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In two papers from 1995 P. Kohler and G. Nikolov showed that Gauss-type quadrature
formulae associated with spaces of spline functions with equidistant knots are asymptot-
ically optimal in certain Sobolev classes of functions. In particular, Gauss-type quadra-
tures associated with the spaces of spline functions of degree r—1 with double equispaced
knots are asymptotically optimal definite quadrature formulae of order r when r is even,
and it is conjectured that the asymptotical optimality property persists also in the case
of odd r. For r = 3, 4, these quadrature formulae have been constructed by G. Nikolov,
who also proved estimates for their error constants. The aim of this note is to refine the
estimates for the error constant in the case r = 3, and to point out to some error esti-
mates in both cases » = 3 and r = 4, which are easier to evaluate and could be sharper
than those which involve the uniform norm of the r-th derivative of the integrand.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

A standard way to evaluate approximately the definite integral
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is to use quadrature formulae, which are linear functionals of the form
n
Q[f]:Zaif(Ti), 0< <~ <1, <1 (1.1)
i=1

We start with introducing some notation and definitions. Throughout this paper, m,,
stands for the set of algebraic polynomials of degree not exceeding m. A quadrature
formula @ is said to have algebraic degree of precision m (in short, ADP(Q) = m)
if m is the largest non-negative integer such that its remainder functional

R[Q; f]:=1[f] = Q[f]

vanishes on ,,.
The Sobolev classes of functions W;[0,1], (r € N, p > 1), are defined by

1
Wy0,1] :={feC"0,1]: =Y loc. abs. cont., /0 |F )P dt < oo}

(note that C"[0,1] C W[0,1] for every p > 1). Henceforth, || - || designates the
supremum norm in [0, 1], and the usual L, [0, 1]-norm is shortly denoted by || - ||,

1 p .
i1, = { o @) ™, i1 <p<on
vraisup,eo 17| f(t)], if p=oo.

If ADP(Q) = m > r —1 and f € W7[0,1], then by Peano representation
theorem for linear functionals (cf. [14]), the remainder R[Q; f] can be written in the
form

1
RIS = [ K(@0f (0 (12)
0
where K,.(Q;t) is referred to as the r-th Peano kernel of @ and is given by
1
K, ) = ; ._tT717 1.3
where (a:)z__l = max{z,0}" ! is the truncated power function. In literature, K,.(Q;t)

is also termed as monospline of degree r. For quadrature formula @ in (1.1) the
explicit form of K,.(Q;t), t € [0,1], is

Ko@) = o e St - (1.4
= (=17 {iv - (rjl)! ;“i(t—ﬁ)?l}- (1.5)

If f € W}0,1], then application of Holder’s inequality to (1.2) implies the
unimprovable error estimate

11
[RIQ; f1] < crp(@NF 7 lp, where ¢, (Q) = K (Q5 ) g5 s te= L.
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Usually, ¢, ,(Q) is called the error constant of @ in the Sobolev class W [0,1]. In
what follows, the subscript “n” in @, is used to emphasize that @),, is an n-point
quadrature formula, i.e., a quadrature formula which has n nodes. Quadrature
formulae @Q,, with the smallest possible error constant ¢, ,(Q,) are called optimal
quadrature formulae in W;[0,1]. Without going into details, let us mention that
the existence and uniqueness of optimal quadrature formulae in Sobolev classes of
functions have been established by Bojanov [1-3] and Zhensykbaev [16,17].

In the present paper we study certain definite quadrature formulae. A quadra-
ture formula @, is said to be definite of order r (r > 1), if there exists a constant
¢r(@r) # 0 such that

R[Qn; f] = cr(Qn) f(©)

for every f € C7[0,1] with some ¢ € [0,1] depending on the integrand f. More
precisely, @,, is called positive, resp. negative, definite quadrature formula of order
rif ¢, (Qn) > 0, resp. ¢, (@) < 0. Since ¢,.(Qn) = ¢r.00(Qn) if @, is positive definite
and ¢, (Qn) = —¢r00(Qn) if @, is negative definite, ¢, (Q,,) will also be referred to as
the error constant of @),,. The importance of definite quadrature formulae of order r
stems from the fact that they provide one-sided approximation to I[f] when f(") has
a permanent sign in (0,1). The midpoint and the trapezium quadrature formulae
are best-known examples of positive, resp. negative, definite quadrature formulae of
order two.

