ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 97

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 97

BALANCED VERTEX SETS IN GRAPHS

NIKOLAY KHADZHIIVANOV, NEDYALKO NENOV

Let v_1, \ldots, v_r be a β -sequence (Definition 1.2) in an n-vertex graph G and v_{r+1}, \ldots, v_n be the other vertices of G. In this paper we prove that if v_1, \ldots, v_r is balansed, that is

$$\frac{1}{r}(d(v_1) + \ldots + d(v_r)) = \frac{1}{n}(d(v_1) + \ldots + d(v_n)),$$

and if the number of edges of G is big enough, then G is regular.

Keywords: saturated sequence, balanced sequence, generalized r-partite graph, generalized Turan's graph

2000 MSC: 05C35

1. INTRODUCTION

e(G) = |E(G)| - the number of edges of G;

G[M] – the subgraph of G, induced by M, where $M \subset V(G)$;

 $\Gamma_G(M)$ -the set of all vertices of G adjacent to any vertex of M;

 $d_G(v) = |\Gamma_G(v)|$ - the degree of a vertex v in G;

 K_n and \overline{K}_n - the complete and discrete n-vertex graphs, respectively.

Let r be an integer. A graph G is called r-partite with partition classes V_i , $i=1,\ldots,r$ if $V(G)=V_1\cup\ldots\cup V_r, V_i\cap V_j=\varnothing$ for $i\neq j$ and the sets V_i are independent sets in G. If every two vertices from different partition classes are adjacent, then G is called complete r-partite graph. Let G be an n-vertex r-partite graph with partition classes V_i and $p_i=|V_i|, i=1,\ldots,r$. Obviously, $d_G(v)\leq n-p_i$, for any $v\in V_i, i=1,\ldots,r$ and $d_G(v)=n-p_i$ if and only if G is a complete r-partite graph. The symbol $K(p_1,\ldots,p_r)$ denotes the complete r-partite graph

with partition classes V_1, \ldots, V_r such that $|V_i| = p_i, i = 1, \ldots, r$. If p_1, \ldots, p_r are as equal as possible (in the sense that $|p_i - p_j| \le 1$ for all pairs $\{i, j\}$), then if $p_1 + \ldots + p_r = n$, $K(p_1, \ldots, p_r)$ is denoted by $T_r(n)$ and is called r-partite n-vertex Turan's graph. Clearly

$$e(K(p_1, \ldots, p_r)) = \sum \{p_i p_j \mid 1 \le i < j \le r\}.$$

Thus, if $p_i - p_j \ge 2$, then

$$e(K(p_1-1,p_2+1,p_3,\ldots,p_r))-e(K(p_1,p_2,\ldots,p_r))=p_1-p_2-1>0$$

This observation implies the following elementary proposition, we make shall use of later:

Lemma 1.1. Let n and r be positive integers. Then the inequality

$$e(K(p_1,\ldots,p_r)) \leq e(T_r(n))$$

holds for each r-tuple (p_1, \ldots, p_r) of nonnegative integers p_i such that $p_1 + \ldots + p_n = n$. The equality occurs only when $K(p_1, \ldots, p_r) = T_r(n)$.

Let V_1, \ldots, V_{r-1} be partition classes of $T_{r-1}(n), 2 \le r \le n$. Then $T_{r-1}(n)$ is r-partite graph with partition classes $V_1, \ldots, V_{r-1}, \{\emptyset\}$. Since $2 \le r \le n$, $T_{r-1}(n) \ne T_r(n)$. Thus, from Lemma 1.1 it follows that

$$e(T_{r-1}(n)) < e(T_r(n))$$
 (1.1)

Let $V(G) = \{v_1, \ldots, v_n\}$. We call the graph G regular, if

$$d_G(v_1)=d_G(v_2)=\ldots=d_G(v_n)$$

A simple calculation shows that

$$e(T_r(n)) = \frac{(n^2 - \nu^2)(r - 1)}{2r} + {\nu \choose 2}, \qquad (1.2)$$

where $n = kr + \nu$, $0 \le \nu \le r - 1$. \square

Definition 1.1 Let G be a graph and $v_1, \ldots, v_r \in V(G)$ be a vertex sequence such that

$$v_i \in \Gamma_G(v_1,\ldots,v_{i-1}), 2 \leq i \leq r.$$

Define $V_1 = V(G) \setminus \Gamma_G(v_1)$, $V_2 = \Gamma_G(v_1) \setminus \Gamma_G(v_2)$, $V_3 = \Gamma_G(v_1, v_2) \setminus \Gamma_G(v_3)$, ..., $V_{r-1} = \Gamma_G(v_1, \dots, v_{r-2}) \setminus \Gamma_G(v_{r-1})$, $V_r = \Gamma_G(v_1, \dots, v_{r-1})$.

