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1. INTRODUCTION

In finite dimensions the Cech cohomology groups and the Dolbeault cohomol-
ogy groups of a vector bundle over a complex manifold are the same, by the Dol-
beault isomorphism. When we try to extend the Dolbeault isomorphism to complex
manifolds modeled on infinite-dimensional complex Banach spaces, we encounter
a serious obstacle: the existence of Banach spaces for which the Dolbeault lemima
about the local solvability of the d-equation is no longer true (see [7]). In this paper
we offer a way to overcome this obstacle for a projective space P(V) where V is
an arbitrary Banach space. Given a holomorphic vector bundle £ — P(V) and
a covering U = {U;}ies of P(V) with Zariski open sets, we define a subcomplex
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C(P(V), E) of the Cech complex corresponding to E and Y. We show in Theo-
rem 5.1 that if dim P(V) = oo and P(V') admits smooth partitions of unity, then
the cohomology groups HY(C(P(V), E)), ¢ > 0, of C(P(V), E) are isomorphic to
the Dolbeault cohomology groups H*(P(V), E), ¢ > 0, of E. Since the groups
H%4(P(V), E) vanish for ¢ > 1 ([4, Theorem 7.3]), we obtain a vanishing theorem
for the higher cohomology groups of the complex C(P(V), E).

The definition of the complex C(P(V), E) carries over without modifications
to submanifolds of finite codimension in P(V') - given a holomorphic vector bundle
E over a submanifold X of finite codimension in P(V) and a covering U = {U; }ier
of X with Zariski open sets - we define a subcomplex C(X, E) of the Cech complex
corresponding to E and U. We show in Section 6 that if X is a complete intersection
(e.g. hypersurface) in P(V) and U is a suitable covering of X, then the complex
C(X,0x(n)), n € Z, has an acyclic resolution of finite length. This allows us
to prove the vanishing Theorem 6.5: If X is a complete intersection in P(V),
dim P(V) = oo and P(V) admits smooth partitions of unity, then the higher
cohomology groups of the complex C(X, F) vanish. This vanishing theorem is used
in [3] to prove that H*!(X,Ox(n)) =0, n € Z, when X is a complete intersection
in an infinite-dimensional complex projective space P(V') which admits smooth
partitions of unity.

Let us describe briefly the contents of the paper.

In the book (8] J.-P. Ramis has extended Chow’s lemma to all projective spaces
modeled on complex Banach spaces. He has proved that if X is a closed analytic
set of finite codimension in P(V) for which there exists a fixed number N such
that for any z € X there is a neighbourhood U of z in which X N U is the set
of common zeros of N holomorphic functions on U, then X is an algebraic set
of finite codimension in P(V) [8, Théoreme III.2.3.1]. Hence every submanifold
of finite codimension n in P(V) is the set of common zeros of a finite number of
homogeneous polynomials on V. Since almost all proofs in this paper rest on the
algebraic nature of the submanifolds of finite codimension in P(V'), Sections 2 and 3
are devoted to the study of infinite-dimensional affine and projective algebraic sets.
The results presented in them are well known in finite dimensions but since there
was not a suitable reference at hand, it was necessary to give detailed proofs. Our
approach is heavily influenced by the book (8] which contains a similar treatment
of infinite-dimensional analytic sets.

In Section 4 we consider a finite holomorphic covering 7 : Y — Z between
complex manifolds along with a holomorphic line bundle L — Z and show that in
certain circumstances differential forms on Y with values in 7* L can be represented
in terms of differential forms on X with values in L. A special case of this represen-
tation is used immediately in the proof of Proposition 4.6 which plays important
role in Section 6. The general case of Propositions 4.2 and 4.3 is used in (3].

In Section 5 we define the complex C(X, E) and prove that it is acyclic when
X = P(V) admits smooth partitions of unity, and E is a finite rank holomorphic
vector bundle over P(V).
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In Section 6 we prove the main result of the paper by making use of the Koszul
complex in order to construct an acyclic resolution of C(X, E') when X is a complete
intersection in P(V).