Definite n-point quadrature formulae of order r with the smallest positive or
the largest negative ¢, are called optimal definite quadrature formulae. It is known

that optimal definite quadrature formulae exist and are unique, cf. [6, 11, 15] and
[5, Chapter VII.8]. We denote by c,tr and c,, , the error constants of the optimal

n-point definite quadrature formulae of order r

el = inf{c.(Qn): Q, is positive definite of order 7},

n,r *
Cpr i=sup{c, (Qn): @n is negative definite of order r}.

In [9] estimates have been established for the error constants of the Gauss-

type quadrature formulae associated with the spaces of spline functions with double

equidistant knots. These estimates in turn provide bounds for the error constants of

the optimal definite quadrature formulae. Below we restate the main result from [9],
denoting by B, the Bernoulli polynomial of order r with leading coefficient 1/r!.

Theorem A ([9, Theorem 1.1]). (a) For even r with 2 <r < 2n, there holds

B,(j/2) . o
AT QR /B —4m +2j, j=0,1.
S T2y if r=4m+2j, j=0,

(b) For even r with 2 < r < 2n — 2, there holds

_ B.(3/2) . -
> - =4 2-2 =0,1.
CTL,T‘ — (n _ r/2)r7 Zf T m + j? .] K

(c) For odd r with 1 <r < 2n — 1, there holds
| B |l
(n—(r—1)/2)

e, < and c;TZ—%.
’ ’ (n—(r—1)/2)
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Comparison with results of Lange [10] shows that Gauss-type quadrature for-
mulae associated with the spaces of spline functions of degree r — 1 with double
equidistant knots are asymptotically optimal definite quadrature formulae of order
r when r is even, and it is conjectured that the asymptotical optimality property
persists also in the case of odd r. Two particular cases of Theorem A relevant to the
object of this paper are

V3o V3

+

B TR A T (16)
1

+

Cnt14 S 50T (1.7)

The right-hand sides of the inequalities in (1.6) and (1.7) are in fact bounds for the
error constants of Gauss-type quadrature formulae associated with the linear spaces
of spline functions S, 3 and S, 4, respectively, where for » > 3 and n > 2,

Snﬂn = {f f S CTﬁS[O, 1], f|(a:k,xk+1) em_1, k=0,...,n— 1},

k (1.8)
T =T i=—, k=0,...,n
n
The functions {1,z,2?, (z — z1)4, (z —21)3,..., (¥ — Tp_1)4, (x — 2p_1)1} form a

basis for S, 3, therefore dim S,, 3 = 2n + 1 and the Gauss-type quadratures associ-
ated with S, 3 are left and right (n + 1)-point Radau quadrature formulae. These
quadrature formulae were found, among others, in [12].

Theorem B ([12, Theorem 2|). The right Radau quadrature formula associated
with the space of parabolic splines S, 3 is

n—1

- k+6
QLA = Y aenf () + annf (V) = 114,
k=0
where 6y =1/3,
1 — 01
0p = ——— k=1,.. -1
k 5*60]@_1, ’ , )
1 k=0 1
App= ——— =0,....,n—
k,n Gnek(l — 9]@)7 ) ) )
and
2—30,,_1

= S0l — Op1)
ngl s megative definite quadrature formula of order three with error constant

V3

o160 T O™

e3 (fol) =
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Remark 1.1. The left Radau quadrature formula Qﬁjrll associated with Sy, 3

is obtained from Qn+1 by reflection, i.e. Qn-‘,—l[f( )] = fol [f(1—")]. Clearly, Qn+1
R,r )

is positive definite of order three and c3 (Qfﬂ) = —c3(Qni1)-

Since dim S, 4 = 2n + 2, associated with S, 4 are the (n + 1)-point Gauss
quadrature formula QY and the (n + 2)-point Lobatto quadrature formula Q~L¢,.
These quadrature formulae were investigated in [13]. The following theorem gives
the construction and summarizes some of the properties of QS ; (cf. [13, Section 2]).