Definition 1.2 The sequence of vertices v_1, \ldots, v_r in a graph G is called β -sequence, if the following conditions are satisfied: v_1 is a vertex of maximal degree in G, and for $i \geq 2$, $v_i \in \Gamma_G(v_1, \ldots, v_{i-1})$ and

$$d_G(v_i) = \max\{d_G(v)|v \in \Gamma_G(v_1,\ldots,v_{i-1})\}.$$

Definition 1.3 Let G be an n-vertex graph and $v_1, \ldots, v_r \in V(G)$. Then the sequence v_1, \ldots, v_r is called saturated, if

$$\frac{1}{r}(d_G(v_1)+\ldots+d_G(v_r))>\frac{2e(G)}{n}.$$

This sequence is called balanced, if

$$\frac{1}{r}(d_G(v_1)+\ldots+d_G(v_r))=\frac{2e(G)}{n}.$$

Obviously, if G is regular, then any vertex sequence in G is balanced. Let $V(G) = \{v_1, \ldots, v_n\}$. Then

$$d(v) \geq \frac{2e(G)}{n} = \frac{1}{n}(d_G(v_1) + \ldots + d_G(v_n))$$

for any vertex of maximal degree in G. Thus, if $d(v) = \frac{2e(G)}{n}$ for some vertex of maximal degree in G, then G is regular.

Let r and n be positive integers, $2 \le r \le n$. Define

$$f(n,r) = \begin{cases} \frac{n^2(r-1)}{2r} - \frac{n}{2r} & \text{if } n \equiv 0 \pmod{r}; \\ \frac{n^2(r-1)}{2r} - \frac{\nu n}{2r(r-1)} & \text{if } n \equiv \nu \pmod{r}, 1 \le \nu \le r-1. \end{cases}$$

It straightforward to show that

$$f(n,r) > \frac{(r-2)n^2}{2(r-1)}, r \ge 2$$

Since
$$\frac{(r-2)n^2}{2(r-1)} > f(n,r-1)$$
, we have
$$f(n,r-1) < f(n,r), \ 2 \le r \le n \tag{1.3}$$

Our main result is the following theorem:

Theorem 1.1 (The Main Theorem). Let G be an n-vertex graph and r be a positive integer, $2 \le r \le n$, such that e(G) > f(n,r). Let for some $s, 1 \le s \le r$, there exists a balanced β -sequence $v_1, \ldots, v_s \in V(G)$. Then G is regular.

Example 1.1. Consider the graph G shown in Fig.1. The β -sequence $\{v_1, v_3\}$ is balanced, because

$$\frac{1}{2}(d_G(v_1)+d_G(v_2))=\frac{2e(G)}{8}=\frac{5}{2}.$$

Obviously, G is not regular.

Fig. 1.

2. GENERALIZED ~PARTITE GRAPHS

Definition 2.1. ([2]) An *n*-vertex graph G is called generalized r-partite with partition classes V_i , $i=1,\ldots,r$, if $V(G)=V_1\cup\ldots\cup V_r$, $V_i\cap V_j=\varnothing$, $i\neq j$ and $d_G(v)\leq n-p_i$ for any $v\in V_i$, $i=1,\ldots,r$, where $p_i=|V_i|$. If $d_G(v)=n-p_i$ for any $v\in V_i$, $i=1,\ldots,r$, then G is called generalized complete r-partite graph with partition classes V_1,\ldots,V_r . We call G generalized Turan's r-partite graph if G is a generalized complete r-partite graph with partition classes V_1,\ldots,V_r and $|p_i-p_j|\leq 1$ for all pairs $\{i,j\}$.

Proposition 2.1. Let r and n be natural numbers, $1 \le r \le n$. Let G be an n-vertex graph, such that

$$d(v) \leq \frac{(r-1)n}{r}, \forall v \in V(G).$$

Then G is generalized r-partite graph.

Proof. Let

$$V(G) = V_1 \cup \ldots \cup V_r, \ V_i \cap V_j = \emptyset, \ i \not\models j$$

and $\lfloor \frac{n}{2} \rfloor \leq |V_i| \leq \lceil \frac{n}{2} \rceil$, $i = 1, \ldots, r$.

From $d(v) \leq \frac{(r-1)n}{r} = n - \frac{n}{r}$ it follows that $d(v) \leq n - \lceil \frac{n}{r} \rceil$, $\forall v \in V(G)$. Thus $d(v) \leq n - |V_i|$, $\forall v \in V_i$, $i = 1, \ldots, r$, and G is generalized r-partite graph with partition classes V_1, \ldots, V_r . \square

Observe that, if $n \equiv 0 \pmod{r}$ and $d(v) = \frac{(r-1)n}{r}$, $\forall v \in V(G)$, then G is generalized r-partite Turan's graph.

