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Let G be a graph of order n > 2 and nj,n2,..,n; be integers such that 1 < n; <
ng<.<ngandny+n2+.+n=n Letfori=1,.,k A C K, where K, is
the set of all pairwise non-isomorphic graphs of order m, m = 1,2,... In this paper
we study when for a domination related parameter x (such as domination number,
_independent domination number and acyclic domination number) is fulfilled u(G) =
p(UE_, < V;,G >) for all vertex partitions {Vi, V2,..,Vi}, k > 2, of a vertex set of G

=1

such that < Vi, G > is isomorphic to some a member of A;, i = 1,2, .., k. In the process
several results for acyclic domination vertex critical graphs are presented. Result.s for
independence number of double vertex graphs are obtained.
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1. NOTATION AND DEFINITIONS

For a graph theory terminology not presented here, we follow Haynes, et al.[8].
All our graphs are finite and undirected with no loops or multiple edges. We denote
the vertex set and the edge set of a graph G by V(G) and E(G), respectively. The
subgraph induced by S C V(G) is denoted by < S,G >. We denote by K, and
K, complete graph on n vertices and its complement. If n > 3 then Cnis a
connected 2 - regular graph of order n. Py, is a tree of order m and diameter m —1,
m > 1. By K, we denote the set of all pairwise non-isomorphic graphs of order
s, s > 1. A subset of vertices 4 in a graph G is said to be acyclic if < A,G >
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contains no cycles. A subset of vertices I in a graph G is said to be independent
if < I,G > contains no edges. The independence number Bo(G) is the maximum
cardinality of an independent set in G. A dominating set in a graph G is a set of
vertices D such that every vertex of G is either in D or is adjacent to an element
of D. The domination number ¥(G) of a graph G is the minimum cardinality
taken over all dominating sets of G. The independent domination number i(G)
(acyclic domination number 7,(G)) of a graph G is the minimum cardinality of an
independent dominating (acyclic dominating) set of G.

Throughout this paper, let a property P of graphs be given and u(G) be a
numeral invariant of a graph G defined in a such a way that it is the minimum or
maximum number of vertices of a set S C V(G) which has the property P. A set
with property P and with u(G) vertices is called a i - set of G. A vertex v of a graph
G is p - critical if u(G — v) # u(G). The graph G is u - critical if all its vertices
are p - critical. Much has been written about the effects on a parameter(such
connectedness, chromatic number, domination number) when a graph is modified
by deleting a vertex. u - critical graphs for u = <, was investigated by Brigham
et al.[4] and Ao and MacGillivray (see [ 9, ch” 16]) respectively. Firther properties
on these graphs can be found in [6], (7], [8,.ch.5], [9, ch. 16], [10].

In this work, by a partition of a graph G into k parts, k > 2, we mean\ family
A = {G1,Gy, .., Gy} of pairwise disjoint induced subgraphs of G, with Uk, V(G;) =
V(G) and 1 < |V(G1)| £ [V(G2)| £ .. £ |V(Gk)|. We deno by G[A] the graph
Ut Gi.

Let G be a graph of order n > 2 and n,,ns,..,nx be mtegers such that 1 <
ng <M <. .<npgandny+ny+..+n; =n.Let 4; CK,,,1=1,..,k Wesay that
a partition A = {Gy, Gy, ..,Gy} of G is of type [A1, A3, , ., Ax] if G; is isomorphic
to some a member of A;, i = 1,..,k. The set of all pRritions of a graph G whxch
are Of type [AI’A2M ,Ak] will be denoted by Fae (AlaAan ’Ak)

For a graph invariant 4 and a family {A;, A4,,, ,Ak‘] where 4; C K,,, i =

1,..kand 1 < n; < ny <..< ny it is important to characterize/study the graphs
G with #(G) #(G[AD for all A € ]:G (Ah A2’1 1Ak) o ‘

We proceed as follows. In Section 2, we deals with critical vertices in a graph
with respect to the acyclic domination number and give a necessary and sufficient
condition for a graph to be 7,- critical. In Section 3 we study when u(G) = u(G[A])
for all A € Fg (A1, A2,, ., Ax) for some families {A;, A2,,.,Ax}. -

2. ACYCLIC DOMINATION NUMBER

‘The ooncept of acychc domination was introduced by Hedetniemi et al.[11]. In
this section some properties of critical vertices with respect to y, will be given. -

Theorem 2.1. Let G be a graph of order n > 2 anduveV(G)
(1) Let ha(G v)<7a(G)
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(i.1) [15] If uv € E(G) then u belongs to no 7 - set of G — v;
(i2) If M is a v, - set of G — v then M U {v} is a 7a - set of G;
(i.3) [15] 7%(G — v) =7(G) - 1;

(ii) Let 7a(G —v) > 7a(G). Then v belongs to every va - set of G;

(iil) If ¥a(G — v) < 7(G) < 7a(G — u) then uv & E(G);

(iv) If v belongs to no 74 - set then 7,(G —v) = 7a(G).

