x such that one of the following two cases holds:

(a) $x \in X_r^k$ and $(\forall \bar{\rho} \supseteq \bar{\delta}^j)(\bar{\rho} \not\Vdash_k F_e(x))$. So, $\bar{\delta}^j \Vdash_k \neg F_e(x)$.

Since \bar{f} is (n+1)-generic, and hence (k+1)-generic, $x \in X_r^k \& \bar{f} \not\models_k F_e(x)$. A contradiction.

(b) $x \notin X_r^k \& \bar{\delta}^{j+1} \Vdash_k F_e(x)$. Since \bar{f} is (k+1)-generic, $\bar{f} \models_k F_e(x)$. A contradiction. \square

5. MINIMAL PAIR THEOREM

First we need a modification of the "type omitting" version of Jump inversion theorem from [8]. In fact, one can see the result from the proof of Theorem 1.7 in [8]. But in this form it is not explicit formulated there. We shall postpone the proof for Section 6, where the technique of regular enumerations will be discussed.

Theorem 5.1. Let B_0, \ldots, B_n be arbitrary sets of natural numbers. Let $\{A_r^k\}_r$, $k = 0, \ldots, n$, be (n + 1)-sequences of subsets of \mathbb{N} such that for every r and for all k, $0 \le k < n$, $A_r^k \not\leq_e \mathbb{P}(B_0, \ldots, B_k)$. Then there exists a total set F having the following properties:

- (i) For all $i \leq n$, $B_i \leq_e F^{(i)}$;
- (ii) For all r, for all k, $0 \le k < n$, $A_r^k \not\le_e F^{(k)}$.

Proof of Theorem 3.1. We shall construct total sets F and G such that $d_e(F) \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n), d_e(G) \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$ and for each $k \leq n$ if a total set $X, X \leq_e F^{(k)}$ and $X \leq_e G^{(k)}$, then $d_e(X) \in CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$. And take the degree $\mathbf{f} = d_e(F)$ and $\mathbf{g} = d_e(G)$.

First we construct enumerations \bar{f} and \bar{h} of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ such that for any $k \leq n$ if a set $A \subseteq \mathbb{N}$, $A \leq_e \mathcal{P}_k^{\bar{h}}$ and $A \leq_e \mathcal{P}_k^{\bar{h}}$, then A is a forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$.

Let g_0, \ldots, g_n be arbitrary enumerations of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$. By Theorem 5.1 for $B_0 = g_0^{-1}(\mathfrak{A}_0), \ldots, B_n = g_n^{-1}(\mathfrak{A}_n)$ there exists a total set F such that: $g_0^{-1}(\mathfrak{A}_0) \leq_e F, g_1^{-1}(\mathfrak{A}_1) \leq_e F', \ldots, g_n^{-1}(\mathfrak{A}_n) \leq_e F^{(n)}$. Since $DS(\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$ is closed upwards, then $d_e(F) \in DS(\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$, i.e. $d_e(F) \in DS(\mathfrak{A}_0), d_e(F') \in DS(\mathfrak{A}_1)$, ..., $d_e(F^{(n)}) \in DS(\mathfrak{A}_n)$. Hence, there exist h_0, h_1, \ldots, h_n enumerations of $\mathfrak{A}_0, \mathfrak{A}_1$, ..., \mathfrak{A}_n , respectively, such that $h_0^{-1}(\mathfrak{A}_0) \equiv_e F, h_1^{-1}(\mathfrak{A}_1) \equiv_e F', \ldots, h_n^{-1}(\mathfrak{A}_n) \equiv_e$ $F^{(n)}$. Notice that for each $k \leq n$, $F^{(k)} \equiv_e \mathcal{P}_k^{\bar{h}}$.

For each k, $0 \le k \le n$, let $\{X_r^k\}_r$ be the sequence of all sets enumeration reducible to \mathcal{P}_k^h .

By Proposition 4.1 there is an (n+1)-generic enumeration \bar{f} such that for all

r and all k = 0, ..., n if the set X_r^k is not forcing k-definable then $X_r^k \not\leq_e \mathcal{P}_k^f$. Suppose now that the set $A \leq_e \mathcal{P}_k^f$ and $A \leq \mathcal{P}_k^h$. Then $A = X_r^k$ for some r. From the omitting condition of \bar{f} it follows that A is forcing k-definable on $\mathfrak{A}_0,\ldots,\mathfrak{A}_n$.

Now we apply Theorem 5.1. Let $B_0 = f_0^{-1}(\mathfrak{A}_0), \ldots, B_n f_n^{-1}(\mathfrak{A}_n)$ and $B_{n+1} =$ N. For each $k \leq n$ consider the sequence $\{A_r^k\}_r$ of these sets among the sets $\{X_r^k\}_r$, which are not forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$. From the choice of the enumeration \bar{f} it follows that each of these sets A_r^k , $A_r^k \not\leq_e \mathcal{P}_k^{\bar{f}}$. Then by Theorem 5.1 there is a total set G such that:

- (i) For all $i \leq n$, $f_i^{-1}(\mathfrak{A}_i) \leq_e G^{(i)}$;
- (ii) For all r and all $k \leq n$, $A_r^k \nleq_e G^{(k)}$.

Note that since G is a total set and because of the fact that each spectrum is closed upwards, we have that $d_e(G) \in DS(\mathfrak{A}_0), \ldots, d_e(G^{(n)}) \in DS(\mathfrak{A}_n)$, and hence $d_e(G) \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n).$

Suppose now that a total set $X, X \leq_e F^{(k)}$ and $X \leq_e G^{(k)}, k \leq n$. From $X \leq_e F^{(k)}$ $F^{(k)}$ and $F^{(k)} \equiv_e \mathcal{P}_k^{\bar{h}}$ it follows that $X = X_r^k$ for some r. It is clear that $X \leq_e \mathcal{P}_k^{\bar{f}}$. Otherwise, from the choice of G it follows that $X \not\leq_e G^{(k)}$. Hence X is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$. By the normal form of the sets, which enumeration degrees are in $CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)$, we have that $d_e(X)\in CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)$. \square

6. REGULAR ENUMERATIONS

We shall remind the notion of regular enumerations from [8]. Let B_0, \ldots, B_n be non empty subsets of N...

