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1. INTRODUCTION

e(G) = |E(G)| - the number of edges of G;

- G[M] — the subgraph of G, induced by M, where M C V(G);
I'c(M) -the set of all vertices of G adjacent to any vertex of M;
da(v) = [Tg(v)| — the degree of a vertex v in G;

K, and K, - the complete and discrete n-vertex graphs, respectively.

Let r be an integer. A graph G is called r-partite with partition classes V;,i =
1,...,rif V(G) = U...UV,, ViNV; =@ for i # j and the sets V; are independent
sets in G. If every two vertices from different partition classes are adjacent, then
G is called complete r-partite graph. Let G be an n-vertex r-partite graph with
partition classes V; and p; = |V}, = 1,...,r. Obviously, dg(v) £ n — p;, for
any v € V;,i = 1,...,r and dg(v) = n — p; if and only if G is & complete r-
partite graph. The symbol K(p,...,pr) denotes the complete r-partite graph
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with partition classes Vi,...,V; such that |V;| = p;,i = 1,...,7. If p1,...,p, are
as equal as possible (in the sense that |p; — p;| < 1 for all pairs {i,j}), then if
P1+...+pr =n, K(p1,-..,pr) is denoted by T,.(n) and is called r-partite n-vertex

Turan’s graph. Clearly
e(K(pr,-...pr) = Y {pips|1Si< i<}
Thus, if p; — p; > 2, then |
e(K(pr —1,p2+1,p3,...,pr)) —e(K(p1,p2, .- ,pr)) g —pa—10

This observation 1mplxes the following elementary proposntlon, we make shall
use of later: .

Lemma 1.1. Let n and r be positive integérs. Then the inequality
e(K(p1,...,pr)) < e(Tr(n))

holds for each r-tuple (p1,...,pr) of nonnegative integers p; such that p, +.o4Pn =
n. The equality occurs only when K(py,...,py) = Tr(n). A%

Let W,..., V-1 be partition classes of T,—1(n),2 < r < g. Then T;_1(n) is r-
partite graph with partition classes V3,...,V,_1,{2}. Since2<r < n, T,._. (n) #
Tr(n). Thus, from Lemma 1.1 it follows that

)

oTra(n) <e(Tr(m)) BR¢EY
Let V(G) = {v1,...,v,}. We call the graph G regular, if |
dg(v1) = dg(v2) = ... = da(vn)y
A simple calculation shows that ‘ =,

‘ 2 _ 2y —

wheren=kr+v,0<v<r-1.0 -
Definition 1.1 Let G be a graph and v, ...,v, € V(G) be a vertex sequence
such that | ' |
v; € Tg(vy,.. ,vg_l), 2<i<r.

Define Vi = V(G)\I'g(n1), V2 = Fg(v1)\l'g(v2), V3 = I‘a(vl,vz)\Pa(vs)
Vo1 =Te(vy,...,v-2)\Te(vr-1), Vs =Tq(v1,...,vr-1).

Definition 1.2 The sequence of vertices v1,...,% in & graph G is called §-
sequence, if the following conditions are satisfied: v; is a vertex of maximal degree
in G, and for i > 2, v; € Ug(v1,...,v;-1) and

'da(v.-) = max {dc,-(v)lv € I‘g(vl, “re ,vg..l)}.
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Definition 1.3 Let G be an n-vertex graph and vy,...,v. € V(G). Then the
sequence vy, ..., v, is called saturated if

! oo+ -+ dofon)) > 20)

This sequence is called balanced, if
2e(G)

'(da(vx)+ .+ dg(v)) =

Obviously, if G is regular, then any vertex sequence in G is balanced. Let .
V(G) = {‘Ul, s ,v,,}. Then

d(v) > 229 = 2dgwn) + .. + da(wn))

for any vertex of maximal degmee'in G. Thus, if d(v) = 23,(zG) for some vertex of
maximal degree in G, then G is regular. -
Letrandnbepositiveintegers,2$r_<_n. Define

-.____."2(" 1) - if n = 0(modr);
o=y

2r  2r(r—1)
It straightforward to show that

if n =v(modr),1 <v<r—-1

(r—2)n’

2(r o1 > f(n,r — 1), we have

~ Since "
fin,r=1)< f(n,r),2<r<n (1.3)
Our main result is the following theorem:

Theorem 1.1 (The Main Theorem). Let G be an n-vertez graph and r be a
_positive integer, 2 < r < n, such that e(G) > f(n,r). Let for some s, 1 <s<r,
there exists a balanced (-sequence Viyeey Vs € V(G). Then G is regular.