Proof. (i) For reason of completeness, we shall give here the proofs of (i.1) and
(i.3). '

(i.1): Let uv € E(G) and M be a 7, - set of G — v. If u € M then M will be
an acyclic dominating set of G with |[M| < 74(G) - a contradiction.

(i.2)and (i.3): If M is a +y, - set of G — v then (i.1) implies that M; = M U {v}
is an acyclic dominating set of G with |[Mi| = %a(G — v) + 1 < 7a(G). Hence M,
i5 a 7, - set of G and 7,(G — v) = 7(G) — 1.
(ii) If Mis a 7, - set of G and v & M then M is an acyclic dominating set of
G — v. But then v,(G) = |M| > 44(G —~ v) > 7.(G) and the result follows.

(iii) Let 74(G — v) < 7(G) and M be a v, - set of G — v. Then by (i.2),
M U {v} is a y,-set of G. Let v,(G — u) > 7a(G). Now (ii) implies that u € M and
by (i.1) - uv ¢ E(G).

(iv) By (ii), 7a(G — v) £ 7a(G). Assume 7,(G — v) < 7,(G). It follows
from (i.2) that M U {v} is a 7, — set of G, where M is a 7, ~set of G ~v - a
contradiction. (] ,

Theorem 2.2. Let G be a graph of order at least two. Then
(1) [3, 10} G is y - critical if and only if v(G — v) = ¥(G) — 1 for all v € V(G);

(i) (Ao and MacGillivray (see the bibliography in [9, ch.16])) G is i - critical if
and only if i(G —v) =i(G) — 1 for allv € V(G). o

Analogously result is valid and for v, - critical graphs.

Theorem .2.3. Let G be a graph of order n > 2. Then G is a vy, - critical
graph if and only if 7o(G — v) = 7a(G) — 1 for all v € V(G).

Proof. Necessity is obvious.

Sufficiency: Let G be a 4, - critical graph. Clearly for every isolated vertex
v € V(G), Ya(G —v) = 7a(G) — 1. Hence if G is isomorphic to K, then 7,(G—v) =
Ya(G) — 1 for all v € V(G). So, let G have a component of order at least two, say
Q. Because of Theorem 2.1 (iii), either for all v € V(Q), 7a(Q — v) > 74(Q) or for
all v € V(Q), 7a(Q — v) < 7a(Q)- Suppose, for all v € V(Q), 7a(Q — v) > 7a(Q)-
It follows by Theorem 2.1 (ii) that V(Q) is the unique acyclic dominating set of Q.
Since V(Q) is an acyclic set then Q is a tree which implies ,(Q) = ¥(Q) = |V(Q)|
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- a contradiction with the well known Ore’s theorem [12] that for every connected
graph H of order at least two, v(H) < |V(H)|/2. O

Theorem 2.4. Let G; and Gy be two connected graphs both of order at least
two with V(G1) NV (Ga2) = {z}. If 7a(G1 — 7) < 7a(G1) and 7. (G2 — ) < 7(G2)
then Yo(G) = 42 (G1) + Ya(G2) — 1 and 7,(G — x) = 712(G) — 1.

Proof. It follows from Theorem 2.1 (i.2) that there exist a v, - set U; of G; and
a Y, - set Uz of G2 such that x € UyNU;. Hence U; UV, is an acyclic dominating set
of G of cardinality v,(G1) + Ya(G2) — 1. So we prove 7,(G) < 7a(G1) + 7a(G2) — 1.

Let M be a v, - set of G and M; = M NV(G;), i = 1,2. There exist three
possibilities: ‘

(*) z € M and M; is an acyclic dominating set of G;, 1 = 1, 2;

(**) = € M and there are 7, j such that {7, 5} = {1, 2}, M; is an acyclic dominating
set of G; and M; is an acyclic dominating set of G; — ;

(***) z € M.

If (*) holds, then 7,(G) = |M| = |Mi| + [M2| = 7.(G1) + 7a(G2) - a contradiction.
If (**) holds, then 7,(G) = |M| = |Mi| + |Mz| 2 7(Gi) + 7a(G; — 2) = 7a(G1) +
Ya(G2)—1. If (***) holds then v, (G) = |[M| = |M;|+|M2| -1 > 74(G1)+7.(G2) 1.
Thus we have 7,(G) = 7.(G1) + 7.(G2) — 1.
Clearly 74(G — ) = v,(G1—2)+7a(G2 — ) and by Theorem 2.1 (i.3) it follows
Ya(G — ) = 7a(G1) + Ya(G2) — 2. Hence v,(G —x) = Y¥a(G) — 1.0

Corollary 2.5. Let G be a connected graph with blocks Gy, G2, ..,Gy,. If the
all Gy, Gs, ..,G, are 7y, - critical then Yo(G) = £ 17.(G;) —n + 1.