Finite parts are as usual finite mappings of N into N. The notion of *i*-regular finite parts is defined by induction on $i \leq n$.

The 0-regular finite parts are finite parts τ such that $dom(\tau) = [0, 2q + 1]$ and for all odd $z \in dom(\tau), \tau(z) \in B_0$.

Let τ be a 0-regular finite part. If $\operatorname{dom}(\tau) = [0, 2q + 1]$, then the 0-rank of τ $|\tau|_0 q + 1$ – the number of the odd elements of $\operatorname{dom}(\tau)$. Let B_0^{τ} be the set of the odd elements of $\operatorname{dom}(\tau)$. If ρ is a 0-regular extention of τ , we shall denote this fact by $\tau \subseteq_0 \rho$. It is clear that if $\tau \subseteq_0 \rho$ and $|\tau|_0 |\rho|_0$, then $\tau = \rho$. Let

$$\tau \Vdash_0 F_e(x) \iff \exists v(\langle v, x \rangle \in W_e \ \& \ (\forall u \in D_v)(\tau((u)_0) \simeq (u)_1)),$$
$$\tau \Vdash_0 \neg F_e(x) \iff \forall (\rho)(\tau \subseteq_0 \rho \Rightarrow \rho \not\Vdash_0 F_e(x)).$$

Suppose that for some i < n we have defined the *i*-regular finite parts and for every *i*-regular τ – the *i*-rank $|\tau|_i$ of τ , the set B_i^{τ} and the relations $\tau \Vdash_i F_e(x)$ and $\tau \Vdash_i \neg F_e(x)$. Suppose also that if τ and ρ are *i*-regular, $\tau \subseteq \rho$ (we write $\tau \subseteq_i \rho$) and $|\tau|_i = |\rho|_i$, then $\tau = \rho$.

Denote by $X_{(e,x)}^i = \{\rho : \rho \text{ is } i\text{-regular & } \rho \Vdash_i F_e(x)\}.$

For any *i*-regular finite part τ and any set X of *i*-regular finite parts, denote by $\mu_i(\tau, X) = \mu \rho [\tau \subseteq_i \rho \& \rho \in X]$ if any, and $\mu_i(\tau, X) = \mu \rho [\tau \subseteq_i \rho]$, otherwise.

Definition 6.1. Let τ be a finite part and $m \ge 0$. The finite part δ is called an *i-regular m omitting extension* of τ if $\delta \supseteq_i \tau$, $dom(\delta) = [0, q-1]$ and there exist natural numbers $q_0 < \cdots < q_m < q_{m+1} = q$ such that:

(a)
$$\delta q_0 = \tau$$
;

(b) For all
$$p \leq m$$
, $\delta |q_{p+1}\mu_i(\delta | (q_p + 1), X^i_{\langle p,q_p \rangle})$.

Denote by K_{τ}^{δ} the sequence q_0, \ldots, q_m . If δ and ρ are two *i*-regular m omitting extensions of τ and $\delta \subseteq \rho$, then $\delta = \rho$.

Let \mathcal{R}_i denote the set of all *i*-regular finite parts. Given an index j, by S_j^i we shall denote the intersection $\mathcal{R}_i \cap \Gamma_j(\mathcal{P}(B_0, \ldots, B_i))$, where Γ_j is the j-th enumeration operator.

Let τ be a finite part defined on [0, q-1] and $r \ge 0$. Then τ is (i+1)-regular with (i+1)-rank r+1 if there exist natural numbers

$$0 < n_0 < l_0 < b_0 < n_1 < l_1 < b_1 < \cdots < n_r < l_r < b_r < n_{r+1} = q$$

such that $\tau \upharpoonright n_0$ is an *i*-regular finite part with *i*-rank equal to 1 and for all j, $0 \le j \le r$, the following conditions are satisfied:

(a)
$$\tau \mid l_j \simeq \mu_i(\tau \mid (n_j + 1), S_i^i);$$

- (b) $\tau | b_j$ is an *i*-regular *j* omitting extension of $\tau | l_j$;
- (c) $\tau(b_i) \in B_{i+1}$;

(d) $\tau \upharpoonright n_{j+1}$ is an i-regular extension of $\tau \upharpoonright (b_j + 1)$ with i-rank equal to $|\tau \upharpoonright b_j|_i + 1$.

Let $B_{i+1}^{\tau} = \{b_0, \ldots, b_r\}$. By K_{i+1}^{τ} we shall denote the sequence $K_{\tau \mid l_r}^{\tau \mid b_r}$. Let for every (i+1)-regular finite part τ

$$\tau \Vdash_{i+1} F_e(x) \iff \exists v (\langle v, x \rangle \in W_e \ \& \ (\forall u \in D_v) (\langle u = \langle e_u, x_u, 0 \rangle \ \& \ \tau \Vdash_i F_{e_u}(x_u)) \lor (u = \langle e_u, x_u, 1 \rangle \ \& \ \tau \Vdash_i \neg F_{e_u}(x_u))).$$

$$\tau \Vdash_{i+1} \neg F_e(x) \iff (\forall \rho)(\tau \subseteq_{i+1} \rho \Rightarrow \rho \not\Vdash_{i+1} F_e(x)).$$

Definition 6.2. Let f be a total mapping of \mathbb{N} in \mathbb{N} . Then f is a regular enumeration if the following two conditions hold:

- (i) For every finite part $\delta \subseteq f$, there exists an *n*-regular extension τ of δ such that $\tau \subseteq f$.
- (ii) If $i \leq n$ and $z \in B_i$, then there exists an *i*-regular extension $\tau \subseteq f$ such that $z \in \tau(B_i^{\tau})$.

