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In two papers from 1995 P. Köhler and G. Nikolov showed that Gauss-type quadrature
formulae associated with spaces of spline functions with equidistant knots are asymptot-
ically optimal in certain Sobolev classes of functions. In particular, Gauss-type quadra-
tures associated with the spaces of spline functions of degree 𝑟−1 with double equispaced
knots are asymptotically optimal definite quadrature formulae of order 𝑟 when 𝑟 is even,
and it is conjectured that the asymptotical optimality property persists also in the case
of odd 𝑟. For 𝑟 = 3, 4, these quadrature formulae have been constructed by G. Nikolov,
who also proved estimates for their error constants. The aim of this note is to refine the
estimates for the error constant in the case 𝑟 = 3, and to point out to some error esti-
mates in both cases 𝑟 = 3 and 𝑟 = 4, which are easier to evaluate and could be sharper
than those which involve the uniform norm of the 𝑟-th derivative of the integrand.
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1. Introduction and statement of the results

A standard way to evaluate approximately the definite integral

𝐼[𝑓 ] :=

∫︁ 1

0

𝑓(𝑥) 𝑑𝑥
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is to use quadrature formulae, which are linear functionals of the form

𝑄[𝑓 ] =

𝑛∑︁
𝑖=1

𝑎𝑖𝑓(𝜏𝑖), 0 ≤ 𝜏1 < · · · < 𝜏𝑛 ≤ 1. (1.1)

We start with introducing some notation and definitions. Throughout this paper, 𝜋𝑚

stands for the set of algebraic polynomials of degree not exceeding 𝑚. A quadrature
formula 𝑄 is said to have algebraic degree of precision 𝑚 (in short, 𝐴𝐷𝑃 (𝑄) = 𝑚)
if 𝑚 is the largest non-negative integer such that its remainder functional

𝑅[𝑄; 𝑓 ] := 𝐼[𝑓 ]−𝑄[𝑓 ]

vanishes on 𝜋𝑚.
The Sobolev classes of functions 𝑊 𝑟

𝑝 [0, 1], (𝑟 ∈ N, 𝑝 ≥ 1), are defined by

𝑊 𝑟
𝑝 [0, 1] := {𝑓 ∈ 𝐶𝑟−1[0, 1] : 𝑓 (𝑟−1) loc. abs. cont.,

∫︁ 1

0

|𝑓 (𝑟)(𝑡)|𝑝 𝑑𝑡 < ∞}

(note that 𝐶𝑟[0, 1] ⊂ 𝑊 𝑟
𝑝 [0, 1] for every 𝑝 ≥ 1). Henceforth, ‖ · ‖ designates the

supremum norm in [0, 1], and the usual 𝐿𝑝[0, 1]-norm is shortly denoted by ‖ · ‖𝑝,

‖𝑓‖𝑝 =

⎧⎨⎩
(︁∫︀ 1

0
|𝑓(𝑡)|𝑝 𝑑𝑡

)︁1/𝑝

, if 1 ≤ 𝑝 < ∞,

vrai sup𝑡∈[0,1]|𝑓(𝑡)|, if 𝑝 = ∞.

If 𝐴𝐷𝑃 (𝑄) = 𝑚 ≥ 𝑟 − 1 and 𝑓 ∈ 𝑊 𝑟
1 [0, 1], then by Peano representation

theorem for linear functionals (cf. [14]), the remainder 𝑅[𝑄; 𝑓 ] can be written in the
form

𝑅[𝑄; 𝑓 ] =

∫︁ 1

0

𝐾𝑟(𝑄; 𝑡)𝑓 (𝑟)(𝑡) 𝑑𝑡, (1.2)

where 𝐾𝑟(𝑄; 𝑡) is referred to as the 𝑟-th Peano kernel of 𝑄 and is given by

𝐾𝑟(𝑄; 𝑡) =
1

(𝑟 − 1)!
𝑅
[︀
𝑄; (· − 𝑡)𝑟−1

+

]︀
, (1.3)

where (𝑥)𝑟−1
+ = max{𝑥, 0}𝑟−1 is the truncated power function. In literature, 𝐾𝑟(𝑄; 𝑡)

is also termed as monospline of degree 𝑟. For quadrature formula 𝑄 in (1.1) the
explicit form of 𝐾𝑟(𝑄; 𝑡), 𝑡 ∈ [0, 1], is

𝐾𝑟(𝑄; 𝑡) =
(1− 𝑡)𝑟

𝑟!
− 1

(𝑟 − 1)!

𝑛∑︁
𝑖=1

𝑎𝑖(𝜏𝑖 − 𝑡)𝑟−1
+ (1.4)

= (−1)𝑟

{︃
𝑡𝑟

𝑟!
− 1

(𝑟 − 1)!

𝑛∑︁
𝑖=1

𝑎𝑖(𝑡− 𝜏𝑖)
𝑟−1
+

}︃
. (1.5)

If 𝑓 ∈ 𝑊 𝑟
𝑝 [0, 1], then application of Hölder’s inequality to (1.2) implies the

unimprovable error estimate⃒⃒
𝑅[𝑄; 𝑓 ]

⃒⃒
≤ 𝑐𝑟,𝑝(𝑄)‖𝑓 (𝑟)‖𝑝, where 𝑐𝑟,𝑝(𝑄) = ‖𝐾𝑟(𝑄; ·)‖𝑞,

1

𝑝
+

1

𝑞
= 1.
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Usually, 𝑐𝑟,𝑝(𝑄) is called the error constant of 𝑄 in the Sobolev class 𝑊 𝑟
𝑝 [0, 1]. In

what follows, the subscript “𝑛” in 𝑄𝑛 is used to emphasize that 𝑄𝑛 is an 𝑛-point
quadrature formula, i.e., a quadrature formula which has 𝑛 nodes. Quadrature
formulae 𝑄𝑛 with the smallest possible error constant 𝑐𝑟,𝑝(𝑄𝑛) are called optimal
quadrature formulae in 𝑊 𝑟

𝑝 [0, 1]. Without going into details, let us mention that
the existence and uniqueness of optimal quadrature formulae in Sobolev classes of
functions have been established by Bojanov [1–3] and Zhensykbaev [16,17].

In the present paper we study certain definite quadrature formulae. A quadra-
ture formula 𝑄𝑛 is said to be definite of order 𝑟 (𝑟 ≥ 1), if there exists a constant
𝑐𝑟(𝑄𝑛) ̸= 0 such that

𝑅[𝑄𝑛; 𝑓 ] = 𝑐𝑟(𝑄𝑛)𝑓
(𝑟)(𝜉)

for every 𝑓 ∈ 𝐶𝑟[0, 1] with some 𝜉 ∈ [0, 1] depending on the integrand 𝑓 . More
precisely, 𝑄𝑛 is called positive, resp. negative, definite quadrature formula of order
𝑟 if 𝑐𝑟(𝑄𝑛) > 0, resp. 𝑐𝑟(𝑄𝑛) < 0. Since 𝑐𝑟(𝑄𝑛) = 𝑐𝑟,∞(𝑄𝑛) if 𝑄𝑛 is positive definite
and 𝑐𝑟(𝑄𝑛) = −𝑐𝑟,∞(𝑄𝑛) if 𝑄𝑛 is negative definite, 𝑐𝑟(𝑄𝑛) will also be referred to as
the error constant of 𝑄𝑛. The importance of definite quadrature formulae of order 𝑟
stems from the fact that they provide one-sided approximation to 𝐼[𝑓 ] when 𝑓 (𝑟) has
a permanent sign in (0, 1). The midpoint and the trapezium quadrature formulae
are best-known examples of positive, resp. negative, definite quadrature formulae of
order two.