Example 1.1. Consider the graph G shown in Fig.1. 'I‘he B-sequence {v;, v3}
is balanced, because

2e(G)

N’ICH

-(d(;(v;) + dc(vz)) .

Obviously, G is not regular.
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Fxg 1.

2. GENERALIZED r-PARTITE GRAPHS

Definition 2.1. ([2]) An n-vertex graph G is called generalized r-partite with
partition classes V;,i = 1,...,7r, f V(G) = V1 U...UV,, VNV, =2,i # j and
dg(v) < n—p; forany v € V;,i = 1,...,r, where p; = |V;|. If dg(v) = n — p;
for any v € V;,i=1,...,r, then G is called generalized compleie r-partite graph
with partition classes Vi,...,V;. We call G generalized Turan’s r-partite graph if
G is a generalized complete r-partite graph 'with pa.rt.xtxon classes Vj,...,V, and
lpi — p;| <1 for all pairs {i, j}. o N\

Proposition 2.1. Let r andnbenatumlnumbers, 1dr <. Let G be an
n-vertex graph, such that

S d) T n rl)" Yo eV(G).

Then G is generalized r-part:te graph. ~ \

Proof. Let o
V(@) =Viu.. uV,,lx}nV,~=@i¥j

a.nd[ IESIARE shi=1.
| 1)n

From d(v) < (r =n- - 1t follows that d(v) < n - [r], Yv € V(G).

Thus d(v) < n— |V, Vv eV, t= 1 .,7, and G is generalized r-partite graph
with partition classes V3,...,V,. O

‘Observe that, if n = 0(modr) and d(v) = _(_1_'_:7._1)_11, Vv € V(G), then G is

generalized r-partite Turan’s graph.
We shall make use of the following result:

Theorem 2.1. ({2]) Let G' be a generalized r-partite graph with partition
classes Vi,...,V;, where |V;| =8;, i=1,...,r. Then

e(G) < e(K(py,...,pr))-

The equality holds if and only if G is generalized complete r-partite graph with
partition classes V4, ..., Vr.
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Theorem 2.2. ([2]) Let G be a generalized r-partite graph and |[V(G)| = n.
Then
e(G) < e(T+(n))
and equality occurs if and only if G i3 generalized r-partite Turan’s graph.

Example 2.1. Consider the graph K3 + Cs = Kg — Cs. Obviously, e(K3 +
Cs) = 23 < e(T4(8)) = 24. This graph is not generalized 4-partite graph. Assume
the opposite, i.e. that K3 + Cjs is generalized 4-partite graph with partition classes
Vi’V21'V3! V4- Let V(K3)) = {‘U], v2, 03} vai € VJ', then from d(vi) =7< 8- IVJI
it follows that [V;| = 1, i.e. V; = {v;}. Thus, we may assume that V; = {v;},i =
1,2,3. Hence, V4 = V(Cs) Let v € V(Cs). Then d(v) =5 > 8 — |V4| = 3, which is
a contradiction.

3. B-SEQUENCES AND GENERALIZED r-PARTITE GRAPHS

We shall use the following:

Theorem 3.1. ([2]) Let vy,...,vr be a B-sequence in an n-vertex graph G,
which is not contained in an (r + 1) chque If V; is the i-th stratum of the stmttﬁ
cation induced by this sequence and p; = |Vi| (see Definition 1.1), then -

(a)ngenemlwedr-pamtegmphunthpamtwnclasses%, V,., RS

(b) e(G) < e(K(p1,...,pr)), and the equality occurs if and only ifGisa
generalized complete r-partite graph with partition classes Vy,...,V;;

(c) e(G) < e(Tr(n)) and we have e(G) = e(T.(n)) only when G isa genemhzed
r-partite Turan’s graph.

