ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 97

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 97

PARTITIONED GRAPHS AND DOMINATION RELATED PARAMETERS

VLADIMIR D. SAMODIVKIN

Let G be a graph of order $n \geq 2$ and $n_1, n_2, ..., n_k$ be integers such that $1 \leq n_1 \leq n_2 \leq ... \leq n_k$ and $n_1 + n_2 + ... + n_k = n$. Let for i = 1, ..., k: $A_i \subseteq \mathcal{K}_{n_i}$ where \mathcal{K}_m is the set of all pairwise non-isomorphic graphs of order m, m = 1, 2, ... In this paper we study when for a domination related parameter μ (such as domination number, independent domination number and acyclic domination number) is fulfilled $\mu(G) = \mu(\bigcup_{i=1}^k < V_i, G >)$ for all vertex partitions $\{V_1, V_2, ..., V_k\}, k \geq 2$, of a vertex set of G such that $\langle V_i, G \rangle$ is isomorphic to some a member of $A_i, i = 1, 2, ..., k$. In the process several results for acyclic domination vertex critical graphs are presented. Results for independence number of double vertex graphs are obtained.

Keywords: domination number, acyclic domination number, independent domination number, independence number, double vertex graph

2000 MSC: 05C69, 05C70, 05C75

1. NOTATION AND DEFINITIONS

For a graph theory terminology not presented here, we follow Haynes, et al.[8]. All our graphs are finite and undirected with no loops or multiple edges. We denote the vertex set and the edge set of a graph G by V(G) and E(G), respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $S \subseteq V(G)$. We denote by $S \subseteq V(G)$ is denoted by $S \subseteq V(G)$ is denoted by $S \subseteq V(G)$ is a complement. If $S \supseteq V(G)$ is a connected 2-regular graph of order $S \supseteq V(G)$ is a tree of order $S \supseteq V(G)$ and denote the set of all pairwise non-isomorphic graphs of order $S \supseteq V(G)$. By $S \supseteq V(G)$ we denote the set of all pairwise non-isomorphic graphs of order $S \supseteq V(G)$. A subset of vertices $S \supseteq V(G)$ is said to be acyclic if $S \supseteq V(G)$.

contains no cycles. A subset of vertices I in a graph G is said to be independent if $\langle I,G \rangle$ contains no edges. The independence number $\beta_0(G)$ is the maximum cardinality of an independent set in G. A dominating set in a graph G is a set of vertices D such that every vertex of G is either in D or is adjacent to an element of D. The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets of G. The independent domination number i(G) (acyclic domination number $\gamma_a(G)$) of a graph G is the minimum cardinality of an independent dominating (acyclic dominating) set of G.

Throughout this paper, let a property \mathcal{P} of graphs be given and $\mu(G)$ be a numeral invariant of a graph G defined in a such a way that it is the minimum or maximum number of vertices of a set $S \subseteq V(G)$ which has the property \mathcal{P} . A set with property \mathcal{P} and with $\mu(G)$ vertices is called a μ - set of G. A vertex v of a graph G is μ - critical if $\mu(G-v)\neq\mu(G)$. The graph G is μ - critical if all its vertices are μ - critical. Much has been written about the effects on a parameter (such connectedness, chromatic number, domination number) when a graph is modified by deleting a vertex. μ - critical graphs for $\mu = \gamma, i$ was investigated by Brigham et al. [4] and Ao and MacGillivray (see [9, ch. 16]) respectively. Further properties on these graphs can be found in [6], [7], [8, ch. 5], [9, ch. 16], [10].

In this work, by a partition of a graph G into k parts, $k \geq 2$, we mean a family $A = \{G_1, G_2, ..., G_k\}$ of pairwise disjoint induced subgraphs of G, with $\bigcup_{i=1}^k V(G_i) = V(G)$ and $1 \leq |V(G_1)| \leq |V(G_2)| \leq ... \leq |V(G_k)|$. We denote by G[A] the graph $\bigcup_{i=1}^k G_i$.