Definite 𝑛-point quadrature formulae of order 𝑟 with the smallest positive or
the largest negative 𝑐𝑟 are called optimal definite quadrature formulae. It is known
that optimal definite quadrature formulae exist and are unique, cf. [6, 11, 15] and
[5, Chapter VII.8]. We denote by 𝑐+𝑛,𝑟 and 𝑐−𝑛,𝑟 the error constants of the optimal
𝑛-point definite quadrature formulae of order 𝑟:

𝑐+𝑛,𝑟 := inf{𝑐𝑟(𝑄𝑛) : 𝑄𝑛 is positive definite of order 𝑟},
𝑐−𝑛,𝑟 := sup{𝑐𝑟(𝑄𝑛) : 𝑄𝑛 is negative definite of order 𝑟}.

In [9] estimates have been established for the error constants of the Gauss-
type quadrature formulae associated with the spaces of spline functions with double
equidistant knots. These estimates in turn provide bounds for the error constants of
the optimal definite quadrature formulae. Below we restate the main result from [9],
denoting by 𝐵𝑟 the Bernoulli polynomial of order 𝑟 with leading coefficient 1/𝑟!.

Theorem A ([9, Theorem 1.1]). (a) For even 𝑟 with 2 ≤ 𝑟 ≤ 2𝑛, there holds

𝑐+𝑛,𝑟 ≤ − 𝐵𝑟(𝑗/2)

(𝑛+ 1− 𝑟/2)𝑟
, if 𝑟 = 4𝑚+ 2𝑗, 𝑗 = 0, 1.

(b) For even 𝑟 with 2 ≤ 𝑟 ≤ 2𝑛− 2, there holds

𝑐−𝑛,𝑟 ≥ − 𝐵𝑟(𝑗/2)

(𝑛− 𝑟/2)𝑟
, if 𝑟 = 4𝑚+ 2− 2𝑗, 𝑗 = 0, 1.

(c) For odd 𝑟 with 1 ≤ 𝑟 ≤ 2𝑛− 1, there holds

𝑐+𝑛,𝑟 ≤ ‖𝐵𝑟‖
(𝑛− (𝑟 − 1)/2)𝑟

and 𝑐−𝑛,𝑟 ≥ − ‖𝐵𝑟‖
(𝑛− (𝑟 − 1)/2)𝑟

.
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Comparison with results of Lange [10] shows that Gauss-type quadrature for-
mulae associated with the spaces of spline functions of degree 𝑟 − 1 with double
equidistant knots are asymptotically optimal definite quadrature formulae of order
𝑟 when 𝑟 is even, and it is conjectured that the asymptotical optimality property
persists also in the case of odd 𝑟. Two particular cases of Theorem A relevant to the
object of this paper are

𝑐+𝑛+1,3 ≤
√
3

216𝑛3
, 𝑐−𝑛+1,3 ≥ −

√
3

216𝑛3
, (1.6)

𝑐+𝑛+1,4 ≤ 1

720𝑛4
. (1.7)

The right-hand sides of the inequalities in (1.6) and (1.7) are in fact bounds for the
error constants of Gauss-type quadrature formulae associated with the linear spaces
of spline functions 𝑆𝑛,3 and 𝑆𝑛,4, respectively, where for 𝑟 ≥ 3 and 𝑛 ≥ 2,

𝑆𝑛,𝑟 = {𝑓 : 𝑓 ∈ 𝐶𝑟−3[0, 1], 𝑓|(𝑥𝑘,𝑥𝑘+1) ∈ 𝜋𝑟−1, 𝑘 = 0, . . . , 𝑛− 1},

𝑥𝑘 = 𝑥𝑘,𝑛 :=
𝑘

𝑛
, 𝑘 = 0, . . . , 𝑛.

(1.8)

The functions {1, 𝑥, 𝑥2, (𝑥− 𝑥1)+, (𝑥− 𝑥1)
2
+, . . . , (𝑥− 𝑥𝑛−1)+, (𝑥− 𝑥𝑛−1)

2
+} form a

basis for 𝑆𝑛,3, therefore dim𝑆𝑛,3 = 2𝑛 + 1 and the Gauss-type quadratures associ-
ated with 𝑆𝑛,3 are left and right (𝑛 + 1)-point Radau quadrature formulae. These
quadrature formulae were found, among others, in [12].

Theorem B ([12, Theorem 2]). The right Radau quadrature formula associated
with the space of parabolic splines 𝑆𝑛,3 is

𝑄𝑅,𝑟
𝑛+1[𝑓 ] =

𝑛−1∑︁
𝑘=0

𝑎𝑘,𝑛𝑓
(︁𝑘 + 𝜃𝑘

𝑛

)︁
+ 𝑎𝑛,𝑛𝑓(1) ≈ 𝐼[𝑓 ],

where 𝜃0 = 1/3,

𝜃𝑘 =
1− 𝜃𝑘−1

5− 6𝜃𝑘−1
, 𝑘 = 1, . . . , 𝑛− 1,

𝑎𝑘,𝑛 =
1

6𝑛𝜃𝑘(1− 𝜃𝑘)
, 𝑘 = 0, . . . , 𝑛− 1,

and

𝑎𝑛,𝑛 =
2− 3𝜃𝑛−1

6𝑛(1− 𝜃𝑛−1)
.

𝑄𝑅,𝑟
𝑛+1 is negative definite quadrature formula of order three with error constant

𝑐3
(︀
𝑄𝑅,𝑟

𝑛+1

)︀
= −

√
3

216𝑛3
+𝑂(𝑛−4).
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Remark 1.1. The left Radau quadrature formula 𝑄𝑅,𝑙
𝑛+1 associated with 𝑆𝑛,3

is obtained from 𝑄𝑅,𝑟
𝑛+1 by reflection, i.e., 𝑄𝑅,𝑙

𝑛+1[𝑓(·)] = 𝑄𝑅,𝑟
𝑛+1[𝑓(1−·)]. Clearly, 𝑄𝑅,𝑙

𝑛+1

is positive definite of order three and 𝑐3
(︀
𝑄𝑅,𝑙

𝑛+1

)︀
= −𝑐3

(︀
𝑄𝑅,𝑟

𝑛+1

)︀
.

Since dim𝑆𝑛,4 = 2𝑛 + 2, associated with 𝑆𝑛,4 are the (𝑛 + 1)-point Gauss
quadrature formula 𝑄𝐺

𝑛+1 and the (𝑛+ 2)-point Lobatto quadrature formula 𝑄𝐿𝑜
𝑛+2.

These quadrature formulae were investigated in [13]. The following theorem gives
the construction and summarizes some of the properties of 𝑄𝐺

𝑛+1 (cf. [13, Section 2]).