The proof of the theorem 3.1, given in [2]; actually establishes the following
stronger statement:

Theorem 3.2. ([2]) Let v, ..., v, be a B-3equence in an n-vertez graph G such
dg(vr) £n—(Ta(vr,. .., vr)

Then the statements (&), (b) and (c) of the Theorem 3.1 hold.

Denote by 1¥(G) the smallest integer r for which there exist a (-sequence
V1,...,Vr, T 2 2, in n-vertex graph G, such that

dG('Ur) <n- ‘PG(”la vee )vr—l)‘-

Theorem 3.3. Let G be an n-vertez graph and e(G) > e(Tr(n)). Then w(G) >
r and Y(G) = r only when G is a generalized r-partite Turan’s graph.

Proof. Let ¥(G) = s. By Theorem 3.2, e(G) < e(Ts(n)). Thus e(Tr(n)) <
e(Ts(n)). From (1.1) it follows that 3 > r. If s = r, then e(G) = e(T,(n)).
According Theorem 3.2, G is a generalized r-partite Turan’s graph. 0

The following lemma generalizes the Proposition 2.1. .
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Lemma 8.1. ([3]) Let G be a graph and v, .., v, be a B-sequence in G such

that
k(r—1)n
r

d(vy) +... +d(w) < , for somel <k<r. (3.1)

Then G is a generalized r-partite graph. If inequality (3.1) is strict, then G is not
generalized r-partite Turan’s graph.

Denote the smallest integer r for which there exists a a @-sequence v, ...,y
in n-vertex graph G, such that

o)+ +dalo) S (r=1n (32)

by £(G).

Theorem 3.4. Let G be an n-vertez graph and e(G) > e(Tr(n)). Then€(G) >
r and £(G) = r only when G is generalized r-partite Turan’s graph.

Proof. Let £(G) = s and let vy,...,v, be a S-sequence in G,'such that
dg(v1)+...+do(v,)) < (s—=1)n N\

By Lemma 3.1 (r = k = s), the graph G is generalized\r-partite. According
to Theorem 2.2 ¢(G) < e(T,(n)). Thus, the inequality e(G) > e(T,-(n)) implies
e(T,(n)) 2 e(Tr(n)). By (1.1) we have & > r. -

Let s = r. Then e(G) = e¢(T;-(n)) and from the Theorem 2.2 it follows tha.t G
isagenerahzed r-partite ’l\xransgra.ph 0 ,

- \ \
4. SATURATED AND BALANCED B-SEQUENCES
\.
The following results were proved by us: ’

D
.

Theorem 4.1. ([3]) Let G be an n-vertezx graph and vy, ..., v, be a B-sequence
in G, which is not balanced and not saturated. Then G is generalized r-partite graph,
which is not a generalized r-partite Turan’s graph. Thus e(G) < e(Ty(n)).

Theorem 4.2. ([3]) Let G be an n-vertex graph and let vy,...,v, be a (-
sequence in G, T 2 2, which is not balanced and not saturated. Then

(T - 1)2 n.
r

dv1)) +...+d(vr-1) <
' In this section we improve Theorem 4.2.

Theorem 4.3. Let G be an n-vertez graph and vy, ..., v, > 2 be a B-sequence
in G, which is not saturated but vy,...,v.—1 is saturated. Then

(r — 1)2

d(vi) +...+d(vr-1) < (4.1)
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If there is equality in (4.1), then:
(a) v1,...,v, is balanced;

(b) n = 0(modr) and G is a generalized (noncomplete) r-partite graph with

partition classes V{,...,V/,, such that |V]| = 2, i=1,...,r and

r-—1
d(v)——r-—n Vv € UV,;
=1
_1)2
d(v) = 2e(G)r (r ,.1) n’ Vo e V/;
(r—1)2n% r—1_ (r=n? =
(c) R n<e(@) < 2r 2r

Proof. Since (r —2)n < ("__r})fﬁ

mequahty (4 1) holds. Therefore, we shall assume that

d(vi) +...+d(ve-1) > (r = 2)n.

Let V; be the i-stratum of the stratification, induced by sequence vy, .