We shall make use of the following result:

Theorem 2.1. ([2]) Let G be a generalized r-partite graph with partition classes V_1, \ldots, V_r , where $|V_i| = \beta_i$, $i = 1, \ldots, r$. Then

$$e(G) \leq e(K(p_1,\ldots,p_r)).$$

The equality holds if and only if G is generalized complete r-partite graph with partition classes V_1, \ldots, V_r .

Theorem 2.2. ([2]) Let G be a generalized r-partite graph and |V(G)| = n. Then

$$e(G) \leq e(T_r(n))$$

and equality occurs if and only if G is generalized r-partite Turan's graph.

Example 2.1. Consider the graph $K_3 + C_5 = K_8 - C_5$. Obviously, $e(K_3 + C_5) = 23 < e(T_4(8)) = 24$. This graph is not generalized 4-partite graph. Assume the opposite, i.e. that $K_3 + C_5$ is generalized 4-partite graph with partition classes V_1, V_2, V_3, V_4 . Let $V(K_3) = \{v_1, v_2, v_3\}$. If $v_i \in V_j$, then from $d(v_i) = 7 \le 8 - |V_j|$ it follows that $|V_j| = 1$, i.e. $V_j = \{v_i\}$. Thus, we may assume that $V_i = \{v_i\}$, i = 1, 2, 3. Hence, $V_4 = V(C_5)$. Let $v \in V(C_5)$. Then $d(v) = 5 > 8 - |V_4| = 3$, which is a contradiction.

3. β-SEQUENCES AND GENERALIZED r-PARTITE GRAPHS

We shall use the following:

Theorem 3.1. ([2]) Let v_1, \ldots, v_r be a β -sequence in an n-vertex graph G, which is not contained in an (r+1)-clique. If V_i is the i-th stratum of the stratification induced by this sequence and $p_i = |V_i|$ (see Definition 1.1), then

- (a) G is generalized r-partite graph with partition classes V_1, \ldots, V_r ;
- (b) $e(G) \leq e(K(p_1, ..., p_r))$, and the equality occurs if and only if G is a generalized complete r-partite graph with partition classes $V_1, ..., V_r$;
- (c) $e(G) \le e(T_r(n))$ and we have $e(G) = e(T_r(n))$ only when G is a generalized r-partite Turan's graph.

The proof of the theorem 3.1, given in [2], actually establishes the following stronger statement:

Theorem 3.2. ([2]) Let v_1, \ldots, v_r be a β -sequence in an n-vertex graph G such that

$$d_G(v_r) \leq n - |\Gamma_G(v_1, \dots, v_{r-1})|$$

Then the statements (a), (b) and (c) of the Theorem 3.1 hold.

Denote by $\psi(G)$ the smallest integer r for which there exist a β -sequence $v_1, \ldots, v_r, r \geq 2$, in n-vertex graph G, such that

$$d_G(v_r) \leq n - |\Gamma_G(v_1, \ldots, v_{r-1})|.$$

Theorem 3.3. Let G be an n-vertex graph and $e(G) \ge e(T_r(n))$. Then $\psi(G) \ge r$ and $\psi(G) = r$ only when G is a generalized r-partite Turan's graph.

Proof. Let $\psi(G) = s$. By Theorem 3.2, $e(G) \le e(T_s(n))$. Thus $e(T_r(n)) \le e(T_s(n))$. From (1.1) it follows that $s \ge r$. If s = r, then $e(G) = e(T_r(n))$. According Theorem 3.2, G is a generalized r-partite Turan's graph. \square

The following lemma generalizes the Proposition 2.1.

Lemma 3.1. ([3]) Let G be a graph and v_1, \ldots, v_r be a β -sequence in G such that

$$d(v_1) + \ldots + d(v_k) \le \frac{k(r-1)n}{r}, \text{ for some } 1 \le k \le r.$$
 (3.1)

Then G is a generalized r-partite graph. If inequality (3.1) is strict, then G is not generalized r-partite Turan's graph.

Denote the smallest integer r for which there exists a a β -sequence v_1, \ldots, v_r in n-vertex graph G, such that

$$d_G(v_1) + \ldots + d_G(v_r) \le (r-1)n \tag{3.2}$$

by $\xi(G)$.

Theorem 3.4. Let G be an n-vertex graph and $e(G) \ge e(T_r(n))$. Then $\xi(G) \ge r$ and $\xi(G) = r$ only when G is generalized r-partite Turan's graph.

Proof. Let $\xi(G) = s$ and let v_1, \ldots, v_s be a β -sequence in G, such that

$$d_G(v_1) + \ldots + d_G(v_s) \leq (s-1)n$$

By Lemma 3.1 (r = k = s), the graph G is generalized r-partite. According to Theorem 2.2 $e(G) \le e(T_s(n))$. Thus, the inequality $e(G) \ge e(T_r(n))$ implies $e(T_s(n)) \ge e(T_r(n))$. By (1.1) we have $s \ge r$.