Theorem C. Let

𝑄𝐺
𝑛+1[𝑓 ] =

𝑛+1∑︁
𝑖=1

𝑎𝐺𝑖,𝑛+1𝑓(𝜏
𝐺
𝑖,𝑛+1), 0 < 𝜏𝐺1,𝑛+1 < · · · < 𝜏𝐺𝑛+1,𝑛+1 < 1,

be the Gauss quadrature formula associated with 𝑆𝑛,4, i.e., determined uniquely by
the property 𝐼[𝑓 ] = 𝑄𝐺

𝑛+1[𝑓 ] for every 𝑓 ∈ 𝑆𝑛,4. Then:
(a) 𝑄𝐺

𝑛+1 is symmetrical : 𝑎𝐺𝑘,𝑛+1 = 𝑎𝐺𝑛+2−𝑘,𝑛+1 and 𝜏𝐺𝑘,𝑛+1 = 1 − 𝜏𝐺𝑛+2−𝑘,𝑛+1

for 𝑘 = 1, . . . , 𝑛+ 1.
(b) Let 𝑎𝐺𝑖,𝑛+1 = 𝛿𝑖/𝑛, 𝜏𝐺𝑖,𝑛+1 = (𝑖 − 𝜃𝑖)/𝑛 for 𝑖 = 1, . . . , [𝑛/2] + 1. Then the

sequences {𝛿𝑖} and {𝜃𝑖} are determined by 𝛿1 = 16/27, 𝜃1 = 3/4 and, for 𝑖 =
1, . . . , [𝑛/2]− 1, by the recurrence relations

𝜃𝑖+1 =
1− 𝛿𝑖(1− 𝜃𝑖)

2(5𝜃𝑖 + 1)

1− 𝛿𝑖(1− 𝜃𝑖)2(4𝜃𝑖 + 1)
, 𝛿𝑖+1 =

1− 𝛿𝑖(1− 𝜃𝑖)
2(4𝜃𝑖 + 1)

𝜃2𝑖+1

.

If 𝑛 is even (𝑛 = 2𝑚), then 𝜃𝑚+1 = 1 and 𝛿𝑚+1 = 1 − 2𝛿𝑚(1 − 𝜃𝑚)2(2𝜃𝑚 + 1); if
𝑛 is odd (𝑛 = 2𝑚 − 1), then 𝛿𝑚 = 1 − 𝛿𝑚−1(1 − 𝜃𝑚−1)

2(2𝜃𝑚−1 + 1) and 𝜃𝑚 is the
greater root of the equation

𝜃𝑚(1− 𝜃𝑚) =
𝛿𝑚−1𝜃𝑚−1(1− 𝜃𝑚−1)

2

1− 𝛿𝑚−1(1− 𝜃𝑚−1)2(2𝜃𝑚−1 + 1)
.

(c) 𝑄𝐺
𝑛+1 is positive definite quadrature formula of order four and its error

constant 𝑐4(𝑄𝐺
𝑛+1) obeys the representation

𝑐4(𝑄
𝐺
𝑛+1) =

1

720𝑛4
− 1

12

[(𝑛+1)/2]∑︁
𝑖=1

𝑎𝐺𝑖,𝑛+1(𝑥𝑖−1 − 𝜏𝐺𝑖,𝑛+1)
2(𝑥𝑖 − 𝜏𝐺𝑖,𝑛+1)

2.

For all 𝑛 ≥ 4 there holds

1

720𝑛4
− 1

551.9775𝑛5
≤ 𝑐4(𝑄

𝐺
𝑛+1) ≤

1

720𝑛4
− 1

552𝑛5
. (1.9)

(d) Let 𝑓 ∈ 𝐶4[0, 1]. Then 𝑅[𝑄𝐺
𝑛+1; 𝑓 ] = 𝑜(𝑛−4) if and only if 𝑓 ′′′(0) = 𝑓 ′′′(1).

Moreover, if sign{𝑓 ′′′(1) − 𝑓 ′′′(0)} = 𝜖 ̸= 0, then there exists 𝑛0 ∈ N such that
𝜖𝑅[𝑄𝐺

𝑛+1; 𝑓 ] ≥ 0 for all 𝑛 ≥ 𝑛0.
(e) If 𝑓 ∈ 𝑊 4

1 [0, 1] and 𝑓 (4) ≥ 0 a.e. in [0, 1], then for all 𝑛 ≥ 2,

0 ≤ 𝑅
[︀
𝑄𝐺

2𝑛+1; 𝑓
]︀
≤ 𝑅

[︀
𝑄𝐺

𝑛+1; 𝑓
]︀
.
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Remark 1.2. In [13] recurrence formulae have been proposed also for compu-
tation of the weights and nodes of the Lobatto quadrature formula 𝑄𝐿𝑜

𝑛+2 associated
with 𝑆𝑛,4, which is negative definite of order four. However, unlike the case with
𝑄𝐺

𝑛+1, this procedure is of numerical nature, as it requires determination of an initial
parameter, cf. [13, Theorem 2.5].

Our first goal in this paper is to prove properties of the Radau quadrature
formulae associated with 𝑆𝑛,3, which are the analogues of those of 𝑄𝐺

𝑛+1, presented
in parts (c), (d) and (e) of Theorem C.

Theorem 1.1. Let 𝑄𝑅,𝑙
𝑛+1 and 𝑄𝑅,𝑟

𝑛+1 be the (𝑛 + 1)-point left and right Radau
quadrature formulae associated with 𝑆𝑛,3, i.e., determined uniquely by the property
𝑅
[︀
𝑄𝑅,𝑙

𝑛+1; 𝑓
]︀
= 𝑅

[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀
= 0 for every 𝑓 ∈ 𝑆𝑛,3. Then:

(a) The error constants of 𝑄𝑅,𝑙
𝑛+1 and 𝑄𝑅,𝑟

𝑛+1 are given by

𝑐3
(︀
𝑄𝑅,𝑙

𝑛+1

)︀
= −𝑐3

(︀
𝑄𝑅,𝑟

𝑛+1

)︀
=

√
3

216𝑛3
−

√
3

108𝑛4

𝑛−1∑︁
𝑘=0

1

(2 +
√
3)2𝑘+1 + 1

. (1.10)

With * standing for both 𝑟 and 𝑙, the following inequalities hold true for all 𝑛 ≥ 4:
√
3

216𝑛3
− 1

269.13𝑛4
<

⃒⃒
𝑐3
(︀
𝑄𝑅,*

𝑛+1

)︀⃒⃒
<

√
3

216𝑛3
− 1

269.14𝑛4
. (1.11)

(b) Let 𝑓 ∈ 𝐶3[0, 1]. With * standing for both 𝑟 and 𝑙, 𝑅[𝑄𝑅,*
𝑛+1; 𝑓 ] = 𝑜(𝑛−3) as

𝑛 → ∞ if and only if 𝑓 ′′(0) = 𝑓 ′′(1). Moreover, if sign{𝑓 ′′(1)−𝑓 ′′(0)} = 𝜖 ̸= 0, then
there exists 𝑛0 ∈ N such that 𝜖𝑅[𝑄𝑅,𝑟

𝑛+1; 𝑓 ] ≤ 0 and 𝜖𝑅[𝑄𝑅,𝑙
𝑛+1; 𝑓 ] ≥ 0 for all 𝑛 ≥ 𝑛0.