Let G be a graph of order $n \geq 2$ and $n_1, n_2, ..., n_k$ be integers such that $1 \leq n_1 \leq n_2 \leq ... \leq n_k$ and $n_1 + n_2 + ... + n_k = n$. Let $\mathcal{A}_i \subseteq \mathcal{K}_{n_i}$, i = 1, ..., k. We say that a partition $A = \{G_1, G_2, ..., G_k\}$ of G is of type $[A_1, A_2, ..., A_k]$ if G_i is isomorphic to some a member of A_i , i = 1, ..., k. The set of all partitions of a graph G which are of type $[A_1, A_2, ..., A_k]$ will be denoted by \mathcal{F}_G $(A_1, A_2, ..., A_k)$.

For a graph invariant μ and a family $\{A_1, A_2, ..., A_k\}$, where $A_i \subseteq \mathcal{K}_{n_i}$, i = 1, ..., k and $1 \le n_1 \le n_2 \le ... \le n_k$ it is important to characterize/study the graphs G with $\mu(G) = \mu(G[A])$ for all $A \in \mathcal{F}_G(A_1, A_2, ..., A_k)$.

We proceed as follows. In Section 2, we deals with critical vertices in a graph with respect to the acyclic domination number and give a necessary and sufficient condition for a graph to be γ_a - critical. In Section 3 we study when $\mu(G) = \mu(G[A])$ for all $A \in \mathcal{F}_G$ $(A_1, A_2, ..., A_k)$ for some families $\{A_1, A_2, ..., A_k\}$.

2. ACYCLIC DOMINATION NUMBER

The concept of acyclic domination was introduced by Hedetniemi et al.[11]. In this section some properties of critical vertices with respect to γ_a will be given.

Theorem 2.1. Let G be a graph of order $n \geq 2$ and $u, v \in V(G)$.

(i) Let $\gamma_a(G-v) < \gamma_a(G)$.

- (i.1) [15] If $uv \in E(G)$ then u belongs to no γ_a set of G v;
- (i.2) If M is a γ_a set of G v then $M \cup \{v\}$ is a γ_a set of G;
- (i.3) [15] $\gamma_a(G-v) = \gamma_a(G) 1$;
- (ii) Let $\gamma_a(G-v) > \gamma_a(G)$. Then v belongs to every γ_a set of G;
- (iii) If $\gamma_a(G-v) < \gamma_a(G) < \gamma_a(G-u)$ then $uv \notin E(G)$;
- (iv) If v belongs to no γ_a set then $\gamma_a(G-v)=\gamma_a(G)$.
- *Proof.* (i) For reason of completeness, we shall give here the proofs of (i.1) and (i.3).
- (i.1): Let $uv \in E(G)$ and M be a γ_a set of G v. If $u \in M$ then M will be an acyclic dominating set of G with $|M| < \gamma_a(G)$ a contradiction.
- (i.2) and (i.3): If M is a γ_a set of G v then (i.1) implies that $M_1 = M \cup \{v\}$ is an acyclic dominating set of G with $|M_1| = \gamma_a(G v) + 1 \le \gamma_a(G)$. Hence M_1 is a γ_a set of G and $\gamma_a(G v) = \gamma_a(G) 1$.
- (ii) If M is a γ_a set of G and $v \notin M$ then M is an acyclic dominating set of G v. But then $\gamma_a(G) = |M| \ge \gamma_a(G v) > \gamma_a(G)$ and the result follows.
- (iii) Let $\gamma_a(G-v) < \gamma_a(G)$ and M be a γ_a set of G-v. Then by (i.2), $M \cup \{v\}$ is a γ_a -set of G. Let $\gamma_a(G-u) > \gamma_a(G)$. Now (ii) implies that $u \in M$ and by (i.1) $uv \notin E(G)$.
- (iv) By (ii), $\gamma_a(G-v) \leq \gamma_a(G)$. Assume $\gamma_a(G-v) < \gamma_a(G)$. It follows from (i.2) that $M \cup \{v\}$ is a γ_a set of G, where M is a γ_a set of G-v a contradiction. \square

Theorem 2.2. Let G be a graph of order at least two. Then

- (i) [3, 10] G is γ critical if and only if $\gamma(G v) = \gamma(G) 1$ for all $v \in V(G)$;
- (ii) (Ao and MacGillivray (see the bibliography in [9, ch.16])) G is i critical if and only if i(G-v)=i(G)-1 for all $v\in V(G)$.