Let s = r. Then $e(G) = e(T_r(n))$ and from the Theorem 2.2 it follows that G is a generalized r-partite Turan's graph. \square

4. SATURATED AND BALANCED β-SEQUENCES

The following results were proved by us:

Theorem 4.1. ([3]) Let G be an n-vertex graph and v_1, \ldots, v_r be a β -sequence in G, which is not balanced and not saturated. Then G is generalized r-partite graph, which is not a generalized r-partite Turan's graph. Thus $e(G) < e(T_r(n))$.

Theorem 4.2. ([3]) Let G be an n-vertex graph and let v_1, \ldots, v_r be a β -sequence in $G, r \geq 2$, which is not balanced and not saturated. Then

$$d(v_1) + \ldots + d(v_{r-1}) < \frac{(r-1)^2}{r}n.$$

In this section we improve Theorem 4.2.

Theorem 4.3. Let G be an n-vertex graph and v_1, \ldots, v_r $r \geq 2$ be a β -sequence in G, which is not saturated but v_1, \ldots, v_{r-1} is saturated. Then

$$d(v_1) + \ldots + d(v_{r-1}) \le \frac{(r-1)^2}{r}n.$$
 (4.1)

If there is equality in (4.1), then:

- (a) v₁,..., v_r is balanced;
- (b) $n \equiv 0 \pmod{r}$ and G is a generalized (noncomplete) r-partite graph with partition classes V'_1, \ldots, V'_r , such that $|V'_i| = \frac{n}{r}$, $i = 1, \ldots, r$ and

$$d(v) = \frac{r-1}{r}n, \ \forall v \in \bigcup_{i=1}^{r-1} V_i'$$

$$d(v) = \frac{2e(G)r}{n} - \frac{(r-1)^2n}{r}, \, \forall v \in V'_r;$$

(c)
$$\frac{(r-1)^2n^2}{r^2} + \frac{r-1}{2r}n \le e(G) \le \frac{(r-1)n^2}{2r} - \frac{n}{2r}$$
.

Proof. Since $(r-2)n < \frac{(r-1)^2n}{r}$, in case $d(v_1) + \ldots + d(v_{r-1}) \le (r-2)n$ the inequality (4.1) holds. Therefore, we shall assume that

$$d(v_1) + \ldots + d(v_{r-1}) > (r-2)n.$$
 (4.2)

Let V_i be the *i*-stratum of the stratification, induced by sequence v_1, \ldots, v_r . Obviously, $v_i \in V_i$, $i = 1, \ldots, r$ and

$$V(G) = V_1 \cup \ldots \cup V_r, \ V_i \cap V_j = \emptyset, \ i \neq j. \tag{4.3}$$

Since $V_i \subset V(G) \backslash \Gamma(v_i)$, i = 1, ..., r-1, we have

$$|V_i| \le n - d(v_i), i = 1, \dots, r - 1.$$
 (4.4)

It follows from (4.3), (4.4) and (4.2) that

$$|V_r| = n - \sum_{i=1}^{r-1} |V_i| \ge \sum_{i=1}^{r-1} d(v_i) - (r-2)n > 0.$$

Thus $V_r \neq \emptyset$. Let V'_r be a subset of V_r such that

$$|V_r'| = \sum_{i=1}^{r-1} d(v_i) - (r-2)n. \tag{4.5}$$

Define $W = V(G) \setminus V'_r$. By (4.5) we have

$$|W| = \sum_{i=1}^{r-1} (n - d(v_i)). \tag{4.6}$$

Since $V_i \subset W$, i = 1, ..., r - 1, from (4.3), (4.4) and (4.6) it follows that there exist disjoint sets V_i' , i = 1, ..., r - 1, such that $V_i \subseteq V_i' \subset W$ and $|V_i'| = n - d(v_i)$.

Since $V_i \subseteq V_i'$, we have $v_i \in V_i'$, i = 1, ..., r - 1. From (4.6) it follows that $W = \bigcup_{i=1}^{r-1} V_i'$. Hence,

$$V(G) = V'_1 \cup \ldots \cup V'_r, \ V'_i \cap V'_j = \emptyset, \ i \neq j. \tag{4.7}$$

Observe that

$$V_i' \setminus V_i \subset V_r = \Gamma(v_1, \ldots, v_{r-1}) \subset \Gamma(v_1, \ldots, v_{i-1})$$

and $V_i \subset \Gamma(v_1, \ldots, v_{i-1})$. Thus $V_i' \subset \Gamma(v_1, \ldots, v_{i-1})$, $i = 1, \ldots, r-1$ and $d(v) \leq d(v_i)$, $\forall v \in V_i'$, $i = 1, \ldots, r-1$. From the inclusion $V_r' \subset V_r$ it follows that $d(v) \leq d(v_r)$, $\forall v \in V_r'$. So, we have

$$d(v) \le d(v_i), \ \forall v \in V_i', \ i = 1, \dots, r. \tag{4.8}$$

By (4.7), we have

$$2e(G) = \sum_{v \in V(G)} d(v) = \sum_{v \in V'_1} d(v) + \ldots + \sum_{v \in V'_r} d(v).$$