Obvnously, v, €V, i=1,...,7r and
V(G)=WNU...UV,ViNV; =2, i#].
Since V; C V(G)\I'(»), i =1,...,r — 1, we have
Vil <n—-d(w),i=1,...,r -1

It follows from (4.3), (4.4) and (4.2) that

r—1

|V, =n- E|V|>Zd(v.) (r—2)n>0.

i=]

Thus V, #.2. Let V! be a subset of V; such that

r—1

Vil = > " d(v) — (r - 2)n.
t=1
Define W = V(G)\V/. By (4.5) we have,
r—1 v'

W] =3 _(n—d(w)).
i=1

,in case d(v1) + ...+ d(vr-1) < (r —2)n the

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

| Since V; C W, i=1,...,r — 1, from (4.3), (4.4) and (4.6) it follows that there
exist disjoint sets V', i = 1,...,7—1, such that V;'C V! C W and |V]| = n—d(v;).
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Since v; C V/, we have v; € V/, i = 1,...,r — 1. From (4.6) it follows that
W =" V. Hence, | |

=1 .
V@) =WU..UV,V/nV/=2,i#j . (4.7)

°f

‘Observe that |
V/\Vi C V; = D(v1,...,0r-1) C D(v1, ..., Bi1)

and V; C'I‘(vl,...,v‘,--x). Thus V! C C(v1,...,%-1), i = 1,...,r — 1 and d(v) <
d(v;), Vv € V/, i = 1,...,r — 1. From the inclusion V;/ C V; it follows that
d(v) < d(vy), Yv € V.. So, we have : \

d(v) <d(v), WweV,i=1,...,r | - (4.8) |
By (4'.7), we have - | \ |
' | ]
26(G)= Y d(v)= Y, dv)+...+ Y dv).
vEV(G) veVy veVv! \

. Letd(v) =di,i=1,...,r. From |V/|=n—-d;, i = L5 =1, (48) and
(4.5) it follows that | ‘

‘ r—1 - '
2¢(G) <Z¢(n —d)+ (Y di- (r—2>n) SN )
i=1
The equality in (4.9) occurs if and only if \ \

dv)=di, eV, i=1,...,A

o +d, < 2e(G)
r n

leto=di+...+ d.-..l. We have. because theusfe‘t;uence :

V1,..., U, is Dot saturated. Thus,
2re(G)

n

By the Caushy-Schwa.rz mequahty (Ex,y,) < T 223" 42, applied to z; =
d., i =1, we ha.ve

d, < (4.10)

(4.11)

and the equality holds if and only 1f d, =... = d,‘-l. We obtain by (4.10) and
(4.11)

TM&-
-%

2¢(G) < no — r—";T +(o—-(r— 2)n)(2“ij) = a).
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This inequality is equivalent to '
2¢(G)
n

(r-1)’n —-‘ra) <= f_ 1 ((r —1)’n-ro). - (4.12)

The equality in (4.12) occurs simultaneously with the equalities in (4.9), (4.10)
and (4.11), i.e. when _

d(v) = d; = dy, VveV,’, j=1,...,r—1land (4.13)
dv) =d, = 21‘8’SG) -0, Vv € V,.'.
Since vy,...,v,.1 is saturated, we have
T 2¢e(G)
r—-1 n

| g |
Thus, (4.12) is equivalent to the inequality o < (_1'____1:2_2 The inequality (4.1)

is proved.
It rema.mstoexammethecaseoftheequahtym (4.1). Assume t.hat
_(r= 1)2
- (4 14)

" Then n = 0(mod r) and the equality holds in (4.12), i.e. (4 13) is reahzed'
F‘rom (4 14) and (4. 13) it follaws tha.’c |

dv)=dy=...=dp_y = T ”r})“, VeV, i=1,...,r=1  (415)

and

_ 2 IR
d(v) = dy = 2'jfa) I rl) n VoV (4.18)
-. By (4.15) and (4.16) it follows ‘that
di+...+dr _ 2(G)

| r ‘n .
d.e. vy,...,Y, is balansed. Since vy,...,vs-1 is saturated, we have
di+...4+dro1 > ZB(G) ,__d1+...+dr
L B ,

r—-1 n r

Hence d,- <d) = -—-r—ln Thus

d(v) d,.< ln,vEV'. ' L ‘(47.17) -
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£ . r—1 3 :
Since |[V/|=n—di,i=1,...,r—1and |V]| = ) d; — (r — 2)n, we obtain by .
=1
(4.15) ‘
‘ |V.'|—--’f i=1,...r

Thus, from (4.15) and (4.17) it follows that G generalized (noncomplete) r-
partite graph with equal partite classes V{, ..., V/.