Theorem C. Let
n+1
G G
n+1 Z a; n+1f 7 n+1) 0< Tl,n+1 << Tn+1,n+1 < 17

be the Gauss quadrature formula associated with Sy, 4, i.e., determined uniquely by
the property If] = QS [f] for every f € S,4. Then:

(a) QG4y is symmetrical: aff = aS y p 0y and 7O, =1 =750 4
fork=1,. n + 1.

(b) Let a“H_1 = 4;/n, Tzn_H = (i —0;)/n fori=1,...,[n/2] + 1. Then the
sequences {6;} and {0;} are determined by 61 = 16/27, 61 = 3/4 and, for i =

1,...,[n/2] — 1, by the recurrence relations
1-— (51‘(1 — 91)2(591 + 1) 1-— (51(1 — 91)2(491 + 1)
Oit1 = 5 o Oip1 = 2 :
1—06;(1—0;)%(46; + 1) 07, 4

If n is even (n = 2m), then Opy1 = 1 and Spy1 = 1 — 20, (1 — 0,,)%(20,, + 1); if
n is odd (n = 2m — 1), then 6y, = 1 — 6n1(1 — 01y _1)?(20,—1 + 1) and 0,, is the
greater root of the equation

6m719m71(1 - 9m71)2
1- (Sm—l(l - 077z—1)2(29m—1 + 1) )

O (1 — Opy) =

(c) Q,?H is positive definite quadrature formula of order four and its error
constant c4(QS, ) obeys the representation

1 1 [(n+1)/2]

G G a
1y O A (@ion — ) @ — )
i=1

ca( r(z;+1) =

For all n > 4 there holds

S S S S U
7200t 551.9775m5 — Y = 720pd T 55205
(d) Let f € C*0,1]. Then R[QS,1; f] = o(n™*) if and only if f"(0) = f"(1).
Moreover, if sign{f"'(1) — f""(0)} = € # 0, then there exists ng € N such that
eR[QS, 1; f] > 0 for all n > ny.
(e) If f € W0,1] and f™*) >0 a.e. in [0,1], then for all n > 2,

0< R[Q2n+1,ﬂ < R[Qn+17f]'

(1.9)
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Remark 1.2. In [13] recurrence formulae have been proposed also for compu-
tation of the weights and nodes of the Lobatto quadrature formula QTLL?H associated
with S, 4, which is negative definite of order four. However, unlike the case with
Q% 1, this procedure is of numerical nature, as it requires determination of an initial
parameter, cf. [13, Theorem 2.5|.

Our first goal in this paper is to prove properties of the Radau quadrature
formulae associated with .S, 5, which are the analogues of those of QS 1, presented
in parts (c), (d) and (e) of Theorem C.

Theorem 1.1. Let Qn+1 and Qn+1 be the (n + 1)-point left and right Radau
quadrature formulae associated with Sy, 3, i.e., determined uniquely by the property

[QnJrl?f] [Qn+1a f] =0 for every f € Sn 3. Then:

(a) The error constants of Qn+1 and Qn+1 are given by

\/g - \/3 n—1 1
216n°  108n* £~ (2+ V3)2k+1 + 17

es(Qnth) = =3 (@) = (1.10)

With * standing for both r and l, the following inequalities hold true for all n > 4:

V3 1 . V3 1
3 1< ‘03(Q53rl>| < 3 1 (1.11)
216n 269.13n 216n 269.14n

(b) Let f € C3[0,1]. With * standing for both r and I, R[Qnﬂ, fl1=0(n"3) as
n — oo if and only if f(0) = (1 ) Moreover, if sign{f"(1)— f"(0)} = € # 0, then
there exists ng € N such that eR[Q,H_l, f1<0 and eR[Qf_ﬁl; 1> 0 for all n > nyg.