Analogously result is valid and for γ_a - critical graphs.

Theorem 2.3. Let G be a graph of order $n \geq 2$. Then G is a γ_a - critical graph if and only if $\gamma_a(G-v) = \gamma_a(G) - 1$ for all $v \in V(G)$.

Proof. Necessity is obvious.

Sufficiency: Let G be a γ_a - critical graph. Clearly for every isolated vertex $v \in V(G)$, $\gamma_a(G-v) = \gamma_a(G)-1$. Hence if G is isomorphic to \overline{K}_n then $\gamma_a(G-v) = \gamma_a(G)-1$ for all $v \in V(G)$. So, let G have a component of order at least two, say G. Because of Theorem 2.1 (iii), either for all $v \in V(Q)$, $\gamma_a(Q-v) > \gamma_a(Q)$ or for all $v \in V(Q)$, $\gamma_a(Q-v) < \gamma_a(Q)$. Suppose, for all $v \in V(Q)$, $\gamma_a(Q-v) > \gamma_a(Q)$. It follows by Theorem 2.1 (ii) that V(Q) is the unique acyclic dominating set of G. Since F(Q) is an acyclic set then F(Q) is a tree which implies F(Q) = |F(Q)| = |F(Q)|

- a contradiction with the well known Ore's theorem [12] that for every connected graph H of order at least two, $\gamma(H) \leq |V(H)|/2$. \square

Theorem 2.4. Let G_1 and G_2 be two connected graphs both of order at least two with $V(G_1) \cap V(G_2) = \{x\}$. If $\gamma_a(G_1 - x) < \gamma_a(G_1)$ and $\gamma_a(G_2 - x) < \gamma_a(G_2)$ then $\gamma_a(G) = \gamma_a(G_1) + \gamma_a(G_2) - 1$ and $\gamma_a(G - x) = \gamma_a(G) - 1$.

Proof. It follows from Theorem 2.1 (i.2) that there exist a γ_a - set U_1 of G_1 and a γ_a - set U_2 of G_2 such that $x \in U_1 \cap U_2$. Hence $U_1 \cup U_2$ is an acyclic dominating set of G of cardinality $\gamma_a(G_1) + \gamma_a(G_2) - 1$. So we prove $\gamma_a(G) \leq \gamma_a(G_1) + \gamma_a(G_2) - 1$.

Let M be a γ_a - set of G and $M_i = M \cap V(G_i)$, i = 1, 2. There exist three possibilities:

- (*) $x \notin M$ and M_i is an acyclic dominating set of G_i , i = 1, 2;
- (**) $x \notin M$ and there are i, j such that $\{i, j\} = \{1, 2\}$, M_i is an acyclic dominating set of G_i and M_j is an acyclic dominating set of $G_j x$;
- $(***) x \in M.$
- If (*) holds, then $\gamma_a(G) = |M| = |M_1| + |M_2| \ge \gamma_a(G_1) + \gamma_a(G_2)$ a contradiction. If (**) holds, then $\gamma_a(G) = |M| = |M_1| + |M_2| \ge \gamma_a(G_1) + \gamma_a(G_j x) = \gamma_a(G_1) + \gamma_a(G_2) 1$. If (***) holds then $\gamma_a(G) = |M| = |M_1| + |M_2| 1 \ge \gamma_a(G_1) + \gamma_a(G_2) 1$. Thus we have $\gamma_a(G) = \gamma_a(G_1) + \gamma_a(G_2) 1$.