Let $d(v_i) = d_i$, i = 1, ..., r. From $|V_i'| = n - d_i$, i = 1, ..., r - 1, (4.8) and (4.5) it follows that

$$2e(G) \leq \sum_{i=1}^{r-1} d_i(n-d_i) + \Big(\sum_{i=1}^{r-1} d_i - (r-2)n\Big) d_r. \tag{4.9}$$

The equality in (4.9) occurs if and only if

$$d(v) = d_i, \ \forall v \in V_i', \ i = 1, \ldots, r,$$

Let $\sigma = d_1 + \ldots + d_{r-1}$. We have $\frac{\sigma + d_r}{r} \leq \frac{2e(G)}{n}$ because the sequence v_1, \ldots, v_r is not saturated. Thus,

$$d_r \le \frac{2re(G)}{n} - \sigma. \tag{4.10}$$

By the Caushy-Schwarz inequality $(\sum x_i y_i)^2 \leq \sum x_i^2 \sum y_i^2$, applied to $x_i = d_i$, $y_i = 1$, we have

$$\sum_{i=1}^{r-1} d_i^2 \ge \frac{\sigma^2}{r-1}.\tag{4.11}$$

and the equality holds if and only if $d_1 = \ldots = d_{r-1}$. We obtain by (4.10) and (4.11)

$$2e(G) \leq n\sigma - \frac{\sigma^2}{r-1} + (\sigma - (r-2)n) \Big(\frac{2re(G)}{n} - \sigma\Big).$$

This inequality is equivalent to

$$\frac{2e(G)}{n}\left((r-1)^2n-r\sigma\right) \le \frac{\sigma}{r-1}\left((r-1)^2n-r\sigma\right). \tag{4.12}$$

The equality in (4.12) occurs simultaneously with the equalities in (4.9), (4.10) and (4.11), i.e. when

$$d(v) = d_i = d_1, \ \forall v \in V_i', \ i = 1, \dots, r - 1 \text{ and}$$

$$d(v) = d_r = \frac{2re(G)}{n} - \sigma, \ \forall v \in V_r'.$$

$$(4.13)$$

Since v_1, \ldots, v_{r-1} is saturated, we have

$$\frac{\sigma}{r-1} > \frac{2e(G)}{n}.$$

Thus, (4.12) is equivalent to the inequality $\sigma \leq \frac{(r-1)^2n}{r}$. The inequality (4.1) is proved.

It remains to examine the case of the equality in (4.1). Assume, that

$$\sigma = \frac{(r-1)^2 n}{r}.\tag{4.14}$$

Then $n \equiv 0 \pmod{r}$ and the equality holds in (4.12), i.e. (4.13) is realized. From (4.14) and (4.13) it follows that

$$d(v) = d_1 = \ldots = d_{r-1} = \frac{(r-1)n}{r}, \ \forall v \in V_i', \ i = 1, \ldots, r-1$$
 (4.15)

and

$$d(v) = d_r = \frac{2re(G)}{n} - \frac{(r-1)^2}{r}n, \forall v \in V_r'.$$
 (4.16)

By (4.15) and (4.16) it follows that

$$\frac{d_1+\ldots+d_r}{r}=\frac{2e(G)}{n},$$

i.e. v_1, \ldots, v_r is balansed. Since v_1, \ldots, v_{r-1} is saturated, we have

$$\frac{d_1 + \ldots + d_{r-1}}{r-1} > \frac{2e(G)}{n} = \frac{d_1 + \ldots + d_r}{r},$$

Hence $d_r < d_1 = \frac{r-1}{r}n$. Thus

$$d(v) = d_n < \frac{r-1}{r}n, \ v \in V'_r. \tag{4.17}$$

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 81-95.

Since $|V_i'| = n - d_i$, i = 1, ..., r - 1 and $|V_r'| = \sum_{i=1}^{r-1} d_i - (r-2)n$, we obtain by (4.15)

$$|V_i'|=\frac{n}{r},\ i=1,\ldots,r$$

Thus, from (4.15) and (4.17) it follows that G generalized (noncomplete) r-partite graph with equal partite classes V'_1, \ldots, V'_r .

So, (a) and (b) are proved. It remains to prove (c). The number $\frac{(r-1)n}{r}$ is integer, because $n \equiv 0 \pmod{r}$ and consequently from (4.17) it follows that

$$d_r \leq \frac{(r-1)n}{r} - 1.$$

Since v_1, \ldots, v_r is balanced, by this inequality and (4.15) we have

$$\frac{2e(G)}{n} = \frac{d_1 + \ldots + d_r}{r} \leq \frac{\frac{(r-1)^2n}{r} + \frac{(r-1)n}{r} - 1}{r} = \frac{(r-1)n - 1}{r}.$$

Thus, $e(G) \leq \frac{(r-1)}{2r}n^2 - \frac{n}{2r}$.