(c) If f € W2[0,1] and f"" >0 a.e. in [0,1], then for alln > 2,

0> R[Q3 15 f] = RIQN 5 f] and 0< R[Q3, 1 f] < R[QWLL; f].

Remark 1.3. Theorem C and Theorem 1.1 provide the following improvement
of the estimates (1.6) and (1.7) for the error constants of the optimal positive definite
quadrature formulae of orders two and three with n + 1 nodes, n > 4:

V3 1

216n3  269.14n%’
1 1

G

G = al@in) < 73007 = Sran

chig < (@) <

As a consequence we have the following

Corollary 1.1. (a) If f € C3[0,1] and f” >0 in [0,1], then for alln > 4,

V3

0 < R[Qn+1’ f] (216n3 - 269. 14”4)

(8- "
216n%  269. 14n4

ILF1,
(1.12)

02> R[Qn+1’f]
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(b) If f € C*[0,1] and fY >0 in [0,1], then for alln > 4

1
720n4 552no

0< R[QS.:f] < ( SLEIE (1.13)

Alternative error estimates are provided by the following theorem.
Theorem 1.2. (a) If f € C3[0,1] and f"” >0 in [0,1], then for all n > 2,

V3
108n3
V3
108n3

0 < R[Qn+l’f]

(Fm-ro).
(17 = r').

(1.14)
0 > R[Qn-{-lv f]

(b) If f € C*0,1] and W >0 in [0,1], then for alln > 2,

1
384n4

0< RIQGi 1] < oo (£ = £7(0)). (1.15)

Since the supremum norms of " and f* may be not accessible or difficult to
evaluate, evidently the error bounds in Theorem 1.2 are easier to apply than those
in Corollary 1.1. Even in the cases when || f”|| or || f®*|| is known, it can still happen
that the estimates in Theorem 1.2 are superior to those from Corollary 1.1.

Before concluding this section, we find appropriate to briefly mention a few more
facts about Peano kernel representation of the remainders of quadrature formulae,
for more details the reader is referred to [5].

It follows from (1.3) that the requirement K,(Q;u) = 0 for some u € (0,1)
is equivalent to I[f,] = Q[f.], where f,(z) = (z —u)’"'. Hence, in order that Q
evaluates to the exact value definite integrals of functions from a linear space of
splines of degree r — 1 with maximal dimension, it is necessary that the monospline
K, (Q;-) has the maximal possible number of zeros in (0,1). The problem of the
existence and uniqueness of monosplines satisfying boundary conditions and having
maximal number of prescribed zeros in (0,1) (the fundamental theorem of algebra
for monosplines) has been resolved by Karlin and Micchelli [7]. Quadrature formulae
corresponding to monosplines of the form (1.4)—(1.5) with maximal number of pre-
assigned zeros in (0, 1) are called Gauss-type quadratures associated with the space
of spline functions of degree r — 1 having knots at these zeros. The results in [7]
assert that Gauss-type quadratures for spaces of splines exist and are unique, and as
in the case of classical Gauss-type quadratures associated with spaces of algebraic
polynomials; all their weights are positive.

We finally point out that, in view of (1.2), a quadrature formula @ is definite
of order r if and only if ADP(Q) = r — 1 and K,(Q;t) does not change its sign in
(0,1). Therefore, all zeros of K,(Q;-) in (0,1) must have even multiplicities.