So, (a) and (b) are proved. It remains to prove (c). The number
integer, because n = 0(mod r) and consequently from (4.17) it follows that

(r — l)n
T

(r - l)n is
d,. < — 1..

Since vy,. .., v, is balanced, by this inequality and (4.15) we have
(r—1)n i (r—1)n

2(C) _di+...+dr _ ! (-1n-1

n . . T sl r R, :
-1 n :
Thua,e(G')<( - )nz_.z_ . \

Since v, € I'g(v1,...,vp-1), d(v,.) > r—1. From this quua.hty and (4.16) we
conclude that 1) )
. ‘ r - L]
e(G) 2 > r=17 ‘ 5 n. | .
The proof of (c) is over and Theorem 4 3 is proved. [] . \
Corollary 4.1. Letheannverl:ezgmphan(rbemte&h 1<r<n Let
' e(G) 2 e(Ty(n)) and for some 3, 1 < 3 < r there'ezists a balanced ﬁ—sequence
”,...,Vs € V(G). ThenGtsmguIar S . \

Pmof We prove thxs oorollary by mductzon on s. The base s =1is cleQr, since

d(ur) = ff") implies that G is regular.
d(vl) +...4+ d(vs)

Let 8 > 2. Since

2"516.)\, from d(vy) > d{vg) > ... >

8
d(v,) it follows that
Cd(vy) + ... +d(v,-1) 2e(G')
s—1 ,
i.e. v1,...,Vs~1 is balanced or saturated. We pro.vethat vy, - .f.,v,_.l‘is balanced.

Assume the opposite.
Since vy, ..., v, i8 not saturated, byTheorem43*

(s — 1)211

d(v1) + ... + d(ve-1)'< - (4.18)

By Lemmea3.1,Gisa generahzed s-partnte graph. From Theorem 2.2 it follows
e(G) < e(T,(n)). R
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Thus, we have e(T,(n)) < e(G) < e(T,(n)). Since s < r, (1.1) implies that
s = r and e(G) = e(Ts(n)). According to Lemma 3.1, there is equahty in (4.18).

Thus, Theorem 4.3 implies that n = 0(mod s) and e(G)~< (s = n? ~ " This
contradicts the equality e(G) = e(T, (n)) = (s — )n?

2s 2s’
So, v1,...,Vs~1 is balanced. By inductive i:ypothesls, Gis regular a.nd the
proof of Corollary 4.1 is over. O

5. PROOF OF THE MAIN THEOREM

We prove that G is regular by induction on s. The base s = 1 is clear, since
d(v) = 235?) implies that G is regular.
~ Let s > 2. From d(v) > ... 2 d(v,) it follows that

d(v)) + ...+ d(vs-1) 3 Ze(G).

s—-1 n

" Hence, v1,...,v,—1 is balanced or saturated. We prove that v;,...,v,-y i8
balanced. Assume the opposite. Then |

d(v) +.. +d(v._ ) 2e(G) il
l s—1 1 n (5-1)

By Theorem 4.3, the mequahty (4.18) holds. If there is equahty in (4 18), then
according to Theorem 4.3, n = 0(mod s) and ¢(G) < is——l—)—'l- - 21 = f(n,s).
But f(n,s) < f(n,r), because s < r (see (1.3)). Therefore, e(G) <'f(n,r) wh&ch is
a contradiction. Assume that (4.18) is strict.

Case 1. n = 0(mod s). Since (4.18) is strict, it fOllows that

(s~ 1)%n

Ao + -+ dlvem) S S -1 o 62
From (5.1) and (5.2) it follows that |
| (s ~ 1)n? | n
e(G) < 55 3s-1) < f(n,s).