Since $v_r \in \Gamma_G(v_1, \ldots, v_{r-1})$, $d(v_r) \ge r-1$. From this inequality and (4.16) we conclude that

$$e(G) \ge \frac{(r-1)^2}{2r^2}n^2 + \frac{r-1}{2r}n.$$

The proof of (c) is over and Theorem 4.3 is proved. []

Corollary 4.1. Let G be an n-vertex graph and r be integer, $1 \le r \le n$. Let $e(G) \ge e(T_r(n))$ and for some s, $1 \le s \le r$ there exists a balanced β -sequence $v_1, \ldots, v_s \in V(G)$. Then G is regular.

Proof. We prove this corollary by induction on s. The base s=1 is clear, since $d(v_1) = \frac{2e(G)}{n}$ implies that G is regular.

Let $s \geq 2$. Since $\frac{d(v_1) + \ldots + d(v_s)}{s} = \frac{2e(G)}{n}$, from $d(v_1) \geq d(v_2) \geq \ldots \geq d(v_s)$ it follows that

$$\frac{d(v_1)+\ldots+d(v_{s-1})}{s-1}\geq \frac{2e(G)}{n},$$

i.e. v_1, \ldots, v_{s-1} is balanced or saturated. We prove that v_1, \ldots, v_{s-1} is balanced. Assume the opposite.

Since v_1, \ldots, v_s is not saturated, by Theorem 4.3 4

$$d(v_1) + \ldots + d(v_{s-1}) \le \frac{(s-1)^2 n}{s}. \tag{4.18}$$

By Lemma 3.1, G is a generalized s-partite graph. From Theorem 2.2 it follows $e(G) \leq e(T_s(n))$.

Thus, we have $e(T_r(n)) \le e(G) \le e(T_s(n))$. Since $s \le r$, (1.1) implies that s = r and $e(G) = e(T_s(n))$. According to Lemma 3.1, there is equality in (4.18). Thus, Theorem 4.3 implies that $n \equiv 0 \pmod{s}$ and $e(G) \le \frac{(s-1)n^2}{2s} - \frac{n}{2s}$. This contradicts the equality $e(G) = e(T_s(n)) = \frac{(s-1)n^2}{2s}$.

So, v_1, \ldots, v_{s-1} is balanced. By inductive hypothesis, G is regular and the proof of Corollary 4.1 is over. \square

5. PROOF OF THE MAIN THEOREM

We prove that G is regular by induction on s. The base s = 1 is clear, since $d(v_1) = \frac{2e(G)}{n}$ implies that G is regular.

Let $s \geq 2$. From $d(v_1) \geq \ldots \geq d(v_s)$ it follows that

$$\frac{d(v_1)+\ldots+d(v_{s-1})}{s-1}\geq \frac{2e(G)}{n}.$$

Hence, v_1, \ldots, v_{s-1} is balanced or saturated. We prove that v_1, \ldots, v_{s-1} is balanced. Assume the opposite. Then

$$\frac{d(v_1) + \ldots + d(v_{s-1})}{s-1} > \frac{2e(G)}{n}.$$
 (5.1)

By Theorem 4.3, the inequality (4.18) holds. If there is equality in (4.18), then according to Theorem 4.3, $n \equiv 0 \pmod{s}$ and $e(G) \leq \frac{(s-1)n^2}{2s} - \frac{n}{2s} = f(n,s)$. But $f(n,s) \leq f(n,r)$, because $s \leq r$ (see (1.3)). Therefore, $e(G) \leq f(n,r)$ which is a contradiction. Assume that (4.18) is strict.

Case 1. $n \equiv 0 \pmod{s}$. Since (4.18) is strict, it follows that

$$d(v_1) + \ldots + d(v_{s-1}) \le \frac{(s-1)^2 n}{s} - 1.$$
 (5.2)

From (5.1) and (5.2) it follows that

$$e(G) < \frac{(s-1)n^2}{2s} - \frac{n}{2(s-1)} < f(n,s).$$

By $s \le r$ and (1.3), $f(n,s) \le f(n,r)$. Hence e(G) < f(n,r), which is a contradiction.

Case 2. $n \equiv \nu \pmod{s}$, $1 \le \nu \le s - 1$. Since (4.18) is strict, we have

$$d(v_1) + \ldots + d(v_{s-1}) \le \lfloor \frac{(s-1)^2 n}{s} \rfloor = \frac{(n-\nu)(s-1)^2}{s} + \nu(s-2).$$
 (5.3)

From (5.1) and (5.3) it follows

$$e(G) \le f(n,s) \le f(n,r),$$

which is a contradiction.

The Main Theorem is proved.