Theorem 1.1 is proved in the next section, and in Section 3 we present the proof
of Theorem 1.2.
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2. PROOF OF THEOREM 1.1

In view of Remark 1.1, it suffices to prove only the claims of Theorem 1.1
concerning Qf’fl. We denote the right Radau quadrature formula associated with
Sn,S by

n—1

Q] Zakfm +an f(1), 0<79<- - <Tpo1 <1,
k=0

where, for the sake of simplicity, we skip the second indices in the weights and nodes

(we also write xp, = k/n, k =0,...,n, see (1.8)).
According to Theorem B, we have
k+6
S (2.1)
n
with . 1_8
O — = 0, — — k=1 p 4 2.2
0 37 k 5_69]9—17 ) , 1 ) ( )
1
EE 0<k<n-1 2.3
@k 6n¢9k(1 — Qk)’ =r=n ’ ( )
and 5 _ 30
- n—1
n—-—- —F— . 24
= n(l— 0,_1) (24)

Lemma 2.1. The sequence {0} in (2.2) has the explicit representation

s
O, = ——— se=02+V3)F+©2-V3)F, keN
Sk + Sk+1
Proof. We apply induction with respect to k. The statement is true for k = 0, since
sop =2 and s; = 4. Assuming 0,1 = e T for some k € N, then
Sk—1 + Sk
1—0r1 Sk ? Sk

b = 5—60k_1 58k —Sk—1 Sk + S+l
The last equality follows from the identity sx_1 + Sg+1 = 4sg, which is verified using
(2++/3)2 4+ 1 = 4(2 £ v/3). This accomplishes the induction step and thereby the
proof of Lemma 2.1. The proposed method of proof does not give a clue about
the way the explicit form of the solution of this recurrence equation was deduced.
Equations like (2.2) are called Riccati difference equations, see e.g. [4] for a general
approach to their solutions. O

For f € C3[0,1] the remainder of fol admits the representation

n+1§ / KB n+1§ fm(t) dt,
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where, according to (1.5),

, tg 1n71
Ka(@ifit) = —5 + 5 > ailt =) <0, t€(0,1).
=0

The zeros of Kg(QnH, ) in (0,1) are {z4}}Z], and each of them is double. The

error constant of Qn 1 is given by

wk+1
'n+1 / K3 n+17 dt Z/ n+1’ ZIIC (25)

Clearly,
1,4 4 1

szizwk—uﬁg+éjh (2.6)
where

E k-1

Jr = Zai(@"kﬂ — 1) — ai(zp — 73)°.

i=0 i=0

By using x;11 — xx = 1/n, we obtain
_1 2 N — T RTI Y
Jp = - (Thg1 — 7i)° + (Tpg1 — 7)) (e — 7)) + (Tp — T2) ap(Te — o)

k
2"
; 1
Z [ i1 = 7i)” = — (@ — ) + (2 - Ti)Q] — ag(m, — )’
=0

2

= nQnJrl [($k+1 )3-] - nl Qn+1[(xk+1 )+ } + Qn+1[(xk - )3—}

+ ak(Tk — mk)2($k+1 — Tk).
Since Qf’fl [f] = I[f] for every f € S, 3, we have
2 9 1 1 9
Jip = EI[($)€+1 - )+] — EI[(Ik_H — )+] + EI[(xk — )+]

+ ak(Tk — l‘k)2(l‘k+1 — Tk)
2 1
=3, %11 52 Thi + 3 — 7 + ap(Th — T1)* (Tos1 — Tr)-
Substituting this expression for Ji in (2.6) and replacing g, Tx11, ax and 75 us-
ing (1.8), (2.1) and (2.3), we obtain

20, — 1
oond

(2.7)
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By using Lemma 2.1, we find

L og. _ SkL =Sk (V3+1)(2+V3)F - (vV3-1)(2—V3)*
T st ee BB+ VR (B V3)(2 - VE)
VBRI -2 VBE 5 24 VB - 2 VB
C 3 2+ VAR B2 vEE 3 2+ VR)E (2 V)R
_ V3 2(2 - V3)"! )
N (24 VB)F + (2 — VB)FH

2+ VL1

By plugging this expression in (2.7), we arrive at

V3

2
Iy = — (1 _ )
T (2 +V3)2+1 1

k=0,....n—1. (2.8)

The representation (1.10) of @,(Qi’:l) in Theorem 1.1(a) now follows from (2.5)

and (2.8). As was already mentioned, c;;(Qf_’:l) = 703(Qn+1) The two-sided esti-
mates (1.11) are derived using the inequalities

