ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 97

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI" FACULTE DE MATHEMATIQUES ET INFORMATIQUE Tome 97

(2, 3)-GENERATION OF THE GROUPS $PSL_5(q)$

KEROPE TCHAKERIAN

We prove that the group $PSL_5(q)$ is (2, 3)-generated for any q.

Keywords: (2, 3)-generated group

2000 MSC: main 20F05, secondary 20D06

1. INTRODUCTION

A group G is said to be (2, 3)-generated if $G = \langle x, y \rangle$ for some elements x and y of orders 2 and 3, respectively. This generation property has been proved for a number of series of finite simple groups. Concerning the projective special linear groups $\operatorname{PSL}_n(q)$, (2, 3)-generation is known in the cases n = 2, $q \neq 9$ ([4]), n = 3, $q \neq 4$ (see [1]), n = 4, $q \neq 2$ ([7], [8]; for even q also proved independently and later in [5]), $n \geq 5$, q odd, $q \neq 9$ ([2], [3]), and $n \geq 13$, any q ([6]). The present paper is another contribution to the problem. We prove the following

Theorem. The group $PSL_5(q)$ is (2, 3)-generated for any q.

We note that our approach is quite different from that in [2].

2. PROOF OF THE THEOREM

Let $G = \operatorname{SL}_5(q)$ and $\overline{G} = G/\operatorname{Z}(G) = \operatorname{PSL}_5(q)$, where $q = p^m$ and p is a prime. Set $Q = (q^5 - 1)/(q - 1)$ and d = (5, q - 1) = (5, Q). We first look for elements x and y of G of respective orders 2 and 3 such that the element z = xy has order Q. Choose x in the form

$$x = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & \lambda & \mu & 1 & 0 \\ 0 & \nu & \xi & 0 & 1 \end{pmatrix} \quad \left(x \in G, \ |x| = 2 \text{ for any } \lambda, \mu, \nu, \xi \in \mathrm{GF}(q) \right)$$

and

$$y = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \quad (y \in G, \ |y| = 3).$$

Then

$$z = xy = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 \\ -1 & 0 & 0 & 0 & -1 \\ \mu & 0 & \lambda & -1 & \lambda + \mu - 1 \\ \xi & 0 & \nu & 1 & \nu + \xi \end{pmatrix}.$$

The characteristic polynomial of z is

$$f_z(t) = t^5 + (2 - \nu - \xi)t^4 + (2 - \lambda - \mu - \nu - 2\xi)t^3 + (\nu - \mu)t^2 + (\lambda + \mu + \nu + \xi - 1)t - 1.$$

Let ω be an element of order Q in the group $GF(q^5)^*$ and

$$f(t) = (t - \omega)(t - \omega^{q})(t - \omega^{q^{2}})(t - \omega^{q^{3}})(t - \omega^{q^{4}}) = t^{5} - \alpha t^{4} + \beta t^{3} - \gamma t^{2} + \delta t - 1.$$

Then $f(t) \in GF(q)[t]$ and the roots of f(t) are pairwise distinct (in fact, the polynomial f(t) is irreducible over GF(q)). Now choose λ , μ , ν , ξ so that

$$2 - \nu - \xi = -\alpha$$
, $2 - \lambda - \mu - \nu - 2\xi = \beta$, $\nu - \mu = -\gamma$, $\lambda + \mu + \nu + \xi - 1 = \delta$,

i.e.

$$\lambda = -2\alpha - \beta - \gamma - 2, \ \mu = \alpha + \beta + \gamma + \delta + 1, \ \nu = \alpha + \beta + \delta + 1, \ \xi = -\beta - \delta + 1.$$

This implies $f_z(t) = f(t)$. Then, in $GL_5(q^5)$, z is conjugate to $diag(\omega, \omega^q, \omega^{q^2}, \omega^{q^3}, \omega^{q^4})$ and hence z is an element of G of order Q.