Let f be a total mapping on N. We define for every $i \leq n, e, x$ the relation $f \models_i F_e(x)$ by induction on i:

Definition 6.3.

$$\begin{array}{l} (\mathrm{i})f \models_0 F_e(x) \iff \exists v(\langle v, x \rangle \in W_e \ \& \ (\forall u \in D_v)(f((u)_0) \simeq (u)_1)); \\ (\mathrm{ii})f \models_{i+1} F_e(x) \iff \exists v(\langle v, x \rangle \in W_e \ \& \ (\forall u \in D_v)((u = \langle e_u, x_u, 0 \rangle \ \&)). \end{array}$$

$$f \models_{i} F_{e_{u}}(x_{u})) \lor (u = \langle e_{u}, x_{u}, 1 \rangle \& f \not\models_{i} F_{e_{u}}(x_{u}))).$$

Set
$$f \models_i \neg F_e(x) \iff f \not\models_i F_e(x)$$
.

In [8] it is proven that for every regular enumeration f:

- 1. $B_0 \leq_e f$.
- 2. If i < n, then $B_{i+1} \leq_e f \oplus \mathcal{P}(B_0, \ldots, B_i)'$, and $\mathcal{P}(B_0, \ldots, B_i) <_e f^{(i)}$, for $i \leq n$.
- 3. If $A \subset \mathbb{N}$, then

$$A \leq_{e} f^{(i)} \iff (\exists e)A = \{x : f \models_{i} F_{e}(x)\}.$$

4. For all $i \leq n$ (for negation i < n),

$$f \models_i (\neg) F_e(x) \iff (\exists \tau \subseteq f)(\tau \text{ is } i\text{-regular } \& \tau \Vdash_i (\neg) F_e(x)).$$

Notice that if f is a regular enumeration, then $B_i \leq_e f^{(i)}$, $i \leq n$.

Given a finite mapping τ defined on [0, q-1], by $\tau * z$ we shall denote the extension ρ of τ defined on [0, q] and such that $\rho(q) \simeq z$. We shall use the following Lemma, proved in [8].

Lemma 6.1. [8] Let A_0, \ldots, A_{n-1} be subsets of \mathbb{N} such that $A_i \not\leq_e \mathbb{P}(B_0, \ldots, B_i)$. Let τ be an n-regular finite part, defined on [0, q-1]. Suppose that $|\tau|_n = r+1$, $y \in \mathbb{N}$, $z_0 \in B_0, \ldots, z_n \in B_n$ and $s \leq r+1$. Then there is an n-regular extension ρ of τ such that:

- (i) $|\rho|_n = r + 2$;
- (ii) $\rho(q) \simeq y$, $z_0 \in \rho(B_0^{\rho}), \ldots, z_n \in \rho(B_n^{\rho})$;
- (iii) if i < n and $K_{i+1}^{\rho} = q_0^i, \dots, q_s^i, \dots, q_{m_i}^i$, then
 - (a) $\rho(q_s^i) \in A_i \Rightarrow \rho \Vdash_i \neg F_s(q_s^i);$
 - (b) $\rho(q_s^i) \notin A_i \Rightarrow \rho \Vdash_i F_s(q_s^i)$.

Now we turn to the proof of Theorem 5.1. Set $B_{n+1} = \mathbb{N}$ and $\mathcal{P}(B_0, \ldots, B_{n+1}) = \mathcal{P}(B_0, \ldots, B_n)' \oplus B_{n+1}$. By a regular enumeration f we mean a regular one with respect to $B_0, \ldots, B_n, B_{n+1}$.

Proof of Theorem 5.1.

Let $\{A_r^k\}_r$, $k \leq n$, be sequences of subsets of N such that $A_r^k \not\leq_e \mathcal{P}(B_0, \ldots, B_k)$. We shall construct a regular enumeration f such that f "omits" the sets A_r^k for all $r, k \leq n$, i.e. $A_r^k \not\leq_e f^{(k)}$.

The construction of f will be carried out by steps. At each step s we shall construct an (n+1)-regular finite part δ_s , so that $|\delta_s|_{n+1} \ge s+1$ and $\delta_s \subseteq_{n+1} \delta_{s+1}$. On the even steps we shall ensure the genericity of f, i.e. conditions (a) and (d) from the definition of i-regular finite part, and on the odd steps we shall ensure the omitting conditions, the conditions (b), (c).

Let \mathcal{R}_{n+1} be the set of all (n+1)-regular finite parts and $S_j^{n+1} = \mathcal{R}_{n+1} \cap \Gamma_j(\mathcal{P}(B_0,\ldots,B_{n+1}))$. Let $\sigma_0,\ldots,\sigma_{n+1}$ be recursive in $\mathcal{P}(B_0,\ldots,B_{n+1})$ enumerations of the sets B_0,\ldots,B_{n+1} , respectively.

Let δ_0 be an arbitrary (n+1)-regular finite part with (n+1)-rank equal to 1. Suppose that δ_s is defined.

Case s=2m. Check whether there exists a $\rho \in S_m^{n+1}$ such that $\delta_s \subset \rho$. If so, let δ_{s+1} be the least such ρ . Otherwise, let δ_{s+1} be the least (n+1)-regular extension of δ_s with (n+1)-rank equal to $|\delta_s|_{n+1}+1$.