Remark. If $n \equiv 0 \pmod{r}$, then $f(n,r) < e(T_r(n)) = \frac{n^2(r-1)}{2r}$. Therefore, in this case the Corollary 4.1 follows from Main Theorem. Let $n \equiv \nu \pmod{r}$, $1 \leq \nu \leq r-1$. From (1.2) it follows that

$$e(T_r(n)) = \frac{n^2(r-1)}{2r} - \frac{\nu(r-\nu)}{2r}.$$
 (5.4)

The equality (5.4) implies, that if

$$\frac{\nu(r-\nu)}{2r}<\frac{\nu n}{2r(r-1)},$$

i.e. $n > (n - \nu)(r - 1)$, then $f(n,r) < e(T_r(n))$. Hence, if $n > (r - \nu)(r - 1)$, Corollary 4.1 follows from the Main Theorem.

α-SEQUENCES IN GRAPHS

Let G be a graph and $v_1, \ldots, v_r \in V(G)$. Define $\Gamma_0 = V(G)$ and $\Gamma_i = \Gamma_G(v_1, \ldots, v_i)$, $i = 1, \ldots, r-1$. In our articles [4] and [5] we introduced the following concept:

Definition 6.1. The sequence $v_1, \ldots, v_r \in V(G)$ is called α -sequences if $v_i \in \Gamma_{i-1}$ and v_i has maximal degree in the graph $G[\Gamma_{i-1}]$, $i = 1, \ldots, r$.

 α -sequences appears later in [7-10] under the name "degree-greedy algorithm" and in [11] under the name "s-stable algorithm".

The following result was proved by us:

Theorem 6.1. ([2]) Let v_1, \ldots, v_r be a α -sequence in an n-vertex graph G, which is not contained in an (r+1)-qlique. If V_i is the i-th stratum of the stratification induced by this sequence and $p_i = |V_i|$, $i = 1, \ldots, r$ (see Definition 1.1), then

(a) G is generalized r-partite graph with partition classes V_1, \ldots, V_r and

$$e(G) \leq e(K(p_1,\ldots,p_r)); \tag{6.1}$$

(b) There is equality in (6.1) only when $G = K(p_1, \ldots, p_r)$.

The proof of Theorem 6.1, given in [2], actually establishes the following statement:

Theorem 6.2. Let v_1, \ldots, v_r be an α -sequence in an n-vertex graph G such that

$$d(v) \le n - |\Gamma_{r-1}|, \ \forall v \in \Gamma_{r-1}. \tag{6.2}$$

If V_i is the i-th stratum of the stratification induced by this sequence and $p_i = |V_i|, i = 1, ..., r$, then

- (a) G is generalized r-partite graph with partition classes V_1, \ldots, V_r and inequality (6.1) holds;
- (b) There is equality in (6.1) only when G is generalized complete r-partite graph with partition classes V_1, \ldots, V_r .

Denote by $\varphi(G)$ the smallest integer r for which there exists an α -sequence $v_1, \ldots, v_r \in V(G)$, such that (6.2) holds.

Theorem 6.3. Let G be an n-vertex graph, such that $e(G) \ge e(T_r(n))$, $1 \le r \le n$. Then $\varphi(G) \ge r$ and $\varphi(G) = r$ only when G is generalized r-partite Turan's graph.

Proof. Let $\varphi(G) = s$ and v_1, \ldots, v_s be α -sequence in G, such that $d(v) \leq n - |\Gamma_{s-1}|$, $\forall v \in \Gamma_{s-1}$. By Theorem 6.2 and Theorem 2.2, we have $e(T_r(n)) \leq e(T_s(n))$. From (1.1) it follows $s \geq r$. If s = r, then $e(G) = e(T_r(n))$. According to Theorem 2.2(c), G is generalized r-partite Turan's graph. This completes the proof of Theorem 6.3. \square

Let v_1, \ldots, v_r be α -sequence in graph G, and $G_{i-1} = G[\Gamma_{i-1}]$, $i = 1, \ldots, r$, where Γ_i , $i = 1, \ldots, r-1$ are defined above. Define

$$d'_1 = d_G(v_1), d'_2 = d_{G_1}(v_2), \ldots, d'_r = d_{G_{r-1}}(v_r).$$

Theorem 6.4. Let G be an n-vertex graph and v_1, \ldots, v_r be α -sequence in G, such that for some $s, 1 \leq s \leq r$,

$$d_1' + \ldots + d_s' \le \frac{n}{r} \left(\binom{r}{2} - \binom{r-s}{2} \right). \tag{6.3}$$

Then G is generalized r-partite graph.

Proof. We prove Theorem 6.4 by induction on s. The induction base is s=1. From (6.3) it follows that $d_1' \leq \frac{(r-1)n}{r}$. Since $d_1 = d_G(v_1)$ and v_1 has maximal degree in G, we have $d(v) \leq \frac{(r-1)n}{r}$, $\forall v \in V(G)$. By Proposition 1.1, G is generalized r-partite graph.