3 - 3 00

1 1
Z(2+\f 2kt1p] Z 2+f 2tlp] ™ Z(2+¢§)Qk+1+1+,§(2+x/§)2k+1'

k=0 k=0

With this Theorem 1.1(a) is proved, and we proceed with the proof of part (b). If
f € C3[0,1], then by the mean value theorem,

xk+1
§ : . /// § : ///
n+17 f / n+17 Ik: f

with & € (g, 2k+1), £ =0,...,n — 1. We split the last sum into two parts:

n—1
2 : /// 2 : \/g "

The sum in A is a Riemann sum for the continuous (hence integrable) function f’
on [0, 1], therefore

\/g 1 1! —
A= =2 (£1(0) = £1(0) +o(n ™).

For B we have, in view of (2.8),

\/3 n—1 1

B =
108n4 kZ:O (2+ \/5)2k+1 +1

(&) = O(n™%).
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Hence,

V3

216n3

RIQM f] = A+ B =2 ((1) = £"(0)) + o(n™?),
which proves Theorem 1.1(b) for the remainders of Qf_fl.

For the proof of Theorem 1.1(c) we need the estimate for the number of zeros
of a spline function in a given interval (a, ), provided by the Budan-Fourier theorem
for splines. For a real-valued function f defined on the finite interval [a, b], Z;(a,b)
stands for the total number of the zeros of f in (a, b) counted with their multiplicities.
By S~ (a1,as,...,an) and ST (a1,as,...,a,) we denote the number of strong and
weak sign changes, respectively, in the finite sequence of real numbers a1, as, ..., Gm,.

Lemma 2.2 ([8], Theorem 2.1). If f is a polynomial spline function of exact
degree  on (a,b) (i.e., of degree r with f)(t) # 0 for some t € (a,b) with finitely
many (active) knots in (a,b), all simple), then

Z(a,b) < Zsn (a,b) + S™(f(a), f'(a), ..., f"(a), 7 (0+))
- S+(f(b)v f/(b)v sy f(ril)(b)v f(r)(T_))v

where [o,7] C [a,b] is the largest interval such that f)(o+) # 0 and f)(r—) # 0.

The difference s(t) = Kg(Qn+1, t) — Kg(Q2n+1; t) of the third Peano kernels
of the right Radau quadrature formulae associated with S, 3 and S, 3 is a spline
function of degree two with 3n knots in (0, 1), which has double zeros at the points
xp=k/n, k=1,...,n—1. In view of (1.4) and (1.5), s can be represented in two
alternative ways,

2n—1
%(Zakn — k)% Z ak,2n(t — Tk 2n)+) (2.9)
%(Z k20 (Th,2n — )5 — Z agn(Then — t)i) (2.10)
k=0

Recall that all weights ay , and a2, of Radau quadrature formulae are positive,
therefore s(t) is a spline function of exact degree two. Indeed,

2n—1

n—1
= Z ak,n(t - Tk,n)?r - Z ak,2n(t - Tk,2n)9r
k=0 k=0

is a piecewise constant function whose n positive jumps cannot be canceled out by
the 2n negative jumps. This observation implies also that the number of sign changes
of s” in (0,1) does not exceed 2n, i.e.,

Z(0,1) < 2n. (2.11)
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By Theorem B, 792, = % < Ton = %, therefore s”(792n+) = —ag2n < 0
while s(t) = 0 for t € [0,70,2n). From 7,., = Top2, = 1 and (2.10) we obtain
s"(1-) = agn,2n — an,n. We shall show that asy, 2, — an,, # 0, in fact,