"By s < r and (1.3), f(n,s) < f(n,r). Hence e(G) < f(n,r), which is a
contradiction. )
Case 2. n =v(mod s), 1 < v < s—1. Since (4.18) is strict, we have
(n—-v)(s—-1)?
s

-———(““)2 Fus—2).  (53)

d(v1) + ...+ d(ve—) < |

I=
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* . From (5.1) and (5.3) it follows
A e(G) < f(n,9) < f(n,7),

which is a contradiction.
The Main Theorem is proved.
Remark. If n = 0(mod r), then f(n,r) < e(Tr(n)) = . Therefore,

T
in this case the Corollary 4.1 follows from Main Theorem Let n = v(mod r),
1<v<r-1. From (1. 2) it follows that

n?(r - ) _yr - u)

n?(r—1)

. e(T ( )) = r i 2r (5’4)
The equality (5.4) implies, that if
v(r—v) < -
2r " 2r(r—1) IR

ie. n> (n—v)(r—-1), then f(n,r) < e(Tr(n)). Hence, if n > (r —'vQ(r -1),
Corollary 4.1 follows from the Main Theorem. ,
A ‘

6. wSEQUENCES IN GRAPHS ‘

Let G be a graph and v1,...,9 € V(G). Define Tp = V(G) and Iy =
I‘a(vl, ,v.) 1= 1 ,r—‘l In our articles (4] and [5] we introduced the following
concept:. \ \

Definition 6.1. The sequence v;, . v,- € V(G) is'called a-sequences if v; €
I“_l and v; has maximal degree in the gtaph G[l‘,..l] i 3: T |
a-sequences appears later in {7-10) under the name ”degree-greedy a.lgonthm
and in {11} under the name ”s-stable algorithm”. ‘

The followmg result was proved by us:

| Theorem 6.1. ([2]) Let vy,..., vy be a a- sequence in an n-vertez graph G,
which is not contained in an (r + 1)-glique. If V; is the i-th stratum of the strat-
ification induced by this sequence and p; = |Vi|, i = 1,...,r (see Definition 1.1),
then |
~ (a) G is generalized r-partite graph with partition classes Vi,...,V, and

e(G) < e(K(p1,...,p0)); | - (6.1)

(b) There is eguality in (6.1) only when G = K(py,...,Dpr).

The proof of Theorem 6.1, given in [2}, actually establishes the following state-
ment: A ' | .
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Theorem 6.2. Let vy,...,v, be an a-sequence in an n-vertex graph G such

that _ '

d(v) < n-— |I‘,._1|, Vv el ;. . (6.2)

If V; is the i-th stratum of the stratification induced by this sequence and p; =
Vil i=1,...,r, then | ’

(8) G is generalized r-partite graph with partition classes Vi,...,V, and in-

equality (6.1) holds;
(b) There is eguality in (6.1) only when G is generalized complete r-partite
graph with partition classes Vy,...,V;.

Denote by ¢(G). the smallest integer r for which there exists an a-sequence
V1y..., Uy € V(G') such that (6.2) holds.

Theorem 6.3. Let G be an n-vertex graph, such that e(G) 2> e(Ty(n)), 1 <
r < n. Then ¢(G) > r and (G) = r only when G is generalized r-partite Turan’s
graph. | .

Proof. Let ¢(G) = s and v1,...,v, be a-sequence in G, such that d(v) <
n — |[4-1|, Yv € T,—;. By Theorem 6.2 and Theorem 2.2, we have e(Ty(n)) <
e(Ts(n)). From (1.1) it follows s > r. If s = r, then e(G) = e(T,(n)). According
to Theorem 2.2(c), G is generalized r-partxte Turan’s graph. This completes the
proof of Theorem 6.3. (J

Let vy,...,v, be a-sequence in graph G, and G;., = G[I‘._I] i=1,.
where T';, i-—l ..,r — 1 are defined above. Deﬁne

(vl) d'2 dcx(v?)’ !d;- dG-—:(”")

Theorem 6.4. Let G be an n-vertex gmph and vy, ...,y be a-sequence in G,
such that for some s, 1 <s<r,

arsast(()(7) e

Then G is generalized r-partite yraph
- Proof. We prove Theorem 6.4 by induction on s. The induction base is s = 1.
From (6.3) it follows that d} < (r—1) " Since d; = dg(v1) and v; has maximal

- . - —r
degree in G, we have d(v) < (r rl)n

generalized r-partite graph.
Let s > 2 and suppose, that assertion is true for s — 1.