This paper is based on the author’s Ph.D. thesis (Purdue University, 2001).

2. AFFINE ALGEBRAIC SETS IN BANACH SPACES

Let V be a complex Banach space. A subset X C V is an analytic set of
finite codimension in V, if for any z € X there exist a neighbourhood U and a
finite number of holomorphic functions ¢1,...,ps € O(U) such that X NU =
Z(¢1,...,9s). For any open set U C V we denote by Z(X)(U) the set of all
holomorphic functions on U that vanish on X N U. The correspondence U +
Z(X)(U) defines a subsheaf Z(X) of Oy. The sheaf Z(X) is an ideal in Oy, which
is called the ideal sheaf of X. For any x € X the stalk Z,(X) of Z(X) at z
consists of all holomorphic germs at z that vanish on X in some neighbourhood
of x. We say that the point z € X is regular, if there exist a neighbourhood U
of z and a finite number of holomorphic functions ,...,%, € O(U) such that
XNU = Z(¢,...,¥n) and the differentials dv,...,dy, are linearly independent
at z. By the implicit function theorem the germs 1z, ...,%¥nz generate the ideal
Z,(X), and the tangent space T; X = {£ € V : (d¢)(€) = 0 for all ¥ € T,(X)} to
X at z has codimension n in V. The subset X,.4, consisting of all regular points of
X, is open in X and it is known that Xreg is dense in X (see [8]). An analytic set
X of finite codimension in V is a submanifold of finite codimension in V, if every
point of X is regular.

A function F : V — C is a homogeneous polynomial of degree d on V if there
is a bounded multilinear map M : V¢ — C such that F(v) = M(v,...,v) for any
v € V. The vector space of all homogeneous polynomials on V of degree d will be
denoted by C[V]g4.

Let X be an analytic set of finite codimension in V, zo € X and f € O(V),
f #0. Then there exist a natural number d and unique homogeneous polynomials
F; € C[V];, i > d, such that Fy # 0 and f(z) = )".., Fi(z — 2o) for all z in some
neighbourhood of z3. The homogenous polynomial £y is called the leading term of
the holomorphic germ f € OL(V). The set of common zeros of the leading terms
of all holomorphic germs f € Z,(X), f # 0, is called the tangent cone C, X of z at
X.

Remark 1. If z is a regular point of X then C; X = T X. To see this, we
may assume without loss of generality that z =0, V = V' x C* and U and B are
neighbourhoods of 0 in V' and C™ respectively such that

XNUxB={(,21,...,2,) e V' xC" : Z; =p;(v), i=1,...,n}

wiere @; : U — C, i = 1,...,n, are holomorphic functions. We may even further
assulne that all differentials dy;, ¢ = 1,...n, vanish at 0, so that T, X = V’. For a
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given f € Oy ., let g € Oy , be given by g(v') = f(v',p1(v'),...,on(v")) for all
v’ in some neighbourhood of 0 in V’. Let g = )., Giz with G; € C[V'];. Suppose
f # 0 and let F; € C[V]4 be the leading term of f. Then G4 = Fy|y+ because all
functions ;, ¢ = 1,...n, vanish of order > 1 at 0. In particular if f € Z,(X) and
f # 0 then Fyly+ = 0 which yields C; X =T, X.

A function f : V — C is a polynomial on V of degree d if f = ZZ=1 fa, where
each fi, k = 1,...,d, is a homogeneous polynomial of degree k and fq # 0. The
ring of all polynomials on V' will be denoted by C[V]. Since C[V] = @, C[V]q, the
ring of all polynomials on V is a graded ring. It is known that C[V] is a factorial
domain (see [8]). In particular the ring C[V] is integrally closed. For any f € C[V]
and any vp € V the function g : V — C given by g(v) = f(v+ v), v€ V, isalso a
polynomial on V. Thus we may also speak about polynomials on the affine Banach
space A(V') associated with V.