Case s=2m+1. Let $|\delta_s|_{n+1}=r+1\geq s+1$. Let $m\langle p,e\rangle$. We may assume that $e\leq m$ and then e< r+1. Let $\sigma_0(m)\simeq z_0,\ldots,\sigma_{n+1}(m)\simeq z_{n+1}$. Set $\tau_0\simeq \mu_n(\delta_s*z_{n+1},S_{r+1}^n)$. Let $l_{r+1}=\operatorname{lh}(\tau_0)$ and $q_0^n=l_{r+1}$. For j< e, let $\tau_{j+1}=\mu_n(\tau_j*0,X_{\langle j,q_j^n\rangle}^n)$ and $q_{j+1}^n=\operatorname{lh}(\tau_{j+1})$. So, τ_e and q_e^n are defined. Let

$$C = \{x : (\exists \tau \supseteq \tau_e)(\tau \in \mathcal{R}_n \& \tau(q_e^n) \simeq x \& \tau \Vdash_n F_e(q_e^n))\}.$$

The set $C \leq_e \mathcal{P}(B_0, \ldots, B_{n+1})$ and $A_p^n \not\leq_e \mathcal{P}(B_0, \ldots, B_{n+1})$. Then there is an a such that

$$a \in C \& a \notin A_p^n \lor a \notin C \& a \in A_p^n. \tag{6.1}$$

Let a_0 be the least a satisfying (6.1).

Next we extend the finite $\tau_e * a_0$ to a finite part τ , so that τ is an n-regular r+1 omitting extension of τ_0 . Set $b_{r+1} = \text{lh}(\tau)$. Now consider the sets A_p^0, \ldots, A_p^{n-1} . By Lemma 6.1 we can construct an n-regular extension ρ of τ such that:

(i)
$$|\rho|_n = |\tau|_n + 1$$
;

(ii)
$$\rho(b_{r+1}) \simeq z_{n+1}$$
 and $z_0 \in \rho(B_0^{\rho}), \ldots, z_n \in \rho(B_n^{\rho});$

(iii) if
$$k < n$$
 and $K_{k+1}^{\rho} = q_0^k, \dots, q_e^k, \dots, q_{m_k}^k$, then

(a)
$$\rho(q_e^k) \in A_p^k \Rightarrow \rho \Vdash_k \neg F_e(q_e^k);$$

(b)
$$\rho(q_e^k) \not\in A_p^k \Rightarrow \rho \Vdash_k F_e(q_e^p)$$
.

Set $\delta_{s+1} = \rho$.

Let $f = \bigcup \delta_s$. From the construction it follows that f is a regular enumeration. For every e, x, $\{\tau : \tau \in \mathcal{R}_{n+1} \& \tau \Vdash_{n+1} F_e(x)\}$ is e-reducible to $\mathcal{P}(B_0, \ldots, B_{n+1})$. From here, by the even stages of the construction, it follows that for all e, x,

$$f \models_{n+1} (\neg) F_e(x) \iff (\exists \tau \subseteq f) (\tau \in \mathcal{R}_{n+1} \& \tau \Vdash_{n+1} (\neg) F_e(x)).$$

Since f is regular, we have that if $k \leq n$, then for all e and x,

$$f \models_k (\neg) F_e(x) \iff (\exists \tau \subseteq f) (\tau \in \mathcal{R}_k \& \tau \Vdash_k (\neg) F_e(x)).$$

Now suppose that for some $k \leq n$ and p, $A_p^k \leq_e f^{(k)}$. Then the set $C_p^k = \{x : f(x) \in A_p^k\}$ is also e-reducible to $f^{(k)}$. Fix an e such that for all x,

$$f(x) \in A_p^k \iff x \in C_p^k \iff f \models_k F_e(x).$$
 (6.2)

Consider the step $s=2\langle p,e\rangle+1$. By the construction, there exists a $q_e^k\in \text{dom}(\delta_{s+1})$ such that

$$(f(q_e^k) \in A_p^k \Rightarrow f \models_k \neg F_e(q_e^k)) \& (f(q_e^k) \not\in A_p^k \Rightarrow f \models_k F_e(q_e^k)).$$

Clearly, $\delta_{s+1}(q_e^k) \simeq f(q_e^k)$. Now assume that $f(q_e^k) \in A_p^k$. Then $\delta_{s+1} \Vdash_k \neg F_e(q_e^k)$. Hence $f \models_k \neg F_e(q_e^k)$, which is impossible. It remains that $f(q_e^k) \not\in A_p^k$. In this case $\delta_{s+1} \Vdash_k F_e(q_e^k)$ and hence $f \models_k F_e(q_e^k)$. The last again contradicts (6.2). So $A_p^k \not\leq_e f^{(k)}$. \square

7. QUASI-MINIMAL DECREE

Definition 7.1. Let $B_0 \subseteq \mathbb{N}$. A set F of natural numbers is called *quasi-minimal over* B_0 if the following conditions hold:

(ii) For any total set $A \subseteq \mathbb{N}$, if $A \leq_e F$, then $A \leq_e B_0$.

The following theorem we shall prove in the next section using the technique of partial regular enumerations.

Theorem 7.1. Let $B_0, \ldots, B_n, n \geq 1$, be arbitrary sets of natural numbers. There exists a set F having the following properties:

- (i) $B_0 <_e F$;
- (ii) For all $1 \le i \le n$, $B_i \le_e F^{(i)}$;
- (iii) For any total set A, if $A \leq_e F$, then $A \leq_e B_0$.

In fact, the set F from Theorem 7.1 is a quasi-minimal over B_0 .

Let the structures $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ be fixed.

Proof of Theorem 3.2. By [9], there is a quasi-minimal degree \mathbf{q}_0 with respect to $DS(\mathfrak{A}_0)$, i.e.:

- (i) $\mathbf{q}_0 \not\in CS(\mathfrak{A}_0)$;
- (ii) If a is a total degree and $a \ge q_0$, then $a \in DS(\mathfrak{A}_0)$;
- (iii) If a is a total degree and $a \leq q_0$, then $a \in CS(\mathfrak{A}_0)$.