a2n,2n — G < 0. (2.12)
From (2.4) and Lemma 2.1 we find

28, — Sp—1

Upp = ——

o 6n sy,
hence (2.12) is equivalent to inequality

Spn—1  S2n—1

2 < 2,

Sn S2n
which obviously is true since 0 < sx_1 < sg, k € N.
Lemma 2.2 applied with r =2, f = s, [a,b] = [0,1] and [0, 7] = [70,2n, 1] yields
2.(0,1) < Zu(0,1) + 57 (5(0), 5/(0), 5" (70.20+)) — § (s(1), (1), 8"(1-)
< 2n+ S~ (Oa 07 7a0,2n) - S+ (Ov 07 a2n.2n — an,n)
<2n-—2.
Recalling that s has double zeros at the points k/n, k = 1,...,n — 1, we conclude
that s has no other zeros in (0,1). Since s(1) = s'(1) =0 and s”(1—) < 0, it follows
that s(t) <0, t € (0,1), i.e,
K3(Qn+17 ) < K3(Q2n+17 ) <0, te (O’ 1)
If f € W3[0,1] and f"”'(t) > 0 a.e. in [0, 1], then

1
R[Q, 1 f] = R[Qa1: f] :/0 s(t) f"(t)dt <0,

and consequently
[Qn+17 f] < R[Q2n+17 f] < 0.
With this Theorem 1.1(c) is proved. O

Figure 1 illustrates the situation when n = 4. Its left part depicts the graphs of
the third Peano kernels of the 5-point and 9-point right Radau quadrature formulae.
We observe that the difference of the two Peano kernels, depicted on the right,
vanishes on the interval [0, 79 9].

3. PROOF OF THEOREM 1.2

Proof of Theorem 1. 2( ). In view of Remark 1.1, it suffices to prove the estimates
(1.14) only for R[Qn+1, f]. We apply the argument from [9] to the proof of (1.6),

comparing K3 (Qn ’'1;t) with the adjusted one-periodic Bernoulli monospline

3+V3
—

(3.1)
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Figure 1. Left: graphs of Kg(Qé%’T;t) (dashed) and K3(Q§’r;t) (solid);
Right: graph of Kg(Qé%’T; t) — K3(Q§’r;t).

Here, {-} is the fractional part function, Bs is the third Bernoulli polynomial with
leading coefficient 1/6,
1 3 1
Bs(t :7(t3—7t2 ft),
3(1) = § 2" T3

and 3
3
Bs(0) = —||Bs|| = ~316"

We need the following properties of g(t), defined in (3.1):

k
(i) The zeros of g(t) in (0,1) are xj = o k=1,...,n—1, each of them double;
(ii) g(t) satisfies the inequalities

V3
T10803 <g(t) <0, tel0,1];

k—0
(iii) g(t) has n simple knots in (0,1) located at the points yk=1,...,n;

(iv) g(0) = ¢'(0) = g(1) = ¢’(1) = 0 and

1-26
"(0+) = g"(1-) = 0.
g0+ =g"(1-) = o <
The set of zeros of Kg(QnH, t) in (0,1) coincides with that of the zeros of g(t),
namely, the double zeros at xx, k =1,...,n — 1. Furthermore,
K3(Qn+1§ 0) KS(Qn+17 O) K3(Qn+1’ ) KS(Qn-Hv 1) = 07 (3 2)

Ké/(QnJrl;O"_) =0, Kél(QnJrﬁ 1- ) = Qp,n > 0.

Then s(t) = g(t) — K3 (QHJr17 t) is a spline function of degree two with 2n knots in
(0,1). We apply Lemma 2.2 to s and obtain

2n —2 < Z,(0,1) < Zo(0,1) + S (s(0), s'(0), 8" (0+)) — S*(s(1),s'(1),s"(1-))
_ 1-20 N 1-20
<2457 (0,0, 5= ) = 57(0,0,75,= —ann)

<2n-—2.
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Hence, s(t) has no other zeros in (0, 1) except the double ones at z, k =1,...,n—1,
therefore s(¢) does not change its sign in (0,1). From (iv) and (3.2) it follows that
s(t) <0 on [0, 1], which together with (ii) implies

\/g 'S
~Tog8 S o) < K3(QF i) <0, te(o,1]. (3.3)

If f € C?0,1] and f'(t) > 0, t € [0,1], then (3.3) implies

0> R[Q nH,f /K3 n+1? V" (t)dt > min K3(Q n+1v /f“’

tel0,1]

. /// \/> 1 1
Ztgféﬂ] / Fr(t) dt = =150 (f"(1) = f"(0)).

