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In the present paper it is proved that under an additional assumption (which is au-
tomatically satisfied in case p = 2) validity of the lower p-frame condition for a se-
quence {gi} C X" implies that for f in a subset of X there exists a representation
F =Y 9i(f)fi, where {fi} C X satisfies the upper g-frame condition, % + :—, =1. An

example showing that the above representation is not necessarily valid for all f in X
(neither reconstruction formula of type g = 3 g(fi)g: for all g € X*) is given. It is
shown that when D(U) is dense in X, g € X* can be represented as g = 3 g(fi)g; if
and only if }_ g(fi)g: converges.
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1. INTRODUCTION

It is well known that if a sequence {g;}{2, C H is a frame for a Hilbert space
H, i.e. there exist constants A, B > 0 such that

o0
AlfIF<Y 1< fig> P <BIIfII, VfeH,
i=1
then every f € H can be represented by a dual frame {f;}2; C H:

f:Z<f)fi>gi=Z<fagi>fi- (11)
i=1 i=1

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 123-133. 123



Sequences, which satisfy the lower frame condition, but may fail the upper one, are
used in some applications (for example, in irregular sampling). For this reason the
existence of reconstruction formulas like (1.1) when only the lower frame condition
is assumed has become a topic of investigation. The first study in this direction
may be found in [3]. There an operator is associated to a family {g:}2, C H
and under some assumptions on that operator it is proved that {g;}$2, satisfies the
lower frame condition and there exists a Bessel sequence { fi}$2, C H (i.e. sequence
satisfying the upper frame condition) such that f = Y00, < f, fi > gi, Vf € H.
Later, aim of investigation has been to get reconstruction formulas when the lower
frame condition is assumed to be valid. In [2]| it is proved that if {g;}{2 ) CH
satisfies the lower frame condition, then there exists a Bessel sequence {fi}$2, ¢ H
such that

f=>,<f9>f ¥feDU), (1.2)
i=1
where o
D) ={feX| }:l<f,g.- > % < o0}, (1.3)
DWU)CH -, Uf:={<f 9>}, (1.4)

Recently, frames in Hilbert spaces have been generalized to p-frames in Banach
spaces [1]. A sequence {g;}32; C X* is called p-frame for X (1 < p < o0) if there
exist constants A, 8 > 0 such that

o0 1/p
Allfllx < (Zlgi(f)l”) < Bliflix, Vf € X.
=1

{9152, is called a p-Bessel sequence for X if it satisfies the upper p-frame inequality
for al] f € X. In[4)], p-frames {9:}2, C X* in general Banach spaces are considered
and necessary and sufficient condition for existence of reconstruction formulas like

f=Y a(f)fi, VfE X, (1.5)

i=1

o0
g=> o(fi)gi Vg€ X* (1.6)

i=1
via a dual ¢-frame is found, namely the condition "the range of the operator U
is complemented in 7", where U : X — (P, = {9i(f)}2;. In the present
paper we are interested in reconstruction formulas when only the lower p-frame
condition is assumed. In Section 3, generalization of (1.2) to the case when a family
{9}, C X* is assumed to satisfy the lower p-frame condition is investigated; for
this case a necessary and sufficient condition for validity of formula like (1.2) via
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a g-Bessel sequence {f;}52, is given. Section 4 concerns the question whether the
lower p-frame condition implies existence of reconstruction formulas not only in
D(U), but in the whole spaces X and X* (like (1.5) and (1.6)). In Section 5 we
investigate the lower p-frame inequality in Banach spaces in case the corresponding
operator U is assumed to be densely defined. This is motivated by the work by
Christensen and Li, who investigated the lower frame inequality in Hilbert spaces
in case the operator U, given by (1.3) and (1.4), is densely defined, with the aim
of obtaining reconstruction formulas in the weak sense. Qur aim in this section is
to obtain representation in X* with convergence in norm-sense. In Proposition 5.1
a necessary and sufficient condition for an element g € X* to be represented via a
formula like (1.6) is given.