Let $B_0 \subseteq \mathbb{N}$ such that $d_e(B_0) = \mathbf{q}_0$, and f_1, \ldots, f_n be fixed total enumerations of $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$. Denote $B_1 = f_1^{-1}(\mathfrak{A}_1), \ldots, B_n = f_n^{-1}(\mathfrak{A}_n)$. By Theorem 7.1, there is a quasi-minimal over B_0 set F such that:

- (i) $B_0 <_e F$;
- (ii) For all $1 \le i \le n$, $f_i^{-1}(\mathfrak{A}_i) \le_e F^{(i)}$;
- (iii) For any total set A, if $A \leq_e F$, then $A \leq_e B_0$.

We will show that $\mathbf{q} = d_e(F)$ is a quasi-minimal with respect to $DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$, i.e.:

- (i) $\mathbf{q}' \in DS(\mathfrak{A}_1), \dots, \mathbf{q}^{(n)} \in DS(\mathfrak{A}_n), \mathbf{q} \notin CS(\mathfrak{A}_0, \mathfrak{A}_1, \dots, \mathfrak{A}_n);$
- (ii) If a is a total degree and $a \ge q$, then $a \in DS(\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$;
- (iii) If a is a total degree and $a \leq q$, then $a \in CS(\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n)$.

In order to prove (i), suppose that $\mathbf{q} \in CS(\mathfrak{A}_0)$. By Theorem 7.1, $\mathbf{q}_0 < \mathbf{q}$ and thus $\mathbf{q}_0 \in CS(\mathfrak{A}_0)$. A contradiction with the fact that \mathbf{q}_0 is quasi-minimal with respect to $DS(\mathfrak{A}_0)$. Then $\mathbf{q} \notin CS(\mathfrak{A}_0)$ and hence $\mathbf{q} \notin CS(\mathfrak{A}_0, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$.

For each $i, 1 \leq i \leq n$, the set $F^{(i)}$ is total and $f_i^{-1}(\mathfrak{A}_i) \leq_e F^{(i)}$. Since any degree spectrum is closed upwards, it follows that $d_e(F^{(i)}) \in DS(\mathfrak{A}_i)$, i.e. $\mathbf{q}^{(i)} \in DS(\mathfrak{A}_i)$.

For (ii) consider a total set X such that $X \geq_e F$. Then $d_e(X) \geq q_0$. From the fact that q_0 is quasi-minimal with respect to $DS(\mathfrak{A}_0)$ it follows that $d_e(X) \in DS(\mathfrak{A}_0)$. Moreover, for each $1 \leq i \leq n$, $X^{(i)} \geq_e F^{(i)} \geq_e f_i^{-1}(\mathfrak{A}_i)$, and $X^{(i)}$ is a total set. Then for each $i \leq n$, $d_e(X^{(i)}) \in DS(\mathfrak{A}_i)$, and hence $d_e(X) \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$.

For (iii) suppose that X is a total set and $X \leq_e F$. Then, from the choice of $F, X \leq_e B_0$. Because \mathbf{q}_0 is quasi-minimal with respect to $DS(\mathfrak{A}_0)$, it follows that $d_e(X) \in CS(\mathfrak{A}_0)$. But $CS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n) = CS(\mathfrak{A}_0)$ and therefore $d_e(X) \in CS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$. \square

8. PARTIAL REGULAR ENUMERATIONS

Let $B_0 \subseteq \mathbb{N}$.

Definition 8.1. A partial enumeration f of B_0 is a partial surjective mapping from N onto N with the following properties:

- (i) For all odd x, if f(x) is defined, then $f(x) \in B_0$;
- (ii) For all $y \in B_0$, there is an odd x such that $f(x) \simeq y$.

It is clear that if f is a partial enumeration of B_0 , then $B_0 \leq_e f$ since

$$y \in B_0 \iff (\exists n)(f(2n+1) \simeq y).$$

Let ⊥ ∉ N.

Definition 8.2. A partial finite part τ is a finite mapping of N into N \cup { \bot } such that $(\forall x)(x \in \text{dom}(\tau) \& x \text{ is odd} \Rightarrow (\tau(x) = \bot \lor \tau(x) \in B_0)).$

If τ is a partial finite part and f is a partial enumeration of B_0 , say that

$$\tau \subseteq f \iff (\forall x \in \text{dom}(\tau))((\tau(x) = \bot \Rightarrow f(x) \text{ is not defined }) \& (\tau(x) \neq \bot \Rightarrow \tau(x) \simeq f(x)).$$

Let B_0, \ldots, B_n be fixed sets of natural numbers. Combining the technique of the regular enumerations with the partial (generic) enumerations on the 0-level for B_0 , we shall construct a partial regular enumeration f, which will be quasi-minimal over the set B_0 and such that $B_i \leq_e f^{(i)}$ for $i \leq n$.

A 0-regular partial finite part is a partial finite part τ such that $dom(\tau) = [0, 2q + 1]$ and for all odd $z \in dom(\tau)$, $\tau(z) \in B_0$ or $\tau(z) = \bot$.

Let B_0^{τ} be the set of all odd elements z of $dom(\tau)$ such that $\tau(z) \in B_0$. The 0-rank of τ , $|\tau|_0 = q + 1$, we call the number of the odd elements of $dom(\tau)$. If ρ is a 0-regular partial extention of τ , we shall denote this fact again by $\tau \subseteq_0 \rho$. It is clear that if $\tau \subseteq_0 \rho$ and $|\tau|_0 |\rho|_0$, then $\tau = \rho$. Let

$$\tau \Vdash_{\mathsf{Q}} F_{e}(x) \iff \exists v (\langle v, x \rangle \in W_{e} \& (\forall u \in D_{v})(u = \langle s, t \rangle, \& \tau(s) \simeq t \& t \neq \bot.)),$$

$$\tau \Vdash_0 \neg F_e(x) \iff \forall (\rho)(\tau \subseteq_0 \rho \Rightarrow \rho \not\Vdash_0 F_e(x)).$$

The definition of (i+1)-regular partial finite part τ , the set B_{i+1}^{τ} , the (i+1)-rank of τ and the relations $\tau \Vdash_{i+1} F_e(x)$ and $\tau \Vdash_{i+1} \neg F_e(x)$ are defined in the same way as in Section 6, the only difference is that instead of *i*-regular finite parts we use *i*-regular partial finite parts. Notice that again if τ is an *i*-regular partial finite part, then τ is a *j*-regular partial finite part for each j < i.