(c) If 𝑓 ∈ 𝑊 3
1 [0, 1] and 𝑓 ′′′ ≥ 0 a.e. in [0, 1], then for all 𝑛 ≥ 2,

0 ≥ 𝑅
[︀
𝑄𝑅,𝑟

2𝑛+1; 𝑓
]︀
≥ 𝑅

[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀

and 0 ≤ 𝑅
[︀
𝑄𝑅,𝑙

2𝑛+1; 𝑓
]︀
≤ 𝑅

[︀
𝑄𝑅,𝑙

𝑛+1; 𝑓
]︀
.

Remark 1.3. Theorem C and Theorem 1.1 provide the following improvement
of the estimates (1.6) and (1.7) for the error constants of the optimal positive definite
quadrature formulae of orders two and three with 𝑛+ 1 nodes, 𝑛 ≥ 4:

𝑐+𝑛+1,3 ≤ 𝑐3
(︀
𝑄𝑅,𝑙

𝑛+1

)︀
<

√
3

216𝑛3
− 1

269.14𝑛4
,

𝑐+𝑛+1,4 ≤ 𝑐4
(︀
𝑄𝐺

𝑛+1

)︀
<

1

720𝑛4
− 1

552𝑛5
.

As a consequence we have the following

Corollary 1.1. (a) If 𝑓 ∈ 𝐶3[0, 1] and 𝑓 ′′′ ≥ 0 in [0, 1], then for all 𝑛 ≥ 4,

0 ≤ 𝑅
[︀
𝑄𝑅,𝑙

𝑛+1; 𝑓
]︀
≤

(︁ √
3

216𝑛3
− 1

269.14𝑛4

)︁
‖𝑓 ′′′‖,

0 ≥ 𝑅
[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀
≥ −

(︁ √
3

216𝑛3
− 1

269.14𝑛4

)︁
‖𝑓 ′′′‖.

(1.12)
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(b) If 𝑓 ∈ 𝐶4[0, 1] and 𝑓 (4) ≥ 0 in [0, 1], then for all 𝑛 ≥ 4

0 ≤ 𝑅
[︀
𝑄𝐺

𝑛+1; 𝑓
]︀
≤

(︁ 1

720𝑛4
− 1

552𝑛5

)︁
‖𝑓 (4)‖. (1.13)

Alternative error estimates are provided by the following theorem.

Theorem 1.2. (a) If 𝑓 ∈ 𝐶3[0, 1] and 𝑓 ′′′ ≥ 0 in [0, 1], then for all 𝑛 ≥ 2,

0 ≤ 𝑅
[︀
𝑄𝑅,𝑙

𝑛+1; 𝑓
]︀
≤

√
3

108𝑛3

(︁
𝑓 ′′(1)− 𝑓 ′′(0)

)︁
,

0 ≥ 𝑅
[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀
≥

√
3

108𝑛3

(︁
𝑓 ′′(0)− 𝑓 ′′(1)

)︁
.

(1.14)

(b) If 𝑓 ∈ 𝐶4[0, 1] and 𝑓 (4) ≥ 0 in [0, 1], then for all 𝑛 ≥ 2,

0 ≤ 𝑅
[︀
𝑄𝐺

𝑛+1; 𝑓
]︀
≤ 1

384𝑛4

(︁
𝑓 ′′′(1)− 𝑓 ′′′(0)

)︁
. (1.15)

Since the supremum norms of 𝑓 ′′′ and 𝑓 (4) may be not accessible or difficult to
evaluate, evidently the error bounds in Theorem 1.2 are easier to apply than those
in Corollary 1.1. Even in the cases when ‖𝑓 ′′′‖ or ‖𝑓 (4)‖ is known, it can still happen
that the estimates in Theorem 1.2 are superior to those from Corollary 1.1.

Before concluding this section, we find appropriate to briefly mention a few more
facts about Peano kernel representation of the remainders of quadrature formulae,
for more details the reader is referred to [5].

It follows from (1.3) that the requirement 𝐾𝑟(𝑄;𝑢) = 0 for some 𝑢 ∈ (0, 1)

is equivalent to 𝐼[𝑓𝑢] = 𝑄[𝑓𝑢], where 𝑓𝑢(𝑥) = (𝑥 − 𝑢)𝑟−1
+ . Hence, in order that 𝑄

evaluates to the exact value definite integrals of functions from a linear space of
splines of degree 𝑟− 1 with maximal dimension, it is necessary that the monospline
𝐾𝑟(𝑄; ·) has the maximal possible number of zeros in (0, 1). The problem of the
existence and uniqueness of monosplines satisfying boundary conditions and having
maximal number of prescribed zeros in (0, 1) (the fundamental theorem of algebra
for monosplines) has been resolved by Karlin and Micchelli [7]. Quadrature formulae
corresponding to monosplines of the form (1.4)–(1.5) with maximal number of pre-
assigned zeros in (0, 1) are called Gauss-type quadratures associated with the space
of spline functions of degree 𝑟 − 1 having knots at these zeros. The results in [7]
assert that Gauss-type quadratures for spaces of splines exist and are unique, and as
in the case of classical Gauss-type quadratures associated with spaces of algebraic
polynomials, all their weights are positive.

We finally point out that, in view of (1.2), a quadrature formula 𝑄 is definite
of order 𝑟 if and only if 𝐴𝐷𝑃 (𝑄) = 𝑟 − 1 and 𝐾𝑟(𝑄; 𝑡) does not change its sign in
(0, 1). Therefore, all zeros of 𝐾𝑟(𝑄; ·) in (0, 1) must have even multiplicities.

Theorem 1.1 is proved in the next section, and in Section 3 we present the proof
of Theorem 1.2.
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2. Proof of Theorem 1.1

In view of Remark 1.1, it suffices to prove only the claims of Theorem 1.1
concerning 𝑄𝑅,𝑟

𝑛+1. We denote the right Radau quadrature formula associated with
𝑆𝑛,3 by

𝑄𝑅,𝑟
𝑛+1[𝑓 ] =

𝑛−1∑︁
𝑘=0

𝑎𝑘 𝑓(𝜏𝑘) + 𝑎𝑛 𝑓(1), 0 < 𝜏0 < · · · < 𝜏𝑛−1 < 1,

where, for the sake of simplicity, we skip the second indices in the weights and nodes
(we also write 𝑥𝑘 = 𝑘/𝑛, 𝑘 = 0, . . . , 𝑛, see (1.8)).

According to Theorem B, we have

𝜏𝑘 =
𝑘 + 𝜃𝑘

𝑛
, 𝑘 = 0, . . . , 𝑛− 1, (2.1)

with
𝜃0 =

1

3
, 𝜃𝑘 =

1− 𝜃𝑘−1

5− 6𝜃𝑘−1
, 𝑘 = 1, . . . , 𝑛− 1, (2.2)

𝑎𝑘 =
1

6𝑛𝜃𝑘(1− 𝜃𝑘)
, 0 ≤ 𝑘 ≤ 𝑛− 1, (2.3)

and
𝑎𝑛 =

2− 3𝜃𝑛−1

6𝑛(1− 𝜃𝑛−1)
. (2.4)

Lemma 2.1. The sequence {𝜃𝑘} in (2.2) has the explicit representation

𝜃𝑘 =
𝑠𝑘

𝑠𝑘 + 𝑠𝑘+1
, 𝑠𝑘 = (2 +

√
3)𝑘 + (2−

√
3)𝑘, 𝑘 ∈ N.