2. NOTATIONS AND BASIC FACTS

Throughout the paper (H, < -,- >) denotes a separable Hilbert space; X de-
notes a separable Banach space and X* denotes its dual space; p and g are assumed

1 1
to satisfy 1 < p,¢ < co and » + 7 = 1; the canonical basis of &7 (1 < p < 00) is
the basis consisting of the elements (1,0,0,0,...), (0,1,0,0,...), (0,0,1,0,...),...

A sequence {g;}52,; C X* satisfies the lower p-frame condition when there
exists a constant A > 0 such that

00 1/p
Alfllx < (Zlgiu)l”) , Vi€ X. (2.1)
i=1

To such a sequence the (possibly unbounded) linear operator

U:DWU)C X =@, Uf:={g:(f)}2, (2.2)

oo
where D(U) = {f € X | Zlg,-(f)[” < 00}, is associated. R(U) denotes the range
of U.

i=1

Recall that a linear operator U : D(U) C X — Y, whose domain is a linear
subset of a Banach space X and whose range lies in a Banach space Y/, is closed if
the conditions {z;} C D(U),z; — = in X and Uz; — y in Y when j — oo imply
z € D(U) and Uz = y or, equivalently, if the graph of U is closed in the product
space X x Y [5, p. 57].

The following known results are needed:

Lemma 2.1 [7, p.156]. Let E, F be linear normed spaces and U : E — F
be a linear operator. Then, for A > 0, the inequality |U f||lr = A||f||g holds for
all f € D(U) if and only if U has a bounded inverse U~! : R(U) — E for which

I
-1 <« =
-t < 5
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Lemma 2.2 [4}. {9:}{2, C X* is a p-Bessel sequence for X with bound B if
and only if

(o o]
T:{di}2) — Y digs
i=1
is a well defined (hence bounded) operator from €7 into X* and ||T|| < B.

Lemma 2.3 [6, 8]. For every 1 <r < p < 00, {" is a linear subset of (P and
{ci}2ller < 1{ci}Syller for all {c;}$2, € €. Furthermore, no space of the family
P, 1 < p < oo, is isomorphic to a subspace of another member of this family.

Corollary 2.1. For every 1 < r < p < oo, the space €7, considered as a
subset of ¢P, is not closed in ¢P.

3. CONSEQUENCES OF THE LOWER P-FRAME CONDITION
IN THE GENERAL CASE

We begin with a consequence of the lower p-frame condition concerning the asso-
ciated operator U, which is a generalization of a result concerning the lower frame
condition in Hilbert spaces [2]:

Lemma 3.1. Suppose that {g:}2; C X* satisfies the lower p-frame condition

(2.1). Then the operator U given by (2.2) is an injective closed operator with closed
1

range. Furthermore, the inverse U~ : R(U) — D(U) is bounded and |U!|| < 1

Proof. To prove that U is closed, consider a sequence {z;}%2; C D(U) for
which

x; =z in X and Uz; — {¢i}{2; in & when j — oo.

Since all g; are continuous functionals and since convergence in ¢P implies conver-
gence by coordinates, the assumptions imply that for all 7,

gi(z;) — gi(x) as j — o0
and
gi(z;) — ¢j as j — oo.

Thus {gi(2)}2, = {¢i}2,,i.e. z € D(U) and Uz = {¢;}$2,, and hence U is closed.

i=1 =D

To prove that U has closed range, consider again a sequence {z;}52, C D(U), and
assume that Uz; — y as 7 — oo. Thus {ij}ﬁl is a Cauchy sequence, which
implies by (2.1) that {z;}32, is a Cauchy sequence. Thus z; — z for a certain
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element = of the Banach space X. Since U is closed, one can now conclude that
z € D(U) and y = Uz, i.e. y belongs to the range of U.

The rest follows by Lemma 2.1 0.