Clearly $\gamma_a(G-x) = \gamma_a(G_1-x) + \gamma_a(G_2-x)$ and by Theorem 2.1 (i.3) it follows $\gamma_a(G-x) = \gamma_a(G_1) + \gamma_a(G_2) - 2$. Hence $\gamma_a(G-x) = \gamma_a(G) - 1$.

Corollary 2.5. Let G be a connected graph with blocks $G_1, G_2, ..., G_n$. If the all $G_1, G_2, ..., G_n$ are γ_a - critical then $\gamma_a(G) = \sum_{i=1}^n \gamma_a(G_i) - n + 1$.

Proof. We proceed by induction on the number of blocks n. The statement is immediate if n=1. Let the blocks of G be $G_1, G_2, ..., G_n, G_{n+1}$ and without loss of generality let G_{n+1} contain only one cut-vertex of G. Hence Theorem 2.4 implies that $\gamma_a(G) = \gamma_a(G_{n+1}) + \gamma_a(Q) - 1$ where $Q = \langle \bigcup_{i=1}^n V(G_i), G \rangle$. The result now follows from the inductive hypothesis. \square

It is not possible to characterize γ - critical graphs in terms of forbidden graphs as it is shown in [3]. We shall prove a similar result for γ_a - critical graphs. We need the following example which is analogous to the one used in the proof of Theorem 6 in [3].

Example 2.6. Let G be a graph. If $\gamma_a(G) \geq 3$ then let T = G, otherwise $T = G \cup K_1 \cup K_1$. Let $V(T) = \{v_1, v_2, ..., v_n\}$. Define the graph H as follows: $V(H) = \bigcup_{i=1}^n \{v_i, u_i, w_i\}$ and $E(H) = E(G) \cup \{v_i u_j, u_i w_j, w_i v_j \mid 1 \leq i, j \leq n, j \neq i\}$. It is straightforward to verify that no two vertices dominate H. Hence $\gamma_a(H) \geq 3$.

But by the definition of H, for each i=1,2,..,n, $\{u_i,v_i,w_i\}$ is a dominating and independent set (hence and an acyclic set) of H. So, $\gamma_a(H) \leq 3$. Thus $\gamma_a(H) = 3$. Clearly $\{u_i,v_i\}$ is a γ_a - set of $H-w_i$, $\{u_i,w_i\}$ is a γ_a - set of $H-v_i$ and $\{w_i,v_i\}$ is a γ_a - set of $H-u_i$. Therefore H is a γ_a - critical graph and G is its own induced subgraph.

From the above example we immediately have:

Theorem 2.7. There does not exist a forbidden subgraph characterization of the class of γ_a - critical graphs.

3. PARTITIONED GRAPHS

We begin with the family $\{A_1 = \mathcal{K}_1, A_2 = \mathcal{K}_{n-1}\}$ and $\mu \in \{\gamma, \gamma_a, i\}$. From Theorem 2.2 and Theorem 2.3 we immediately have:

Theorem 3.1. Let G be a graph of order $n \geq 2$ and $\mu \in \{\gamma, \gamma_a, i\}$. Then $\mu(G) = \mu(G[A])$ for all $A \in \mathcal{F}_G(\mathcal{K}_1, \mathcal{K}_{n-1})$ if and only if G is a μ - critical graph.

Now, let us consider the family $\{\mathcal{K}_1, \mathcal{K}_1, \mathcal{K}_{n-2}\}, n \geq 3$ and $\mu \in \{\gamma, \gamma_a, i\}$.

Theorem 3.2. Let G be a graph of order $n \geq 3$ and $\mu \in \{\gamma, \gamma_a, i\}$. Then $\mu(G) = \mu(G[A])$ for all $A \in \mathcal{F}_G(\mathcal{K}_1, \mathcal{K}_1, \mathcal{K}_{n-2})$ if and only if $G = \overline{K}_n$.