Let $s \ge 2$ and suppose, that assertion is true for s-1.

Case 1.
$$d'_2 + \ldots + d'_s \le \frac{d'_1}{r-1} \left(\binom{r-1}{2} - \binom{r-s}{2} \right)$$
.

Obviously v_2, \ldots, v_r be α -sequence in $G_1 = G[\Gamma_G(v_1)]$. By inductive hypothesis, we may assume that G_1 is generalized (r-1)-partite graph with partition

classes W_2, \ldots, W_r . Thus, G is generalized r-partite graph with partition classes $W_1 = V(G) \setminus \Gamma_G(v_1), W_2, \ldots, W_r$.

Case 2.
$$d'_2 + \ldots + d'_s > \frac{d'_1}{r-1} \left(\binom{r-1}{2} - \binom{r-s}{2} \right)$$
.

From (6.3) it follows that

$$d_1' + \frac{d_1'}{r-1} \left(\binom{r-1}{2} - \binom{r-s}{2} \right) < \frac{n}{r} \left(\binom{r}{2} - \binom{r-s}{2} \right).$$

Hence

$$d_1' \le \frac{n}{r}A, \text{ where } A = \frac{\binom{r}{2} - \binom{r-s}{2}}{1 + \frac{1}{r-1}\left(\binom{r-1}{2} - \binom{r-s}{2}\right)}.$$
 (6.4)

Note that A = r - 1. Thus, by (6.4), we have $d_1' \le \frac{n}{r}(r - 1)$. Hence $d(v) \le \frac{n(r-1)}{r}$, $\forall v \in V(G)$. By Proposition 2.1, G is generalized r-partite graph. \square

Theorem 6.5. Let G be an n-vertex graph and v_1, \ldots, v_k be α -sequence in G, such that

$$d_1'+\ldots+d_k'\leq \frac{ke(G)}{n}.$$

Then G is generalized k-partite graph.

Proof. If k = 1, then $d'_1 \le \frac{e(G)}{n}$. Since $e(G) \le \frac{d'_1 n}{2}$, it follows that $d'_1 = 0$. Thus, $E(G) = \emptyset$ and G is 1-partite graph.

Let $k \geq 2$. Then

$$d_2'+\ldots+d_k'\leq \frac{ke(G)}{n}-d_1'.$$

From this inequality and $e(G) \leq \frac{nd'_1}{2}$, it follows that

$$d'_2 + \ldots + d'_k \le \frac{(k-2)d'_1}{2} = \frac{d'_1}{k-1} {k-1 \choose 2}.$$

Since v_2, \ldots, v_k is an α -sequence in $G_1 = G[\Gamma_G(v_1)]$, by this inequality and Theorem 6.4 (with r = s = k - 1), it follows that the graph G_1 is generalized (k-1)-partite graph. Let W_2, \ldots, W_k be partition classes of G_1 . Then G is generalized r-partite graph with partition classes $W_1 = V(G) \setminus \Gamma_G(v_1), W_2, \ldots, W_k$.

REFERENCES

- Khadzhiivanov, N., N. Nenov. Sequences of maximal degree vertices in graphs. Serdica Math J., 30, 2004, 95-102.
- 2. Nenov, N., N. Khadzhiivanov. Generalized r-partite graphs and Turan's Theorem. C.R. Acad. Bulgare Sci., 57, 2004, 2, 19-24.
- Khadzhiivanov, N., N. Nenov. Saturated β-sequences in graphs. C.R. Acad. Bulgare Sci., 57, 2004, 6, 49-54.
- Khadzhiivanov, N., N. Nenov. Extremal problems for s-graphs and the Theorem of Turan. Serdica, 3, 1977, 117-125 (in Russian).
- 5. Khadzhiivanov, N., N. Nenov. The maximum of the number of edges of a graph. C.R. Acad. Bulgare Sci., 29, 1976, 1575-1578 (in Russian).
- Khadzhiivanov, N., N. Nenov. Saturated edges and triangles in graphs. Matematika plus, 2004, No 2.
- Bollobas, B. Turan's Theorem and maximal gegrees. J. Comb. Theory, Ser. B, 75, 1999, 160-164.
- 8. Bollobas, B. Modern graph theory, Springer Verlag, New York, 1998.
- 9. Bollobas, B., A. Thomason. Random graphs of small order. Ann. Discrete Math., 28, 1985, 47-97.
- Bondy, J. A. Large dense neighborhoods and Turan's theorem. J. Comb. Theory, Ser. B, 34, 1983, 109-111.
- Zverovich I. Minimal degree algorithms for stability number. Discr. Applied Math., 132, 2004, 211-216.

Received September 15, 2004

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., 1164 Sofia BULGARIA E-mail: nenov@fmi.uni-sofia.bg hadji@fmi.uni-sofia.bg