Proof. We proceed by induction on the number of blocks n. The statement is
immediate if n» = 1. Let the blocks of G be Gy, Ga, .., Gn, Gn+1 and without loss of
generality let G,4+1 contain only one cut-vertex of G. Hence Theorem 2.4 implies
that Y.(G) = 7a(Gn+1) + 7(Q) — 1 where Q =< UL, V(G;), G >. The result now
follows from the inductive hypothesis. [

It is not possible to characterize 7 - critical graphs in terms of forbidden graphs
as it is shown in [3]. We shall prove a similar result for 7, - critical graphs. We need
the following example which is analogous to the one used in the proof of Theorem
6 in [3].

Example 2.6. Let G be a graph. If v,(G) > 3 then let T = G, otherwise
T =GUK,UK,. Let V(I') = {v1,v3,..,un}. Define the graph H as follows:
V(H) = U2 {vi,us,w; } and E(H) = E(G)U{viuj, uiw;,wiv; |1 <i,5 <n,j#1}.
It is straightforward to verify that no two vertices dominate H. Hence v,(H) > 3.
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But by the definition of H, for each i = 1,2,..,n, {u;,v;, w;} is a dominating and
independent set (hence and an acyclic set) of H. So, 7,(H) < 3. Thus v7,(H) = 3.
Clearly {u;,v;} is a v, - set of H —w;, {u;,w;} is a v, - set of H —v; and {w;, v;} is
a 7q - set of H — u;. Therefore H is a v, - critical graph and G is its own induced
subgraph.

From the above example we immediately have:

Theorem 2.7. There does not exist a forbidden subgraph characterization of
the class of v, - critical graphs.

3. PARTITIONED GRAPHS

We begin with the family {A; = K1, A2 = Kn—1} and p € {7, 7,1}
From Theorem 2.2 and Theorem 2.3 we immediately have:

Theorem 3.1. Let G be a graph of order n > 2 and pu € {v,7%a,1}. Then
(G) = p(G[A]) for all A € F(K1,Kn-1) if and only if G is a p - critical graph.

Now, let us consider the family {K;,K1,K,—2}, n > 3 and u € {7, 7a, i}

Theorem 3.2. Let G be a graph of order n > 3 andﬁ = {1,%,2’}. Then
w(G) = u(G[A)) for all A € F(K1,K1,Kn-2) if and only if G = K.

Proof. Clearly if G = K, then u(G) = u(G[A]) for all A € Fe(K1,K1,Kn-2).
So, let we have u(G) = u(G[A]) for all A € F¢(K1,K1,Kn—2) and suppose G # K.
Note that if H is a graph of order at least two and v € V(H) then u(H — u) >
p(H) — 1, which follows from {3, 5], [9, ch.16] and Theorem 2.1.(i) for u = =,
p =1 and pu = v, respectively. Choose z,y € V(G) to be adjacent and let A=
{2} (v}, V(G) — (2, y}}. T (G —2) > p(G) then u(G — {z,y}) > (G —z)~1>
p(G) — 1 which implies p(G[A]) > 1+ 1+ u(G) — 1 > u(G). Hence pu(G — z) =
#(G) — 1 and therefore if M is a pu - set of G — = then M does not dominate x
in G. Hence y belongs to no u - set of G — z. But if a vertex u of a graph H
belongs to no u - set of H then u(H) = pu(H — u), which follows from [5, 13|,
[14] and Theorem 2.1 (iv) for g = =, p = i and p = <, respectively. Therefore
p(GlA]) = 1+14+pu(G—{z,y}) = 2+ u(G—z) = 1+ u(G), which is a contradiction.
O

The next family is {{P},K,—2}, n > 4 and again u € {7, Ya, 1}

Theorem 3.3. Let G be a u - critical graph of order n > 4 and size at least
1, where p € {v,%a,1}. Then pu(G) = u(G[A)) for all A € Fo({P2},Kn-2).