Proof. Clearly if $G = \overline{K}_n$ then $\mu(G) = \mu(G[A])$ for all $A \in \mathcal{F}_G(\mathcal{K}_1, \mathcal{K}_1, \mathcal{K}_{n-2})$. So, let we have $\mu(G) = \mu(G[A])$ for all $A \in \mathcal{F}_G(\mathcal{K}_1, \mathcal{K}_1, \mathcal{K}_{n-2})$ and suppose $G \neq \overline{K}_n$. Note that if H is a graph of order at least two and $u \in V(H)$ then $\mu(H - u) \geq \mu(H) - 1$, which follows from [3, 5], [9, ch.16] and Theorem 2.1.(i) for $\mu = \gamma$, $\mu = i$ and $\mu = \gamma_a$ respectively. Choose $x, y \in V(G)$ to be adjacent and let $A = \{\{x\}, \{y\}, V(G) - \{x, y\}\}\}$. If $\mu(G - x) \geq \mu(G)$ then $\mu(G - \{x, y\}) \geq \mu(G - x) - 1 \geq \mu(G) - 1$ which implies $\mu(G[A]) \geq 1 + 1 + \mu(G) - 1 > \mu(G)$. Hence $\mu(G - x) = \mu(G) - 1$ and therefore if M is a μ - set of G - x then M does not dominate $x \in G$. Hence $y \in G$ belongs to no μ - set of G - x. But if a vertex u of a graph H belongs to no μ - set of H then $\mu(H) = \mu(H - u)$, which follows from [5, 13], [14] and Theorem 2.1 (iv) for $\mu = \gamma$, $\mu = i$ and $\mu = \gamma_a$ respectively. Therefore $\mu(G[A]) = 1 + 1 + \mu(G - \{x, y\}) = 2 + \mu(G - x) = 1 + \mu(G)$, which is a contradiction. \square

The next family is $\{\{P_2\}, \mathcal{K}_{n-2}\}, n \geq 4 \text{ and again } \mu \in \{\gamma, \gamma_a, i\}.$

Theorem 3.3. Let G be a μ - critical graph of order $n \geq 4$ and size at least 1, where $\mu \in \{\gamma, \gamma_a, i\}$. Then $\mu(G) = \mu(G[A])$ for all $A \in \mathcal{F}_G(\{P_2\}, \mathcal{K}_{n-2})$.

Proof. As we have seen, $\mu(G-x)=\mu(G)-1$ for all $x\in V(G)$. By the proof

of Theorem 3.2, if $yx \in E(G)$ then y belongs to no μ - set of G-x which implies $\mu(G-\{x,y\})=\mu(G-x)$. Hence if $xy \in E(G)$ and $A=\{\{x,y\},V(G-\{x,y\})\}$ then $\mu(G[A])=1+\mu(G-\{x,y\})=1+\mu(G-x)=\mu(G)$. \square

Let G be a graph of order $n \geq 2$. The double vertex graph $U_2(G)$ of G is the graph whose vertex set consists of all 2-subsets of V(G) such that two distinct vertex $\{x,y\}$ and $\{u,v\}$ are adjacent if and only if $|\{x,y\} \cap \{u,v\}| = 1$ and if x = u, they y and v are adjacent in G. The concept of double vertex graphs was introduced by Alavi et al. [1]. For this class of graphs, there are many results about regularity, eulerian, hamiltonian, and bipartite properties of these graphs. For a survey of double vertex graphs see [2]. Here we deal with the independence number of double vertex graphs.

Theorem 3.4. Let G be a graph and $V(G) = \{v_1, v_2, ..., v_n\}, n \geq 3$. Then $\beta_0(U_2(G)) \leq \sum_{k=1}^{n-1} \beta_0(\langle \{v_{k+1}, v_{k+2}, ..., v_n\}, G \rangle)$.