Now, in \overline{G} , \overline{x} , \overline{y} and $\overline{z} = \overline{x} \overline{y}$ are elements of orders 2, 3 and Q/d, respectively, and $\overline{H} = \langle \overline{x}, \overline{y} \rangle$ is a subgroup of order divisible by 6Q/d. We claim that $\overline{H} = \overline{G}$. To prove this, we make use of the subgroup structure of \overline{G} .

The irreducible subgroups of $PSL_5(q)$ are classified in [9] and [10]. This readily implies that if \overline{M} is a maximal subgroup of \overline{G} then one of the following holds.

1)
$$|\overline{M}| = q^{10}(q-1)(q^2-1)(q^3-1)(q^4-1)/d$$
.

2)
$$|\overline{M}| = q^{10}(q-1)(q^2-1)^2(q^3-1)/d$$
.

3)
$$|\overline{M}| = 120(q-1)^4/d$$
 if $q \ge 5$.

4)
$$\overline{M} \cong Z_{Q/d} \cdot Z_5$$
.

5)
$$\overline{M} \cong \mathrm{PSL}_5(q_0) \cdot Z_{(d,r)}$$
 if $q = q_0^r$ and r is a prime.

6)
$$\overline{M} \cong \mathrm{PSU}_5(q_0)$$
 if $q = q_0^2$.

7)
$$\overline{M} \cong PSO_5(q)$$
 if q is odd.

8)
$$\overline{M} \cong E_{5^2}$$
. $\mathrm{SL}_2(5)$ if $q = p \equiv 1 \pmod{5}$.

9)
$$\overline{M} \cong \mathrm{PSU}_4(2)$$
 if $q = p \equiv 1 \pmod{3}$.

10)
$$\overline{M} \cong PSL_2(11)$$
 if $q = p > 3$, $p \equiv 1, 3, 4, 5, 9 \pmod{11}$.

11)
$$\overline{M} \cong M_{11}$$
 if $q=3$.

It can be easily checked (directly or using Zsigmondy's well-known theorem) that the only maximal subgroup of \overline{G} whose order is a multiple of Q/d is that in 4), of order 5Q/d. This implies that no proper subgroup of \overline{G} has order divisible by 6Q/d. Hence $\overline{H} = \overline{G}$ and $\overline{G} = \langle \overline{x}, \overline{y} \rangle$ is a (2, 3)-generated group.

REFERENCES

- Cohen, J. On non-Hurwitz groups and noncongruence of the modular group. Glasgow Math. J., 22, 1981, 1-7.
- Di Martino, L., N. A. Vavilov. (2, 3)-generation of SL(n,q). I. Cases n = 5, 6, 7. Comm. Alg., 22, 1994, 1321-1347.
- Di Martino, L., N. A. Vavilov. (2, 3)-generation of SL(n, q). II. Cases n ≥ 8. Comm. Alg., 24, 1996, 487–515.
- Macbeath, A. M. Generators of the linear fractional groups. Proc. Symp. Pure Math., 12, 1969, 14–32.
- Manolov, P., K. Tchakerian. (2, 3)-generation of the groups PSL₄(2^m). Ann. Sofia Univ., Fac. Math. and Inf., 96, 2004, 101-103.
- Sanchini, P., M. C. Tamburini. Constructive (2, 3)-generation: a permutational approach. Rend. Sem. Mat. Fis. Milano, 64, 1994 (1996), 141–158.
- Tamburini, M. C., S. Vassallo. (2,3)-generazione di SL₄(q) in caratteristica dispari e problemi collegati. Boll. U. M. I., (7) 8-B, 1994, 121-134.

- 8. Tamburini, M. C., S. Vassallo. (2,3)-generazione di gruppi lineari. Scritti in onore di Giovanni Melzi. Sci. Mat, 11, 1994, 391-399.
- 9. Di Martino, L., A. Wagner. The irreducible subgroups of $PSL(V_5, q)$, where q is odd. Resultate der Mathematik, 2, 1978, 54-61.
- Wagner, A. The subgroups of PSL(5, 2^a). Resultate der Mathematik, 1, 1978, 207–226.

Received November 15, 2004

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., 1164 Sofia BULGARIA E-mail: kerope@fmi.uni-sofia.bg