The proof of Theorem 1.2(a) is complete. O

Figure 2 shows how close to each other are the graphs of the third Peano
kernel of a right Radau quadrature formula and the associated adjusted Bernoulli
monospline ¢(¢) defined in (3.1) in the case n = 4. For larger n, except for a small
neighborhood of the left end-point of the interval, the two graphs are practically
undistinguishable.

Proof of Theorem 1.2(b). The argument is similar to that in the proof of part (a).
The fourth Peano kernel of the (n + 1)-point Gaussian quadrature formula

n+1
n+1 Z a; n+1f i n+1) 0< T1,n+1 << Tn+1,n+1 < 1,

-0.00002 -
-0.00004 -
-0.00006 -
-0.00008 -
-0.00010 -

-0.00012 -

Figure 2. Graphs of Peano kernel K3 (Qf_’:l; t) (solid) and of the associated
adjusted Bernoulli monospline ¢(¢) defined in (3.4) (dashed), n = 4.
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associated with S, 4, is compared with the adjusted Bernoulli monospline

9(t) = 2 (Balint}) - Ba(0)) = — (Balntd) + =55 ), (34)

where By(t) is the fourth Bernoulli polynomial

1 |
B 4 2 3 2
alt) = o5 (t et 30)

Now g(t) is a monospline of degree four which has n—1 simple knots in (0, 1) located

at the points zp = —, k=1,...,n — 1. It follows from
n
~Bi(0) = ~Ba(1) = 7= = | Bl
A O

that g(t) > 0, t € (0,1), and ¢ has double zeros in (0,1) at zx, k =1,...,n — L.
Moreover,

1 1 1
_ B t 7) = — 3.5
lgll = 7 (fél[?ff] )+ 755) = 3541 (3:5)

The difference s(t) = g(t) — Ka(QS,;t) is a spline function of degree three
with 2n simple knots in (0, 1), namely, {z)}{Z] U {TanH}Zill We have

5(0) = §'(0) = s(1) = §'(1) = 0,

1
" 0 — " 1 —
S ( ) s ( ) 12712’
1 1
an __ My =
s7(0+) m ° (1-) 2n
The explicit form of s/ (t) for ¢ € (0,1) is
n—1 n+1
1 1 0
sm(t):—%—gkot—xk +Zakn+1 Tkn+1)+

Taking into account that all Gaussian weights aﬁn 41 are positive, we conclude that
Zyn(0,1) < 2n — 1.
By applying Lemma 2.2 we obtain

2n —2 < Z4(0,1) < Zyn(0,1) + S (s(0),5(0), s”(0), s (0+))
- S+(s(1),s’(l),s”(l),s”’(l—))

1 1 11
<om—1457(0.0, 555, 5.) = 57(0.0. 55,5, 5,-)
n—1+8" Ton2 "2n) ~° 121272

=2n— 2.
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Hence, the only zeros of s(¢) in (0,1) are the double zeros at zp, k =1,...,n — 1,
and s(t) does not change its sign in (0,1). Since s(0) = ¢’(0) = 0 and s”(0) > 0, it
follows that s(t) > 0 on [0, 1], hence

9(t) = Ka(Q715) 2 0, te[0,1]. (3.6)

If f € C*0,1] and £ () >0 on [0, 1], then (3.4) and (3.6) imply

1
0< R[QC, /] = / Ky(QC,1: ) f@ (1) dt < max g(t) / £ty dt

te[0,1]

1
_ i <f///(1) - fW(O)).
The proof of Theorem 1.2(b) is complete. O

Remark 3.1. Using Lemma 2.2, error estimates analogous to those in Theo-
rem 1.2 can be proved for all Gauss-type quadrature formulae associated with the
spaces Spr, © > 4, defined in (1.8). However, since the Gauss-type quadrature
formulae are not known for r > 4, these estimates are not of practical importance.
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