Proof. Let for each $k \in \{1,2,..,n-1\}$, $V_k = \{v_{k+1},v_{k+2},..,v_n\}$, $W_k = \{\{v_k,v_j\}|k < j \leq n\}$, $H_k = \langle V_k,G \rangle$ and $Q_k = \langle W_k,U_2(G) \rangle$. Certainly $\{Q_{n-1},Q_{n-2},..,Q_1\}$ is a partition of $U_2(G)$. For all $k \in \{1,2,..,n-1\}$ define the map $\pi_k:W_k\to V_k$ by $\pi_k(\{v_k,v_j\})=v_j$, where j=k+1,..,n. Clearly π_k is a bijection and if $k < j \leq n$, $k < s \leq n$, $j \neq s$ then $\{v_k,v_j\}\{v_k,v_s\}\in E(Q_k)$ if and only if $\pi_k(\{v_k,v_j\})\pi_k(\{v_k,v_s\})=v_jv_s\in E(H_k)$ which follows by the definition of the double vertex graph. Then the graphs Q_k and H_k are isomorphic, k=1,2,..,n-1. Combining this with the well known fact that if T is a graph and $e\in E(T)$ then $\beta_0(T-e)\geq \beta_0(T)$ [8], we obtain $\beta_0(U_2(G))\leq \beta_0(\cup_{k=1}^{n-1}Q_k)=\sum_{k=1}^{n-1}\beta_0(Q_k)=\sum_{k=1}^{n-1}\beta_0(H_k)$. \square

Corollary 3.5 If G is hamiltonian graph of order n then $\beta_0(U_2(G)) \leq \lfloor n^2/4 \rfloor$.

Proof. Let $v_1, v_2, ..., v_n, v_1$ be a hamiltonian cylle in G. Since $H_k = \langle \{v_{k+1}, v_{k+2}, ..., v_n\}, G \rangle$ has a spanning subgraph isomorphic to P_{n-k} then Theorem 3.4 implies $\beta(U_2(G)) \leq \sum_{k=1}^{n-1} \beta_0(H_k) \leq \sum_{k=1}^{n-1} \beta_0(P_{n-k})$. Clearly $\beta_0(P_s) = \lceil s/2 \rceil$ for all positive integers s. Hence $\beta_0(U_2(G)) \leq \sum_{k=1}^{n-1} \lceil (n-k)/2 \rceil$. It is easy to see that $\sum_{k=1}^{n-1} \lceil (n-k)/2 \rceil = \lfloor n^2/4 \rfloor$. \square

In the next theorem we will find $\beta_0(U_2(C_n))$.

Theorem 3.6. $\beta_0(U_2(C_n)) = \lfloor n^2/4 \rfloor$.

Proof. By the definition of double vertex graph it immediately follows that the set $M = \{\{v_i, v_{i+1+2r}\} \in V(U_2(C_n)) \mid 1 \le i \le n-1, 0 \le r \le (n-i-1)/2\}$ (r is

an integer) is independent. Hence $\beta_0(U_2(C_n)) \ge |M| = \sum_{i=1}^{n-1} \lceil (n-i)/2 \rceil = \lfloor n^2/4 \rfloor$. The result now follows because of Corollary 3.5. \square

Theorem 3.7. $\beta_0(U_2(C_n)[A]) = \beta_0(U_2(C_n))$ for all $A \in \mathcal{F}_{U_2(C_n)}(\{P_1\}, \{P_2\}, ..., \{P_{n-1}\})$.