Proof. We apply induction with respect to 𝑘. The statement is true for 𝑘 = 0, since
𝑠0 = 2 and 𝑠1 = 4. Assuming 𝜃𝑘−1 =

𝑠𝑘−1

𝑠𝑘−1 + 𝑠𝑘
for some 𝑘 ∈ N, then

𝜃𝑘 =
1− 𝜃𝑘−1

5− 6𝜃𝑘−1
=

𝑠𝑘
5𝑠𝑘 − 𝑠𝑘−1

?
=

𝑠𝑘
𝑠𝑘 + 𝑠𝑘+1

.

The last equality follows from the identity 𝑠𝑘−1+𝑠𝑘+1 = 4𝑠𝑘, which is verified using
(2 ±

√
3)2 + 1 = 4(2 ±

√
3). This accomplishes the induction step and thereby the

proof of Lemma 2.1. The proposed method of proof does not give a clue about
the way the explicit form of the solution of this recurrence equation was deduced.
Equations like (2.2) are called Riccati difference equations, see e.g. [4] for a general
approach to their solutions. □

For 𝑓 ∈ 𝐶3[0, 1] the remainder of 𝑄𝑅,𝑟
𝑛+1 admits the representation

𝑅
[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀
=

∫︁ 1

0

𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡)𝑓

′′′(𝑡) 𝑑𝑡,
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where, according to (1.5),

𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡) = − 𝑡3

6
+

1

2

𝑛−1∑︁
𝑖=0

𝑎𝑖(𝑡− 𝜏𝑖)
2
+ ≤ 0, 𝑡 ∈ (0, 1).

The zeros of 𝐾3(𝑄
𝑅,𝑟
𝑛+1; ·) in (0, 1) are {𝑥𝑘}𝑛−1

𝑘=1 , and each of them is double. The
error constant of 𝑄𝑅,𝑟

𝑛+1 is given by

𝑐3
(︀
𝑄𝑅,𝑟

𝑛+1

)︀
=

∫︁ 1

0

𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡) 𝑑𝑡 =

𝑛−1∑︁
𝑘=0

∫︁ 𝑥𝑘+1

𝑥𝑘

𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡) 𝑑𝑡 =:

𝑛−1∑︁
𝑘=0

𝐼𝑘. (2.5)

Clearly,

𝐼𝑘 =
1

24

(︀
𝑥4
𝑘 − 𝑥4

𝑘+1

)︀
+

1

6
𝐽𝑘, (2.6)

where

𝐽𝑘 =

𝑘∑︁
𝑖=0

𝑎𝑖(𝑥𝑘+1 − 𝜏𝑖)
3 −

𝑘−1∑︁
𝑖=0

𝑎𝑖(𝑥𝑘 − 𝜏𝑖)
3.

By using 𝑥𝑘+1 − 𝑥𝑘 = 1/𝑛, we obtain

𝐽𝑘 =
1

𝑛

𝑘∑︁
𝑖=0

𝑎𝑖

[︁
(𝑥𝑘+1 − 𝜏𝑖)

2 + (𝑥𝑘+1 − 𝜏𝑖)(𝑥𝑘 − 𝜏𝑖) + (𝑥𝑘 − 𝜏𝑖)
2
]︁
− 𝑎𝑘(𝜏𝑘 − 𝑥𝑘)

3

=
1

𝑛

𝑘∑︁
𝑖=0

𝑎𝑖

[︁
2(𝑥𝑘+1 − 𝜏𝑖)

2 − 1

𝑛
(𝑥𝑘+1 − 𝜏𝑖) + (𝑥𝑘 − 𝜏𝑖)

2
]︁
− 𝑎𝑘(𝜏𝑘 − 𝑥𝑘)

3

=
2

𝑛
𝑄𝑅,𝑟

𝑛+1

[︀
(𝑥𝑘+1 − ·)2+

]︀
− 1

𝑛2
𝑄𝑅,𝑟

𝑛+1

[︀
(𝑥𝑘+1 − ·)+

]︀
+

1

𝑛
𝑄𝑅,𝑟

𝑛+1

[︀
(𝑥𝑘 − ·)2+

]︀
+ 𝑎𝑘(𝜏𝑘 − 𝑥𝑘)

2(𝑥𝑘+1 − 𝜏𝑘).

Since 𝑄𝑅,𝑟
𝑛+1[𝑓 ] = 𝐼[𝑓 ] for every 𝑓 ∈ 𝑆𝑛,3, we have

𝐽𝑘 =
2

𝑛
𝐼
[︀
(𝑥𝑘+1 − ·)2+

]︀
− 1

𝑛2
𝐼
[︀
(𝑥𝑘+1 − ·)+

]︀
+

1

𝑛
𝐼
[︀
(𝑥𝑘 − ·)2+

]︀
+ 𝑎𝑘(𝜏𝑘 − 𝑥𝑘)

2(𝑥𝑘+1 − 𝜏𝑘)

=
2

3𝑛
𝑥3
𝑘+1 −

1

2𝑛2
𝑥2
𝑘+1 +

1

3𝑛
𝑥3
𝑘 + 𝑎𝑘(𝜏𝑘 − 𝑥𝑘)

2(𝑥𝑘+1 − 𝜏𝑘).

Substituting this expression for 𝐽𝑘 in (2.6) and replacing 𝑥𝑘, 𝑥𝑘+1, 𝑎𝑘 and 𝜏𝑘 us-
ing (1.8), (2.1) and (2.3), we obtain

𝐼𝑘 =
2𝜃𝑘 − 1

72𝑛4
. (2.7)
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By using Lemma 2.1, we find

1− 2𝜃𝑘 =
𝑠𝑘+1 − 𝑠𝑘
𝑠𝑘+1 + 𝑠𝑘

=
(
√
3 + 1)(2 +

√
3)𝑘 − (

√
3− 1)(2−

√
3)𝑘

(3 +
√
3)(2 +

√
3)𝑘 + (3−

√
3)(2−

√
3)𝑘

=

√
3

3

(2 +
√
3)𝑘 −

√
3−1√
3+1

(2−
√
3)𝑘

(2 +
√
3)𝑘 +

√
3−1√
3+1

(2−
√
3)𝑘

=

√
3

3

(2 +
√
3)𝑘 − (2−

√
3)𝑘+1

(2 +
√
3)𝑘 + (2−

√
3)𝑘+1

=

√
3

3

(︁
1− 2(2−

√
3)𝑘+1

(2 +
√
3)𝑘 + (2−

√
3)𝑘+1

)︁
=

√
3

3

(︁
1− 2

(2 +
√
3)2𝑘+1 + 1

)︁
.

By plugging this expression in (2.7), we arrive at

𝐼𝑘 = −
√
3

216𝑛4

(︁
1− 2

(2 +
√
3)2𝑘+1 + 1

)︁
, 𝑘 = 0, . . . , 𝑛− 1. (2.8)

The representation (1.10) of 𝑐3(𝑄
𝑅,𝑟
𝑛+1) in Theorem 1.1(a) now follows from (2.5)

and (2.8). As was already mentioned, 𝑐3(𝑄
𝑅,𝑙
𝑛+1) = −𝑐3(𝑄

𝑅,𝑟
𝑛+1). The two-sided esti-

mates (1.11) are derived using the inequalities

3∑︁
𝑘=0

1

(2+
√
3)2𝑘+1+1

≤
𝑛−1∑︁
𝑘=0

1

(2+
√
3)2𝑘+1+1

≤
3∑︁

𝑘=0

1

(2+
√
3)2𝑘+1+1

+

∞∑︁
𝑘=4

1

(2+
√
3)2𝑘+1

.