Definition 8.3. A partial regular enumeration is a partial mapping f from N onto N such that the following two conditions hold:

- (i) For every partial finite part $\delta \subseteq f$, there exists an *n*-regular partial extension τ of δ such that $\tau \subseteq f$.
- (ii) If $i \leq n$ and $z \in B_i$, then there exists an *i*-regular partial finite part $\tau \subseteq f$ such that $z \in \tau(B_i^{\tau})$.

If f is a partial regular enumeration and $i \leq n$, then for every $\delta \subseteq f$, $\operatorname{dom}(\delta) \subseteq [0, q-1]$, there exists an i-regular partial $\tau \subseteq f$ such that $\delta \subseteq \tau$, and for every $x \in [0, q-1]$ if f(x) is not defined, then $\tau(x) = \bot$. Moreover, there exist i-regular partial finite parts of f of arbitrary large rank.

The relation $f \models_i F_e(x)$ is the same as in Definition 6.3. By induction on i one could check that for any $A \subseteq \mathbb{N}$, $A \leq_e f^{(i)}$ iff there exists e such that for all x,

$$x \in A \iff f \models_i F_e(x).$$

Lemma 8.1. Suppose that f is a partial regular enumeration. Then:

- (1) For all $i \leq n$, $f \models_i F_e(x) \iff (\exists \tau \subseteq f)(\tau \text{ is in regular } \&_{\backslash} \tau \Vdash_i F_e(x))$.
- (2) For all i < n, $f \models_i \neg F_e(x) \iff (\exists \tau \subseteq f)(\tau \text{ is } i\text{-regular & } \tau \Vdash_i \neg F_e(x)).$

The proof follows from the definitions by induction on i as in the total case. Let \mathcal{R}_i be the set of all i-regular partial finite parts. It is clear that $\mathcal{R}_i \leq_e \mathcal{P}_i$, where $\mathcal{P}_i = \mathcal{P}(B_0, \ldots, B_n)$.

Definition 8.4. A partial enumeration f is *i-generic* if for any j < i and for every enumeration reducible to \mathcal{P}_j set S of j-regular partial finite parts the following condition holds:

$$(\exists \tau \subseteq f)(\tau \in S \lor (\forall \rho \supseteq_j \tau)(\rho \notin S)).$$

Proposition 8.1. Every partial regular enumeration is (i + 1)-generic enumeration for every i < n.

Proof. Let S be a set of i-regular partial finite parts such that $S \leq_e \mathcal{P}_i$. Then there exists an e such that $S = \mathcal{R}_i \cap \Gamma_e(\mathcal{P}_i)$. Consider an (i+1)-regular partial finite part $\tau \subseteq f$ with (i+1)-rank greater than e. From the definition of (i+1)-regular partial finite part it follows that there is an i-regular partial finite part $\sigma \subseteq_i \tau$, and hence $\sigma \subseteq f$ such that $\sigma \in S$ or $(\forall \rho \supseteq_i \sigma)(\rho \notin S)$. \square

Proposition 8.2. Suppose that f is a partial regular enumeration. Then:

- (1) For each $i \leq n$, $B_i \leq_e f^{(i)}$.
- (2) If i < n, then $f \not\leq_e \mathcal{P}_i$.

Proof. We know that $B_0 \leq_e f$. Let i < n. Suppose that for each $j \leq i$, $B_j \leq_e f^{(j)}$. Then $\mathcal{P}_i \leq_e f^{(i)}$.

Since f is partial regular, for every partial finite part δ of f there exists an (i+1)-regular partial finite part $\tau \subseteq f$ such that $\delta \subseteq \tau$, where if f(x) is not defined and $x \in \text{dom}(\tau)$, then $\tau(x) = \bot$. For each q denote by $f \mid_q$ the partial finite part τ with $\text{dom}(\tau) = [0, q-1]$, $\tau \subseteq f$, and for each x < q if f(x) is not defined, then $\tau(x) = \bot$.

Let

$$0 < n_0 < l_0 < b_0 < n_1 < l_1 < b_1 < \cdots < n_r < l_r < b_r < n_{r+1} < \cdots$$

be the numbers satisfying the conditions (a)-(d) from the definition of the (i + 1)-regular partial finite part τ_r . Clearly, if $B_{i+1}^f = \{b_0, b_1 \dots\}$, then $f(B_{i+1}^f) = B_{i+1}$. We shall show that there exists an effective in $f^{(i+1)}$ procedure which lists n_0, l_0, b_0, \dots in an increasing order.

Using the oracle f', we can generate consecutively the partial finite parts $f \mid q$ for $q = 1, 2, \ldots$ Notice that $f \mid n_0$ is *i*-regular and $|f| \mid n_0|_i = 1$, and it is the first element of this sequence which belongs to \mathcal{R}_i . Clearly, $n_0 = \ln(f \mid n_0)$.