Note that when {g;}2, C X* satisfies the lower p-frame condition and D(U) =
X, then {g:}32, is a p-frame for X. Indeed, in this case Lemma 3.1 implies the
existence of a bounded inverse U~ from the closed subspace R(U) of ¢? onto X,
which by the Inverse Mapping Theorem implies boundedness of U, i.e. validity
of the upper p-frame condition. Similarly, if {g;}$2, C X* satisfies the lower p-
frame condition and D(U) is a closed subspace of X, then {gi|p)}32, is a p-frame
for the Banach space D(U). Reconstruction formulas when both the lower and the
upper p-frame conditions are satisfied have been studied in [4]. In this paper we are
mostly interested in cases when {g;}32, C X satisfies the lower p-frame condition
and D(U) & X is not closed in X (i.e. {g;}$2, C X™ fails to be a p-Bessel sequence
for X or for D(U)). For examples of this kind see 4.1, 5.1 and 3.1.

.

When (2.1) is satisfied, the above lemma assures that the operator U given
by (2.2) has a bounded inverse U~! : R(U) — D(U). The next theorem shows
that the existence of a bounded extension of U~ on #? is a necessary and sufficient
condition for existence of representations of the elements in D(U) via a g-Bessel
sequence:

Theorem 3.1. Suppose that {g;}$2, C X* satisfies the lower p-frame condi-
tion (2.1). Then the following are equivalent:

(i) there exists a g-Bessel sequence {f;}52, C X(C X**) for X* such that

=1

f=) a(f)fi Vf € DU); (3.1)
i=1

(ii) the operator U~!: R(U) — X can be extended to a linear bounded operator
on 7.

Proof. Assume (i). By Lemma 2.2, the operator V : {¢;}2, — 32 cifiis a
well defined linear bounded operator from £? into X. For every f € D(U) we have

VIUS) =) a(f)fi=f=U""Uf
i=1 '

and hence V is an extension of U~!.

Assume now (ii). Let {e;}$2, be the canonical basis for £7 and let f; := Ve; for all
i. Then, by construction, for all f € D(U) we have

F=VUf=) a(f)fi

i=1
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Now let g € X*. Considering the functional gV € (¢€7)*, the natural isometrical iso-
morphism between (£?)* and ¢ implies that the sequence {g(fi)}2; = {9V (e:)}2,
belongs to #7 and

1
q

(Zlg(ﬂ-)l") - (ZIQV(ei)(") = {lgVllery- < IVl - ligllx-, Vg € X7
i=1

i=]
Hence {fi}22,, considered as a family in X**, is a g-Bessel sequence for X* 0.

Note that when {g;}$2, C X* is a p-frame for X, then the above conditions
(1) and (ii) are equivalent to the condition

(iii) R(U) is complemented in P
(see [4]). When only the lower p-frame condition is assumed, (iii) implies (ii).
Indeed, if P is a bounded projection from 7 onto R(U), then, clearly, U~!P is
a linear bounded extension of U~! on #P. In special cases the inverse implication
is also true. For example, if p = 2 and {g;}{2, C X* satisfies the lower 2-frame
condition, then R(U) is closed in the Hilbert space ¢? and hence (iii) and (ii) are
satisfied; thus (i) is always valid in this case. Example 3.1 and Example 5.1 are
examples of cases, when {g;}$2; C X* satisfies the lower p-frame condition for X,
D(U) G X is not closed in X and (i), (ii) and (iii) are satisfied. It is still an open
question whether there exists an example of a family, which satisfies the lower p-
frame condition, D(U) & X is not closed in X, (i) and (ii) are satisfied, but (iii)
fails.

Example 3.1. Let 1 < p < s < oco. Consider the Banach space X = £°.
Let {e;}$2, be the canonical basis for ¢ and let {E;}{2; C (£°)* be the asso-
ciated coefficient functionals. By Lemma 2.3, the set D(U) = {{d;}2, € ¢
{B; ({di}21)};2, € ¢} is actually £ & X and for all {d;}{2, € D(U) we have
WU ({d:}52 )||¢; = |[{d:}2,ller = 1{di}$2 1||ea for the elements {d;}{2, € £°\ ¢? the
lower p—frame inequality is clearly satisfied. By Corollary 2.1, D(U) is not closed
in X. The range of the operator U is R(U) = ¢? and thus (iii), and hence (ii) and
(i) are valid.