With this Theorem 1.1(a) is proved, and we proceed with the proof of part (b). If
𝑓 ∈ 𝐶3[0, 1], then by the mean value theorem,

𝑅
[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀
=

𝑛−1∑︁
𝑘=0

∫︁ 𝑥𝑘+1

𝑥𝑘

𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡)𝑓

′′′(𝑡) 𝑑𝑡 =

𝑛−1∑︁
𝑘=0

𝐼𝑘 𝑓
′′′(𝜉𝑘)

with 𝜉𝑘 ∈ (𝑥𝑘, 𝑥𝑘+1), 𝑘 = 0, . . . , 𝑛− 1. We split the last sum into two parts:

𝑅
[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀
= −

√
3

216𝑛3

𝑛−1∑︁
𝑘=0

1

𝑛
𝑓 ′′′(𝜉𝑘) +

𝑛−1∑︁
𝑘=0

[︁
𝐼𝑘 +

√
3

216𝑛4

]︁
𝑓 ′′′(𝜉𝑘) =: 𝐴+𝐵.

The sum in 𝐴 is a Riemann sum for the continuous (hence integrable) function 𝑓 ′′′

on [0, 1], therefore

𝐴 = −
√
3

216𝑛3

(︀
𝑓 ′′(1)− 𝑓 ′′(0)

)︀
+ 𝑜(𝑛−3).

For 𝐵 we have, in view of (2.8),

𝐵 =

√
3

108𝑛4

𝑛−1∑︁
𝑘=0

1

(2 +
√
3)2𝑘+1 + 1

𝑓 ′′′(𝜉𝑘) = 𝑂(𝑛−4).
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Hence,

𝑅
[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀
= 𝐴+𝐵 = −

√
3

216𝑛3

(︀
𝑓 ′′(1)− 𝑓 ′′(0)

)︀
+ 𝑜(𝑛−3),

which proves Theorem 1.1(b) for the remainders of 𝑄𝑅,𝑟
𝑛+1.

For the proof of Theorem 1.1(c) we need the estimate for the number of zeros
of a spline function in a given interval (𝑎, 𝑏), provided by the Budan-Fourier theorem
for splines. For a real-valued function 𝑓 defined on the finite interval [𝑎, 𝑏], 𝑍𝑓 (𝑎, 𝑏)

stands for the total number of the zeros of 𝑓 in (𝑎, 𝑏) counted with their multiplicities.
By 𝑆−(𝑎1, 𝑎2, . . . , 𝑎𝑚) and 𝑆+(𝑎1, 𝑎2, . . . , 𝑎𝑚) we denote the number of strong and
weak sign changes, respectively, in the finite sequence of real numbers 𝑎1, 𝑎2, . . . , 𝑎𝑚.

Lemma 2.2 ([8], Theorem 2.1). If 𝑓 is a polynomial spline function of exact
degree 𝑟 on (𝑎, 𝑏) (i.e., of degree 𝑟 with 𝑓 (𝑟)(𝑡) ̸= 0 for some 𝑡 ∈ (𝑎, 𝑏) with finitely
many (active) knots in (𝑎, 𝑏), all simple), then

𝑍𝑓 (𝑎, 𝑏) ≤ 𝑍𝑓(𝑟)(𝑎, 𝑏) + 𝑆−(𝑓(𝑎), 𝑓 ′(𝑎), . . . , 𝑓 (𝑟−1)(𝑎), 𝑓 (𝑟)(𝜎+))

− 𝑆+(𝑓(𝑏), 𝑓 ′(𝑏), . . . , 𝑓 (𝑟−1)(𝑏), 𝑓 (𝑟)(𝜏−)),

where [𝜎, 𝜏 ] ⊂ [𝑎, 𝑏] is the largest interval such that 𝑓 (𝑟)(𝜎+) ̸= 0 and 𝑓 (𝑟)(𝜏−) ̸= 0.

The difference 𝑠(𝑡) = 𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡) − 𝐾3(𝑄

𝑅,𝑟
2𝑛+1; 𝑡) of the third Peano kernels

of the right Radau quadrature formulae associated with 𝑆𝑛,3 and 𝑆2𝑛,3 is a spline
function of degree two with 3𝑛 knots in (0, 1), which has double zeros at the points
𝑥𝑘 = 𝑘/𝑛, 𝑘 = 1, . . . , 𝑛− 1. In view of (1.4) and (1.5), 𝑠 can be represented in two
alternative ways,

𝑠(𝑡) =
1

2

(︁ 𝑛−1∑︁
𝑘=0

𝑎𝑘,𝑛(𝑡− 𝜏𝑘,𝑛)
2
+ −

2𝑛−1∑︁
𝑘=0

𝑎𝑘,2𝑛(𝑡− 𝜏𝑘,2𝑛)
2
+

)︁
, (2.9)

𝑠(𝑡) =
1

2

(︁ 2𝑛∑︁
𝑘=0

𝑎𝑘,2𝑛(𝜏𝑘,2𝑛 − 𝑡)2+ −
𝑛∑︁

𝑘=0

𝑎𝑘,𝑛(𝜏𝑘,𝑛 − 𝑡)2+

)︁
. (2.10)

Recall that all weights 𝑎𝑘,𝑛 and 𝑎𝑘,2𝑛 of Radau quadrature formulae are positive,
therefore 𝑠(𝑡) is a spline function of exact degree two. Indeed,

𝑠′′(𝑡) =

𝑛−1∑︁
𝑘=0

𝑎𝑘,𝑛(𝑡− 𝜏𝑘,𝑛)
0
+ −

2𝑛−1∑︁
𝑘=0

𝑎𝑘,2𝑛(𝑡− 𝜏𝑘,2𝑛)
0
+

is a piecewise constant function whose 𝑛 positive jumps cannot be canceled out by
the 2𝑛 negative jumps. This observation implies also that the number of sign changes
of 𝑠′′ in (0, 1) does not exceed 2𝑛, i.e.,

𝑍𝑠′′(0, 1) ≤ 2𝑛. (2.11)



116 G. Nikolov, P. Nikolov / On the error bounds of the Gauss-type quadrature . . .

By Theorem B, 𝜏0,2𝑛 =
1

6𝑛
< 𝜏0,𝑛 =

1

3𝑛
, therefore 𝑠′′(𝜏0,2𝑛+) = −𝑎0,2𝑛 < 0

while 𝑠(𝑡) ≡ 0 for 𝑡 ∈ [0, 𝜏0,2𝑛). From 𝜏𝑛,𝑛 = 𝜏2𝑛,2𝑛 = 1 and (2.10) we obtain
𝑠′′(1−) = 𝑎2𝑛,2𝑛 − 𝑎𝑛,𝑛. We shall show that 𝑎2𝑛,2𝑛 − 𝑎𝑛,𝑛 ̸= 0, in fact,

𝑎2𝑛,2𝑛 − 𝑎𝑛,𝑛 < 0. (2.12)