Suppose that $n_0, l_0, b_0, \ldots, n_r$ have already been listed. Since $f | l_r \simeq \mu_i(f | (n_r + 1), S_r^i)$, we can find effectively in $f^{(i+1)}$ the partial finite part $f | l_r$. Then $l_r = \text{lh}(f | l_r)$. Next $f | b_r$ is an *i*-regular partial r omitting extension of $f | l_r$. So, there exist natural numbers $l_r = q_0 < \cdots < q_r < q_{r+1} = b_r$. Using the oracle $f^{(i+1)}$, we can find consecutively the numbers $q_0, \ldots, q_r, q_{r+1} = b_r$. By definition, $f | n_{r+1}$ is an *i*-regular partial extension of $f | (b_r + 1)$ having *i*-rank equal to $| f | b_r |_i + 1$. Using f', we can generate consecutively the partial finite parts $f | (b_r + 1 + q), q = 0, 1, \ldots$ Then $f | n_{r+1}$ is the first element of this sequence which belongs to \mathcal{R}_i .

Then B_{i+1}^f is effective in $f^{(i+1)}$ and $B_{i+1} \leq_e f^{(i+1)}$.

To prove (2), assume that $f \leq_e \mathcal{P}_i$. Then the set

$$S = \{ \tau : \tau \in \mathcal{R}_i \& (\exists x, y_1 \neq y_2 \in \mathbb{N}) (\tau(x) \simeq y_1 \& f(x) \simeq y_2) \},$$

 $S \leq_e \mathcal{P}_i$. Using the fact that f is (i+1)-generic, there is an i-regular partial finite part $\tau \subseteq f$ such that either $\tau \in S$ or $(\forall \rho \supseteq_i \tau)(\rho \notin S)$. It is obvious that both of these cases are impossible. A contradiction. \square

Lemma 8.2. Let $i \leq n$ and τ be an i-regular partial finite part with domain [0, q-1].

(1) For every $y \in \mathbb{N}, z_0 \in B_0, \ldots, z_i \in B_i$, we can find effectively in \mathcal{P}'_{i-1} an i-regular partial extension ρ of τ such that $|\rho|_i = |\tau|_i + 1$ and $\rho(q) \simeq y, z_0 \in \rho(B_0^{\rho}), \ldots, z_i \in \rho(B_i^{\rho})$.

(2) For every sequence $\vec{a} = a_0, \ldots, a_m$ of natural numbers, one can find effectively in \mathcal{P}'_i an i-regular m omitting partial extension δ of τ such that $\delta(K^{\delta}_{\tau}) = \vec{a}$.

Proof. The proof is as in the total case [8]. By induction on i, (1) and (2) are proven simultaneously. \square

Proof of Theorem 7.1. By Proposition 8.2, it is sufficient to show that there exists a partial regular enumeration f which is quasi-minimal over B_0 .

We shall construct f as a union of n-regular partial finite parts δ_s such that for all s, $\delta_s \subseteq_n \delta_{s+1}$ and $|\delta_s|_n = s+1$. Suppose that for $i \leq n$ σ_i is a recursively in B_i enumeration of B_i .

Let δ_0 be a 0-regular partial finite part such that $|\delta_0|_n = 1$. Suppose that δ_s is defined. Set $z_0 = \sigma_0(s), \ldots, z_n \sigma_n(s)$. Using Lemma 8.2, we can construct effectively in \mathcal{P}'_{n-1} an n-regular partial finite part $\rho \supseteq_n \delta_s$ such that $|\rho|_n |\delta_s|_n + 1$, $\rho(\operatorname{lh}(\delta_s)) = s$ and $z_0 \in \rho(B_0^\rho), \ldots, z_n \in \rho(B_n^\rho)$. Set $\delta_{s+1} = \rho$.

The obtained enumeration f is surjective on \mathbb{N} and it is a union of n-regular partial finite parts. From the construction is obvious that for every $z \in B_i$ there is an i-regular partial finite part τ of f such that $z \in B_i^{\tau}$. Hence f is a partial regular enumeration. By Proposition 8.1, f is (i+1)-generic for each i < n.

Then by Proposition 8.2, for $i \leq n$, $B_i \leq f^{(i)}$. Moreover, f is a partial 1-generic enumeration and hence $B_0 <_{e} f$.

To prove that f is quasi-minimal over B_0 , it is sufficient to show that if ψ is a total function and $\psi \leq_e f$, then $\psi \leq_e B_0$. It is clear that for any total set $A \subseteq \mathbb{N}$ one can construct a total function ψ , $\psi \equiv_e A$. Let ψ be a total function and $\psi = \Gamma_e(f)$. Then

$$(\forall x,y\in\mathbb{N})(f\models_{0}F_{e}(\langle x,y\rangle)\iff\psi(x)\simeq y)$$

Consider the set

$$S_0 = \{ \rho : \rho \in \mathcal{R}_0 \& (\exists x, y_1 \neq y_2 \in \mathbb{N}) (\rho \Vdash_0 F_e(\langle x, y_1 \rangle) \& \rho \Vdash_0 F_e(\langle x, y_2 \rangle)) \}.$$

Since $S_0 \leq_e B_0$, we have that there exists a 0-regular partial finite part $\tau_0 \subseteq f$ such that either $\tau_0 \in S_0$ or $(\forall \rho \supseteq_0 \tau_0)(\rho \notin S_0)$. Assume that $\tau_0 \in S_0$. Then there exist $x, y_1 \neq y_2$ such that $f \models_0 F_e(\langle x, y_2 \rangle)$ and $f \models_0 F_e(\langle x, y_2 \rangle)$. Then $\psi(x) \simeq y_1$ and $\psi(x) \simeq y_2$, which is impossible. So, $(\forall \rho \supseteq_0 \tau_0)(\rho \notin S_0)$.