Proof. Let $V(C_n) = \{v_1, v_2, ..., v_n\}$, $E(C_n) = \{v_1v_2, v_2v_3, ..., v_{n-1}v_n, v_nv_1\}$ and for k = 1, 2, ..., n-1: $Q_k = \langle \{\{v_k, v_j\} | k < j \leq n\}, U_2(C_n) \rangle$. By the proof of Theorem 3.4 we have that $A = \{Q_{n-1}, Q_{n-2}, ..., Q_1\}$ is a partition of $U_2(C_n)$ and for k = 1, 2, ..., n-1, the graph Q_k is isomorphic to $H_k = \langle \{v_{k+1}, v_{k+2}, ..., v_n\}, C_n \rangle$. But obviously H_k is isomorphic to P_{n-k} . Thus we obtain $A \in \mathcal{F}_{U_2(C_n)}(\{P_1\}, \{P_2\}, ..., \{P_{n-1}\})$. Now, choose an arbitrary $B \in \mathcal{F}_{U_2(C_n)}(\{P_1\}, \{P_2\}, ..., \{P_{n-1}\})$. Hence $\beta_0(U_2(C_n)[B]) = \sum_{m=1}^{n-1} \beta_0(P_m) = \sum_{k=1}^{n-1} \beta_0(P_{n-k}) = \sum_{k=1}^{n-1} \lceil (n-k)/2 \rceil = \lfloor n^2/4 \rfloor = \beta_0(U_2(C_n))$. \square

4. OPEN QUESTIONS

We close with a list of open problems and questions.

- 1. Which graphs are γ critical and γ_a critical (or one but not the other).
- 2. Characterize/study those graphs achieving equality in Theorem 3.4.
- 3. Characterize/study the all graphs G with $\mu(G) = \mu(G[A])$ for all $A \in \mathcal{F}_G(\{P_s\}, \mathcal{K}_{n-s}), s \geq 2$ where $\mu \in \{\gamma, \gamma_a, i, ..\}$.

5. REFERENCES

- Alavi, Y., Behzad, M., Simpson, J. E. Planarity of double vertex graphs. In: Graph Theory, Combinatorics, Algorithms, and Applications, eds. Y. Alavi et al., SIAM, Philadelphia, 1991, 472-485.
- Alavi, Y., Lick, D. R., Liu, J. Survey of double vertex graphs. Graphs and Combina torics, 18, 2002, 709-715.
- Bauer, D., Harary, F., Nieminen, J. and Suffel, C. I. Domination alteration sets in graphs. Discrete Mathematics, 47, 1983, 153-161.
- Brigham, R. C., Chinn, P. Z. and Dutton, R. D. Vertex domination-critical graphs. Networks, 18, 1988, 173-179.
- Carrington, J. R., Harary, F. and Haynes, T. W. Changing and unchanging the domination number of a graph. J. Combin. Math. Combin. Comput., 9, 1991, 57-63.
- Fulman, J., Hanson, D., and MacGillivray, G. Vertex domination-critical graphs. Networks, 25, 1995, 41-43.

- Grobler, P. J. P., Mynhardt, C. M. Vertex criticality for upper domination and irredundance. Graph theory, 37, 2001, 205-212
- Haynes, T. W., Hedetniemi, S. T. and Slater, P. J. Fundamentals of Domination in Graphs. Marsel Dekker, New York, 1998.
- Haynes, T. W., Hedetniemi, S. T. and Slater, P. J. Domination in Graphs (Advanced topics). Marsel Dekker, New York, 1998.
- Haynes, T. W. and Henning, M. A. Changing and unchanging domination: a classification. Discrete mathematics, 272, 2003, 65-79.
- Hedetniemi, S. M., Hedetniemi, S. T. and Rall, D.F. Acyclic domination. Discrete Math., 222, 2000, 151-165.
- Ore, O., Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 1960
- Sampathkumar, E., Neerlagi, P. S. Domination and neighborhood critical, fixed, free and totally free points. Sankhya, 54, 1992, 403-407.
- Samodivkin, V. D., I fixed not i critical vertices. In: Proceedings of Thirty First Spring Conference of the Union of Bulgarian Mathematicians, Borovets, April 3-6, 2002, 177-180.
- Samodivkin, V. D., Minimal acyclic dominating sets and cut-vertices. Mathematica Bohemica, Accepted for publication May 2004. (Ref. No. MB 15/04).

Received September 15, 2004

Department of Mathematics
University of Architecture, Civil Engineering and Geodesy
1, Christo Smirnenski blvd.
1046 Sofia
BULGARIA
E-mail: vlsam_fte@uacg.bg