4. A COUNTEREXAMPLE

As it was shown in the previous section, under the additional assumption on
complementability of R(U) in ¢P or the existence of a bounded extension of U~!
on ¢P, the lower p-frame condition implies the existence of reconstruction formulas
in D(U). This section concerns the question whether the same assumptions imply
existence of reconstruction formulas in the whole space X or in the whole X*. Ex-
ample 4.1 below answers negative; it shows a case when there are no reconstruction
formulas neither in the whole space X™* via the sequence {g;}{2, C X, satisfying
the lower p-frame condition, nor in the whole space X via a dual family {f;}2, ¢ X
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(a g-Bessel sequence satisfying (3.1)). The example concerns a case when X is a
Hilbert space and p = 2 (in this case the assumption "R(U)-complemented in ¢2"
is automatically satisfied) and thus it shows that the answer is negative even for
this special most considered case. Note that in a recent paper [2], concerning the
lower frame condition in Hilbert spaces, it has been shown that the representation
in (1.2) is not necessarily valid for all f € H; the counterexample given in [2] and
the one given in the present paper are obtained independently; the counterexample
given in [2] is more complicated than the one below.

Example 4.1. Let {e;}{2, be an orthonormal basis for a Hilbert space (H, <
-,- >) and consider the family {g:}32, := {i(e1 + e;)}i>2 C H. The family {g;}32,
has the following properties:

(i) {gi}2, satisfies the lower frame inequality, but it is not a frame for H;
(ii) e1 can not be written as ) i, ¢igi for any numbers {¢; }32,;

(iii) if {fi}2, is a Bessel sequence, satisfying (1.2), e; can not be written as
> oeq Cifi for any numbers {c;}52,.

Proof. (i) Let z € H be arbitrary fixed. If < z,e; >= 0, then
o0

o0 o0
S l<zgi> | Yol <me>P2) [<ze> [

=2 =2 =2
= > |<ze>[*=|z)>

i=1

Let now < z,e; ># 0. Since {e;}$2, is an orthonormal basis for H,

o
dl<ze>P<oo
=2

and hence < z,e; >— 0 when 7 — o00. Therefore

o0
Z|<m,e,~>+<x,el>[2=oo, (4.1)
i=2

because otherwise < z,e; > would converge to (— < z,e; >) # 0, which is a
contradiction. Now (4.1) implies that

o0 (e 0]
Zl<m,gi>|2=Zi2l<:z:,e,->+<:1:,el > 1% =0

and hence the inequality

o0
Dol <a,gi> P> |alf?
i=2
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is satisfied.

The fact, that {g;}{2, does not satisfy the upper frame inequality follows from the

equalities
o0

I <ek, 9> [P =k =k lexll, VEk>2.
i=2
(ii) If there exist constants ¢z, c3, cq, ... such that e; = o, cii(e + €;), then
the orthogonality < ex,e; >= 0, Yk > 2, implies that all ¢; are zero, which is a
contradiction.
(iii) Let now {f;}$2, be a Bessel sequence, satisfying (1.2). For every k > 2,
ex belongs to D(U) and thus, by (1.2),

00
er = Z < ek,i(el +e,-) > f.‘ = kfk
i=2

If we assume that e; = 3 .o, ¢; fi for some numbers {c;}2,, this would imply that
Ci
ey = 2222 e;, which is a contradiction. [J

5. THE LOWER P-FRAME CONDITION IN A SPECIAL CASE

Let {gi}$2, € X* satisfies the lower p-frame condition. In this section we
are mterested in representation of elements in the dual space X™*. In the previous
section we have seen an example of a case when {g;}{2; C X~ satisfies the lower
p-frame condition and {fi}32, C X is a g-Bessel sequence satisfying (3.1), but not
all g in X* can be represented as g = Y oo, g(fi)gi- Here the elements g € X*
which allow such representations are investigated. We consider the special case
when the given sequence {g:}52, satisfies one more assumption, namely that the
domain of the associated operator U, defined by (2.2), is a dense subset of X. The
following result holds true:

Theorem 5.1. Let {g:}{2; C X* satisfy the lower p-frame condition, D(U)
be dense in X and {fi}52, C X be a g-Bessel sequence satisfying (3.1). Then an
element g € X™* can be represented as

9= g(fi)g:

=1

if and only if

i=1

n o
the sequence {Zg( fi)gi} 18 convergent.

n=1
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Proof. Fix an arbitrary g € X*.
It is only needed to prove that if {3 .., g( f,~)g.-}:°=l is convergent, then it
n

converges to g. Suppose that ¥ .o, 9(fi)g: = nlm;o Zg( fi)gi exists. Denote the
i=1

1
canonical basis of €7 by {e;}$2, and the canonical basis of £2 by {z;}{2, (1—9 +% = 1).
Let V : » — X be the linear bounded extension of U~! defined in the proof of

Theorem 3.1; then f; = V(e;), Vi. By the isometrical isomorphism of (¢?)* and ¢9,
{9V (e:)}2, = {9(fi)}2, € €9 can be identified with V*(g) = gV € (¢7)* and thus

Y 9(fi)z v d Y 9(f)z=Vg. (5.1)
i=1 i=1

Under the assumptions of the theorem we can consider the adjoint operator
u*:pU*) - X*,
where
D(U*) = {G € (£7)*| the functional G o U is continuous on D(U)}.

By definition, U*G is the unique extension of GU to a continuous functional on
X (the continuous extension is unique, because D(U) is assumed to be dense in X).
It is not difficult to see that U” is a densely defined closed operator. Every z; belongs
to D(U*) (considered as a subset of £9) and U*z; = g;, because (g; — U*2;)(f) =
9i(f) —9i(f) =0 for all f in D(U), which is dense in X. Then for every n € N, the-
finite sum .., g(fi)2: belongs to D(U*) and

U (Z g(f,-)z,-) =Y g(f)Uz =) g(fi)g: — Y a(fi)gi  (52)
i=1 i=1 i=1 i=1
Now (5.1), (5.2) and the closeness of U* imply that V*g belongs to D(U*) and
oo
U*Vg=>Y_ g(fi)9:.
i=1

Since U*V*(9)(f) — g(f) = gVU(f) — g(f) = 0 for all f in D(U), which is dense in
o0
X, one can conclude that U*V*(g) = g. Therefore g = Zg( fi)gi- O

=1

As a consequence of Theorem 5.1, for the Hilbert frame case we get:

Corollary 5.1.  Let H be a Hilbert space and assume that {g;}32, C H

=

satisfies the lower frame condition with D(U) dense in H. Let h € H and {f;}2, C
H be a Bessel sequence satisfying (1.2). Then

h=i<hyfi>gi
i=1
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if and only if

o0

n
the sequence {Z <h, fi> g,-} s convergent.

n=1

Below an example of a sequence satisfying the assumptions of Theorem 5.1 is
given.

Example 5.1. Let {e;}2, be an orthonormal basis for a Hilbert space H and
let {g:}2, := {iei}$2,. Since

o0 o0 oo
Sl<hgi>P=Y i <hg>P2) | <he>=|hl}, VheH,

=1 i=1 i=1

{g,-}?_‘;_, satisfies the lower frame condition. Clearly,

DWU) ={c= ic.-ei € H : Zl'ic,-l2 < 00}.

=1 i=1

1
Since span{e;} € D(U), but span{e;} = H ¢ D(U) (for example ze, €
H\D(U)), D(U) is dense, but not closed in H. For everyg € H* = H, the sequence
{Zz_l <g, le, > g; converges to g and {- e,},_1 is a Bessel sequence for H.

n=1
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