Let

$$S_{1} = \{ \rho : \rho \in \mathcal{R}_{0} \& (\exists \tau \supseteq_{0} \tau_{0})(\exists \delta_{1} \supseteq_{0} \tau)(\exists \delta_{2} \supseteq_{0} \tau) \\ (\exists x, y_{1} \neq y_{2} \in \mathbb{N})(\tau \subseteq_{0} \rho \& \delta_{1} \Vdash_{0} F_{e}(\langle x, y_{1} \rangle) \& \delta_{2} \Vdash_{0} F_{e}(\langle x, y_{2} \rangle) \& \\ \operatorname{dom}(\rho) = \operatorname{dom}(\delta_{1}) \cup \operatorname{dom}(\delta_{2}) \& \\ (\forall x)(x \in \operatorname{dom}(\rho) \setminus \operatorname{dom}(\tau) \Rightarrow \rho(x) \simeq \bot)) \}.$$

We have that $S_1 \leq_e B_0$ and hence there exists a 0-regular partial finite part $\tau_1 \subseteq f$ such that either $\tau_1 \in S_1$ or $(\forall \rho \supseteq_0 \tau_1)(\rho \notin S_1)$.

Assume that $\tau_1 \in S_1$. Then there exists a 0-regular partial finite part τ such that $\tau_0 \subseteq_0 \tau \subseteq_0 \tau_1$ and for some $\delta_1 \supseteq_0 \tau$, $\delta_2 \supseteq_0 \tau$ and $x_0, y_1 \neq y_2 \in \mathbb{N}$ we have

$$\delta_1 \Vdash_0 F_e(\langle x_0, y_1 \rangle) \& \delta_2 \Vdash_0 F_e(\langle x_0, y_2 \rangle) \& \operatorname{dom}(\tau_1) = \operatorname{dom}(\delta_1) \cup \operatorname{dom}(\delta_2) \& (\forall x)(x \in \operatorname{dom}(\tau_1) \setminus \operatorname{dom}(\tau) \Rightarrow \tau_1(x) \simeq \bot).$$

Let $\psi(x_0) \simeq y$. Then $f \models_0 F_e(\langle x_0, y \rangle)$. Hence there exists a $\rho \supseteq_0 \tau_1$ such that $\rho \Vdash_0 F_e(\langle x_0, y \rangle)$. Let $y \neq y_1$. Define the partial finite part ρ_0 as follows:

$$\rho_0(x) \simeq \begin{cases} \delta_1(x) & \text{if } x \in \text{dom}(\delta_1), \\ \rho(x) & \text{if } x \in \text{dom}(\rho) \setminus \text{dom}(\delta_1). \end{cases}$$

Then $\tau_0 \subseteq_0 \rho_0$, $\delta_1 \subseteq_0 \rho_0$ and notice that for all $x \in \text{dom}(\rho)$ if $\rho(x) \not\simeq \bot$, then $\rho(x) \simeq \rho_0(x)$. Hence $\rho_0 \Vdash_0 F_e(\langle x_0, y_1 \rangle)$ and $\rho_0 \Vdash_0 F_e(\langle x_0, y \rangle)$. So, $\rho_0 \in S_0$. A contradiction.

Thus, $(\forall \rho)(\rho \supseteq_0 \tau_1 \Rightarrow \rho \notin S_1)$.

Let $\tau = \tau_1 \cup \tau_0$. Notice that $\tau \subseteq f$. We shall show that

$$\psi(x) \simeq y \iff (\exists \delta \supseteq_0 \tau)(\delta \Vdash_0 F_e(\langle x, y \rangle)).$$

And hence $\psi \leq_e B_0$.

If $\psi(x) \simeq y$, then $f \models_0 F_e(x)$, and by Lemma 8.1 $(\exists \rho \subseteq f)(\rho \Vdash_0 F_e(x))$ and ρ is 0-regular. Then take $\delta = \tau \cup \rho$.

Assume that $\delta_1 \supseteq_0 \tau$, $\delta_1 \Vdash_0 F_e(\langle x, y_1 \rangle)$. Suppose that $\psi(x) \simeq y_2$ and $y_1 \neq y_2$. Then there exists a $\delta_2 \supseteq_0 \tau$ such that $\delta_2 \Vdash_0 F_e(\langle x, y_2 \rangle)$. Set

$$\rho(x) \simeq \begin{cases} \tau(x) & \text{if } x \in \text{dom}(\tau), \\ \bot & \text{if } x \in (\text{dom}(\delta_1) \cup \text{dom}(\delta_2)) \setminus \text{dom}(\tau). \end{cases}$$

Clearly, $\rho \supseteq_0 \tau_1$ and $\rho \in S_1$. A contradiction. \square

REFERENCES

- 1. Ash, C. J. Generalizations of enumeration reducibility using recursive infinitary propositional senetences, Ann. Pure Appl. Logic, 58, 1992, 173-184.
- Ash, C. J., C. Jockush, J. F. Knight, Jumps of orderings, Trans. Amer. Math. Soc., 319, 1990, 573-599.
- 3. Cooper, S. B. Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ_2 sets are dense, J. Symbolic Logic 49, 1984, 503-513.
- 4. Downey, R. G., J. F. Knight, Orderings with α -th jump degree $0^{(\alpha)}$, *Proc. Amer. Math. Soc.*, 114, 1992, 545–552.
- Knight, J. F. Degrees coded in jumps of orderings, J. Symbolic Logic, 51, 1986, 1034-1042.

- Richter, L. J. Degrees of structures, J. Symbolic Logic, 46, 1981, 723-731.
- Selman, A. L. Arithmetical reducibilities I, Z. Math. Logik Grundlag. Math. 17, 1971, 335-350.
- A jump inversion theorem for the enumeration jump, Arch. Math. Logic, 39, (2000), 417-437.
- Soskov, I. N. Degree spectra and co-spectra of structures, Ann. Sofia Univ., Fac. Math. and Inf., 96, 2003, 45-68.
- Soskova, A. A., I. N. Soskov, Co-spectra of joint spectra of structures, Ann. Sofia Univ., Fac. Math. and Inf., 96, 2003, 35-44.

Received November 12, 2003

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., 1164 Sofia BULGARIA

E-mail: asoskova@fmi.uni-sofia.bg