From (2.4) and Lemma 2.1 we find

𝑎𝑛,𝑛 =
2𝑠𝑛 − 𝑠𝑛−1

6𝑛 𝑠𝑛
,

hence (2.12) is equivalent to inequality

2
𝑠𝑛−1

𝑠𝑛
− 𝑠2𝑛−1

𝑠2𝑛
< 2,

which obviously is true since 0 < 𝑠𝑘−1 < 𝑠𝑘, 𝑘 ∈ N.
Lemma 2.2 applied with 𝑟 = 2, 𝑓 = 𝑠, [𝑎, 𝑏] = [0, 1] and [𝜎, 𝜏 ] = [𝜏0,2𝑛, 1] yields

𝑍𝑠(0, 1) ≤ 𝑍𝑠′′(0, 1) + 𝑆−(︀𝑠(0), 𝑠′(0), 𝑠′′(𝜏0,2𝑛+)
)︀
− 𝑆+

(︀
𝑠(1), 𝑠′(1), 𝑠′′(1−)

)︀
≤ 2𝑛+ 𝑆−(︀0, 0,−𝑎0,2𝑛

)︀
− 𝑆+

(︀
0, 0, 𝑎2𝑛,2𝑛 − 𝑎𝑛,𝑛

)︀
≤ 2𝑛− 2.

Recalling that 𝑠 has double zeros at the points 𝑘/𝑛, 𝑘 = 1, . . . , 𝑛 − 1, we conclude
that 𝑠 has no other zeros in (0, 1). Since 𝑠(1) = 𝑠′(1) = 0 and 𝑠′′(1−) < 0, it follows
that 𝑠(𝑡) ≤ 0, 𝑡 ∈ (0, 1), i.e.,

𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡) ≤ 𝐾3(𝑄

𝑅,𝑟
2𝑛+1; 𝑡) ≤ 0, 𝑡 ∈ (0, 1).

If 𝑓 ∈ 𝑊 3
1 [0, 1] and 𝑓 ′′′(𝑡) ≥ 0 a.e. in [0, 1], then

𝑅
[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀
−𝑅

[︀
𝑄𝑅,𝑟

2𝑛+1; 𝑓
]︀
=

∫︁ 1

0

𝑠(𝑡)𝑓 ′′′(𝑡) 𝑑𝑡 ≤ 0,

and consequently
𝑅
[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀
≤ 𝑅

[︀
𝑄𝑅,𝑟

2𝑛+1; 𝑓
]︀
≤ 0.

With this Theorem 1.1(c) is proved. □

Figure 1 illustrates the situation when 𝑛 = 4. Its left part depicts the graphs of
the third Peano kernels of the 5-point and 9-point right Radau quadrature formulae.
We observe that the difference of the two Peano kernels, depicted on the right,
vanishes on the interval [0, 𝜏0,9].

3. Proof of Theorem 1.2

Proof of Theorem 1.2(a). In view of Remark 1.1, it suffices to prove the estimates
(1.14) only for 𝑅

[︀
𝑄𝑅,𝑟

𝑛+1; 𝑓
]︀
. We apply the argument from [9] to the proof of (1.6),

comparing 𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡) with the adjusted one-periodic Bernoulli monospline

𝑔(𝑡) =
1

𝑛3

(︁
𝐵3(𝜃)−𝐵3

(︀
{𝑛𝑡+ 𝜃}

)︀)︁
, 𝜃 =

3 +
√
3

6
. (3.1)
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Figure 1. Left: graphs of 𝐾3(𝑄
𝑅,𝑟
5 ; 𝑡) (dashed) and 𝐾3(𝑄

𝑅,𝑟
9 ; 𝑡) (solid);

Right: graph of 𝐾3(𝑄
𝑅,𝑟
5 ; 𝑡)−𝐾3(𝑄

𝑅,𝑟
9 ; 𝑡).

Here, {·} is the fractional part function, 𝐵3 is the third Bernoulli polynomial with
leading coefficient 1/6,

𝐵3(𝑡) =
1

6

(︁
𝑡3 − 3

2
𝑡2 +

1

2
𝑡
)︁
,

and

𝐵3(𝜃) = −‖𝐵3‖ = −
√
3

216
.

We need the following properties of 𝑔(𝑡), defined in (3.1):

(i) The zeros of 𝑔(𝑡) in (0, 1) are 𝑥𝑘 =
𝑘

𝑛
, 𝑘 = 1, . . . , 𝑛− 1, each of them double;

(ii) 𝑔(𝑡) satisfies the inequalities

−
√
3

108𝑛3
≤ 𝑔(𝑡) ≤ 0, 𝑡 ∈ [0, 1];

(iii) 𝑔(𝑡) has 𝑛 simple knots in (0, 1) located at the points
𝑘 − 𝜃

𝑛
, 𝑘 = 1, . . . , 𝑛;

(iv) 𝑔(0) = 𝑔′(0) = 𝑔(1) = 𝑔′(1) = 0 and

𝑔′′(0+) = 𝑔′′(1−) =
1− 2𝜃

2𝑛
< 0.

The set of zeros of 𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡) in (0, 1) coincides with that of the zeros of 𝑔(𝑡),

namely, the double zeros at 𝑥𝑘, 𝑘 = 1, . . . , 𝑛− 1. Furthermore,

𝐾3(𝑄
𝑅,𝑟
𝑛+1; 0) = 𝐾 ′

3(𝑄
𝑅,𝑟
𝑛+1; 0) = 𝐾3(𝑄

𝑅,𝑟
𝑛+1; 1) = 𝐾 ′

3(𝑄
𝑅,𝑟
𝑛+1; 1) = 0,

𝐾 ′′
3 (𝑄

𝑅,𝑟
𝑛+1; 0+) = 0, 𝐾 ′′

3 (𝑄
𝑅,𝑟
𝑛+1; 1−) = 𝑎𝑛,𝑛 > 0.

(3.2)

Then 𝑠(𝑡) = 𝑔(𝑡) −𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡) is a spline function of degree two with 2𝑛 knots in

(0, 1). We apply Lemma 2.2 to 𝑠 and obtain

2𝑛− 2 ≤ 𝑍𝑠(0, 1) ≤ 𝑍𝑠′′(0, 1) + 𝑆−(︀𝑠(0), 𝑠′(0), 𝑠′′(0+)
)︀
− 𝑆+

(︀
𝑠(1), 𝑠′(1), 𝑠′′(1−)

)︀
≤ 2𝑛+ 𝑆−

(︁
0, 0,

1− 2𝜃

2𝑛

)︁
− 𝑆+

(︁
0, 0,

1− 2𝜃

2𝑛
− 𝑎𝑛,𝑛

)︁
≤ 2𝑛− 2.
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Hence, 𝑠(𝑡) has no other zeros in (0, 1) except the double ones at 𝑥𝑘, 𝑘 = 1, . . . , 𝑛−1,
therefore 𝑠(𝑡) does not change its sign in (0, 1). From (iv) and (3.2) it follows that
𝑠(𝑡) ≤ 0 on [0, 1], which together with (ii) implies

−
√
3

108𝑛3
≤ 𝑔(𝑡) ≤ 𝐾3(𝑄

𝑅,𝑟
𝑛+1; 𝑡) ≤ 0, 𝑡 ∈ [0, 1]. (3.3)

If 𝑓 ∈ 𝐶3[0, 1] and 𝑓 ′′′(𝑡) ≥ 0, 𝑡 ∈ [0, 1], then (3.3) implies

0 ≥ 𝑅[𝑄𝑅,𝑟
𝑛+1; 𝑓 ] =

∫︁ 1

0

𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡)𝑓

′′′(𝑡) 𝑑𝑡 ≥ min
𝑡∈[0,1]

𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡)

∫︁ 1

0

𝑓 ′′′(𝑡) 𝑑𝑡

≥ min
𝑡∈[0,1]

𝑔(𝑡)

∫︁ 1

0

𝑓 ′′′(𝑡) 𝑑𝑡 = −
√
3

108𝑛3

(︀
𝑓 ′′(1)− 𝑓 ′′(0)

)︀
.