e (R

Obviously v,...,v be a-sequence in G; = G[['¢(v;)]. By inductive hypo-
thesis, we may assume that G, is generalized (r — 1)-partite graph with partition

, Vv'e V(G). By Proposition 1.1, G is
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clmes’\Wj,. ..,W,: Thus, G is generalized r-partite graph with partition classes
= V(G)\PG(VI) Wa,..., W, L,
di r—1\" (r-s
-1 2 : 2 '
From (6. 3) it follows that
di r—-1\ [r- n(f(r r—8
A ( )-( %)) <2(6)-(2)
Hence | '
ry (r-—s |
L1 r—1 r—s\\’
=3 ((%)-(29)

Note that A = r — 1. Thus, by (6.4), we have d] < —(r— 1). Hence d(v) <
n(r —1)
r

d < -’SA, where A = (6.4)

, Yv € V(G). By Proposmon 2.1, G is generalized r-partnte M o
Theoram,ﬁ.ﬁ. Le,t.G' be an n-vertex graph and vy, . .., vy be a-sequence in G,

such that ke(G |
¢ dy4+...+d; < e'(‘ ). '
MGisgenemH:edk-pamteM
Proof. If k = 1, then d} < —— ( ). Smcee(G)e\.ln,xtfdl!owsthatd'l—O
Thus, E(G) = @ and G is l-partite graph. 'i\
Let £k > 2. Then . N |
. d',++d;‘5 e’(zG)_d;' .

From this inequality and e(G) < %,_it follows that

s (k=2 & (k—'l
'_#‘J“'J’d;s_ 2 k-1\ 2 )

Since vg,..., v is an a-sequence in Gy = G[['g(v1)], by this inequality and
Theorem 6.4 (with r = § = k — 1), it follows that the graph G, is generalized
(k — 1)-partite graph. Let Ws,..., Wi be partition classes of G;. Then G is
- generalized r-partite graph with partition classes Wy = V(G)\I'¢(v1), Wa,..., W;.

94 . Ann. Univ.'Sofia, Fac. Math. Inf., 97, 2005, 81-95.



REFERENCES

1. Khadzhiivanov, N., N. Nenov. Sequences of maximal degree vertices in graphs. Serdi-
ca Math J., 30, 2004, 95-102.

2. Nenov, N., N. Khadzhiivanov. Generalized r-partite graphs and Turan’s Theorem.
C.R. Aoad Bulgare Sci., 57, 2004, 2, 19-24.

3. Khadzhiivanov, N., N. Nenov. Saturated ﬁ-sequences in graphs. C.R. Acad. Bulgare
Sci., 57, 2004, 6, 49-54

4. Khadzhiivanov, N., N. Nenov. Extremal problems for s-graphs and the Theorem of
" Turan. Serdica, 8, 1977, 117-125 (in Russian).

5. Khadzhiivanov, N., N. Nenov. The maximum of the number of edges of a graph
C.R. Acad. Bu.lgane Sci., 29, 1976, 1575-1578 (in Russian).

6. Khadzhiivanov, N., N. Nenov. Saturated edges and triangles in graphs. Matematzka
plus, 2004, No 2.

7. Bollobas, B. Turan’s Theorem and maximal gegrees. J. Comb. Theory, Ser. B, 75,
. 1999, 160-164.

8. Bollobas, B. Modern graph theory, Springer Verlag, New York, 1998.
9. Bollobas, B., A. Thomason. Random graphs of small order. Ann. Discrete Math.,
. 28, 1985, 47-97. % .
10. Bondy, J. A. Large dense neighborhoods and Turan’s theorem. J. Comb. Theory,
Ser. B, 34, 1983, 109-111.

11. Zverovich 1. Minimal degree algorithms for stabnhty number. Discr. Applied Math.,
132, 2004, 211-2186.

Received September 15, 2004

Faculty of Mathematics and Informatics
“St. Kl. Ohridski” University of Sofia
5, J. Bourchier blvd., 1164 Sofia
BULGARIA

E-mail: nenov@fmi.uni-sofia.bg
hadji@fmi.uni-sofia.bg

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 81-95. _ . 95