-Proof. As we have seen, p(G —z) = pu(G) — 1 for all z € V(G). By the proof
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of Theorem 3.2, if yz € E(G) then y belongs to no - set of G'— z which implies
w(G — {z,y}) = w(G — z). Hence if zy € E(G) and A= {{z,y}, V(G — {z,y})}
then u(G[A]) =1+ u(G - {z,y}) =1+ u(G — z) = u(G). O

Let G be a graph of order n > 2. The double vertex graph U(G) of G is
the graph whose vertex set consists of all 2-subsets of V(G) such that two distinct
vertex {z,y} and {u,v} are adjacent if and only if |{z,y} N {u,v}| = 1 and if
z = u, they y and v are adjacent in G. The concept of double vertex graphs was
introduced by Alavi et al. [1]. For this class of graphs, there are many results about
regularity, eulerian, hamiltonian, and bipartite properties of these graphs. For a
survey of double vertex graphs see [2]. Here we deal with the independence number
of double vertex graphs.

Theorem 3.4. Let G be a graph and V(G) = {vi,v2,..,vn}, n > 3. Then
ﬂO(U2(G)) S E’k‘;llﬁo(< {vk+lavk+2a "avn}aG >)

Proof. Let for each k € {1,2,..,n — 1}, Vi = {vk41,Vk+2,-Un}, Wi =
{{vk,v;Hik < 7 < n}, Hy =< V,G > and Qx =< Wi, Uz(G) >. Certainly
{Qn-1,Qn-2,.,Q1} is a partition of U2(G). For all k € {1,2,..,n — 1} define the
map m : Wi — Vi by me({wx,v;}) = v;, where j = k+ 1,..,n. Clearly =y is
a bijection and if k < 7 < n, k < s < n, j # s then {vg,v;{vk,vs} € E(Qx)
if and only if mr({vk,v;})me({vk,vs}) = vjvs € E(Hy) which follows by the def-
inition of the double vertex graph. Then the graphs Qx and Hj are isomorphic,
k =1,2,..,n— 1. Combining this with the well known fact that if 7" is a graph
and e € E(T) then Bo(T — €) > Bo(T) [8], we obtain Fo(U2(G)) < Bo(UpZ1Qk) =

r2160(Qk) = ZRZ{Bo(H). O

Corollary 3.5 If G is hamiltonian graph of order n then Bo(Ua(G)) < [n?/4].

Proof. Let vy,v2, ..,Vn, v; be a hamiltonian cylle in G. Since Hix =< {Vk+1, Vk+2
,-+Un},G > has a spanning subgraph isomorphic to P,_j then Theorem 3.4 im-
plies B(U2(G)) < TpZ1Bo(Hk) < TRZ1Bo(Pn-k). Clearly Bo(Ps) = [s/2] for all
positive integers s. Hence (o(Uz(G)) < B3 [(n — k)/2]. It is easy to see that
i (n — k)/2] = |n?/4). D

In the next theorem we will find Gyo(U2(C5,)).

Theorem 3.6. 3y(Uz(Cy)) = |n?/4].

Proof. By the definition of double vertex graph it immediately follows that the
set M = {{vi,vit142-} EV(U2(Cp)) |1 <i<n—-1,0<r<(n—i-1)/2} (ris
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an integer) is independent. Hence Bo(U(Cr)) > |M| = S5 [(n —9)/2] = |n?/4).
The result now follows because of Corollary 3.5. O

{The(}J;'em 3.7. Bo(Ua(Cn)[A)) = Bo(Ua(Ch)) for all A€ Fy,c.({P}.{P2},
e {Paca ).

Proof. Let V(Cy) = {vn,v2,..,un}, E(Crn) = {v1v2,v203, .., Un—1Vpn, U1 } and
for k = 1,2,.,n~1: Qr =< {{w,v;}lk < j < n},Uz(C,) >. By the proof of
Theorem 3.4 we have that A= {Qn-1,Qn-2,..,Q1} is a partition of U3(C,) and
for k = 1,2,..,n—1, the graph Q. is isomorphic to Hx =< {vk+1, Vk+2, -, Un}, Cn >.
But obviously Hy, is isomorphic to P,_x. Thus we obtain A € Fy,c,)({P1}, {P2}, ..
+{Pn-1})- Now, choose an arbitrary Be Fy,c,.)({P1},{P2},..,{Pn-1}). Hence
Bo(U2(Ca)|B)) = ZpBo(Prm) = Zp21 Bo(Pak) = SpZi[(n — k)/2] = [n?/4] =
ﬂO(U2(Cn)) a

4. OPEN QUESTIONS

We close with a list of open problems and questions.
1. Which graphs are +y - critical and ~, - critical (or one but not the other).
2. Characterize/study those graphs achieving equality in Theorem 3.4.

3. Characterize/study the all graphs G with pu(G) = p(G[A]) for all A €
Fo({Ps},Kn-s), s > 2 where u € {v,%a,1,..}.
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