The proof of Theorem 1.2(a) is complete. □

Figure 2 shows how close to each other are the graphs of the third Peano
kernel of a right Radau quadrature formula and the associated adjusted Bernoulli
monospline 𝑔(𝑡) defined in (3.1) in the case 𝑛 = 4. For larger 𝑛, except for a small
neighborhood of the left end-point of the interval, the two graphs are practically
undistinguishable.

Proof of Theorem 1.2(b). The argument is similar to that in the proof of part (a).
The fourth Peano kernel of the (𝑛+ 1)-point Gaussian quadrature formula

𝑄𝐺
𝑛+1[𝑓 ] =

𝑛+1∑︁
𝑖=1

𝑎𝐺𝑖,𝑛+1𝑓(𝜏
𝐺
𝑖,𝑛+1), 0 < 𝜏1,𝑛+1 < · · · < 𝜏𝑛+1,𝑛+1 < 1,

0.2 0.4 0.6 0.8 1.0

-0.00012

-0.00010

-0.00008

-0.00006

-0.00004

-0.00002

Figure 2. Graphs of Peano kernel 𝐾3(𝑄
𝑅,𝑟
𝑛+1; 𝑡) (solid) and of the associated

adjusted Bernoulli monospline 𝑔(𝑡) defined in (3.4) (dashed), 𝑛 = 4.
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associated with 𝑆𝑛,4, is compared with the adjusted Bernoulli monospline

𝑔(𝑡) =
1

𝑛4

(︁
𝐵4({𝑛𝑡})−𝐵4(0)

)︁
=

1

𝑛4

(︁
𝐵4({𝑛𝑡}) +

1

720

)︁
, (3.4)

where 𝐵4(𝑡) is the fourth Bernoulli polynomial

𝐵4(𝑡) =
1

24

(︁
𝑡4 − 2𝑡3 + 𝑡2 − 1

30

)︁
.

Now 𝑔(𝑡) is a monospline of degree four which has 𝑛−1 simple knots in (0, 1) located

at the points 𝑥𝑘 =
𝑘

𝑛
, 𝑘 = 1, . . . , 𝑛− 1. It follows from

−𝐵4(0) = −𝐵4(1) =
1

720
= ‖𝐵4‖

that 𝑔(𝑡) ≥ 0, 𝑡 ∈ (0, 1), and 𝑔 has double zeros in (0, 1) at 𝑥𝑘, 𝑘 = 1, . . . , 𝑛 − 1.
Moreover,

‖𝑔‖ =
1

𝑛4

(︁
max
𝑡∈[0,1]

𝐵4(𝑡) +
1

720

)︁
=

1

384𝑛4
. (3.5)

The difference 𝑠(𝑡) = 𝑔(𝑡) − 𝐾4(𝑄
𝐺
𝑛+1; 𝑡) is a spline function of degree three

with 2𝑛 simple knots in (0, 1), namely, {𝑥𝑘}𝑛−1
𝑘=1 ∪ {𝜏𝐺𝑘,𝑛+1}

𝑛+1
𝑘=1 . We have

𝑠(0) = 𝑠′(0) = 𝑠(1) = 𝑠′(1) = 0,

𝑠′′(0) = 𝑠′′(1) =
1

12𝑛2
,

𝑠′′′(0+) = − 1

2𝑛
, 𝑠′′′(1−) =

1

2𝑛
.

The explicit form of 𝑠′′′(𝑡) for 𝑡 ∈ (0, 1) is

𝑠′′′(𝑡) = − 1

2𝑛
− 1

𝑛

𝑛−1∑︁
𝑘=0

(︀
𝑡− 𝑥𝑘

)︀0
+
+

𝑛+1∑︁
𝑘=1

𝑎𝐺𝑘,𝑛+1

(︀
𝑡− 𝜏𝐺𝑘,𝑛+1

)︀0
+
.

Taking into account that all Gaussian weights 𝑎𝐺𝑘,𝑛+1 are positive, we conclude that

𝑍𝑠′′′(0, 1) ≤ 2𝑛− 1.

By applying Lemma 2.2 we obtain

2𝑛− 2 ≤ 𝑍𝑠(0, 1) ≤ 𝑍𝑠′′′(0, 1) + 𝑆−(︀𝑠(0), 𝑠′(0), 𝑠′′(0), 𝑠′′′(0+)
)︀

− 𝑆+
(︀
𝑠(1), 𝑠′(1), 𝑠′′(1), 𝑠′′′(1−)

)︀
≤ 2𝑛− 1 + 𝑆−

(︁
0, 0,

1

12𝑛2
,− 1

2𝑛

)︁
− 𝑆+

(︁
0, 0,

1

12𝑛2
,
1

2𝑛

)︁
= 2𝑛− 2.



120 G. Nikolov, P. Nikolov / On the error bounds of the Gauss-type quadrature . . .

Hence, the only zeros of 𝑠(𝑡) in (0, 1) are the double zeros at 𝑥𝑘, 𝑘 = 1, . . . , 𝑛 − 1,
and 𝑠(𝑡) does not change its sign in (0, 1). Since 𝑠(0) = 𝑠′(0) = 0 and 𝑠′′(0) > 0, it
follows that 𝑠(𝑡) ≥ 0 on [0, 1], hence

𝑔(𝑡) ≥ 𝐾4(𝑄
𝐺
𝑛+1; 𝑡) ≥ 0, 𝑡 ∈ [0, 1]. (3.6)

If 𝑓 ∈ 𝐶4[0, 1] and 𝑓 (4)(𝑡) ≥ 0 on [0, 1], then (3.4) and (3.6) imply

0 ≤ 𝑅
[︀
𝑄𝐺

𝑛+1; 𝑓
]︀
=

∫︁ 1

0

𝐾4(𝑄
𝐺
𝑛+1; 𝑡)𝑓

(4)(𝑡) 𝑑𝑡 ≤ max
𝑡∈[0,1]

𝑔(𝑡)

∫︁ 1

0

𝑓 (4)(𝑡) 𝑑𝑡

=
1

384𝑛4

(︁
𝑓 ′′′(1)− 𝑓 ′′′(0)

)︁
.

The proof of Theorem 1.2(b) is complete. □

Remark 3.1. Using Lemma 2.2, error estimates analogous to those in Theo-
rem 1.2 can be proved for all Gauss-type quadrature formulae associated with the
spaces 𝑆𝑛,𝑟, 𝑟 > 4, defined in (1.8). However, since the Gauss-type quadrature
formulae are not known for 𝑟 > 4, these estimates are not of practical importance.
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