A subset X of V is an algebraic set of finite codimension in V, if there is a
finite number of polynomials fi,..., fr € C[V] such that X = Z(fi,..., fr). Every
algebraic set of finite codimension in V is a closed analytic set of finite codimension
in V. The ideal consisting of all polynomials on V' that vanish on X is denoted by
I(X). The factor-ring C[V]/I(X) is denoted by C[X] and is called the coordinate
ring of X. An algebraic set X of finite codimension in V is said to be irreducible
if the coordinate ring of X is an integral domain.

Let W be a finite-dimensional complex vector space of dimension n, and let
Zy,...,Zy be a basis of the dual space W*. It is clear that the ring of all polynomi-
als on V x W is isomorphic to the polynomial ring C[V][Z;,...,Z,]. Let X be an
algebraic subset of finite codimension in V x W and let p : X — V be the restriction
of the projection 7 : VW — V to X. We will say that p is a finite projection if the
homomorphism p* : C[V] — C[X], given by C[V] — C[V x W] — C[X], is finite,
i.e. C[X] is a finitely-generated C[V]-module. It is easy to see that p: X — V
is a finite pro Jectxon if and only if for any 1 < § < n there is a monic polynomial
Fi{(T) =Tk + E,_ a;(v)T* % € C|V][T] such that Fj(Z;) € I(X). Al fibers
p‘l(v), v € V, of a finite projection p: X — V are ﬁmte sets. Moreover, for any
vo € V, there exists a neighbourhood U 3 vp and a compact set K C W such that
p~Y(U) c U x K. This follows from the well known estimate

k e
o} < max(1, ) |ai(v)]) (2.1)
i=1 '

for any root a of a given polynomial F(v,T) = T* + Zk a;i(v)T*-* € C|V][T}.
Indeed, for any vy € V there is a nelghbourhood O such that {a:(v) = ai(w)] < 1
forany ve€ Oand any i =1,...,k. If v € O'and a is a root of F(v,T) then
la] < k+ 3%, |ai(vo)| by estimate (2.1). Hence there is a neighbourhood U of v
such that all functzons Zilx,...,Zn|x are bounded onp~ (U‘) w}nch is equivalent
to p‘l(U ) being contained in U x K for some compact sot K W This shows
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that for any compact set K’ C V the preimage p~*(K') is compact, i.e. p: X —- V
is a proper map. In particular p is a closed map: if B is a closed subset of X, then
p(B) is a closed subset of V. Hence if v € V and N C X is a neighbourhood of
the fiber p~!(vg), then there is a neighbourhood U 3 v such that p~}(U) C N.

Proposition 2.1. Let X be an algebraic set of finite codimension in V' x W
for which p : X — V is a finite projection. Then the image p(X) of p is an algebraic
set of finite codimension in V and I(p(X)) = I(X) N C[V]. In particular, a finite
projection p : X — V is surjective if and only if I(X) N C[V] = (0).

Proof. In the proof we assume that the complex space W is one-dimensional
because, as soon as the claim is known to be true for such spaces, the general case
follows immediately by induction on the complex dimension of W. Let Z € W*
be a basis of W*. Since C[X] is a finite extension of C[V], there are polynomials
g1, -, 9r € C[V][Z] such that X = Z(g1,...,9-) and the leading coefficient of at
least one of them is 1. Now we use the existence of a resultant system of several
polynomials in a single variable (see [9]):

Let f1, ..., fr be v polynomials of given degrees in a single variable with in-
determinate coefficients. Then there exists a system D, , ..., Dy of integral poly-
nomials in these coefficients with the property that if these coefficients are assigned
values from the field K the conditions Dy = 0, ..., D, = 0 are necessary and
sufficient in order that either the equations f; =0, ..., fr =0 have a solution in
a suitable extension field, or that the formal leading coefficients of all polynomials
f] g ere f,- vanish.

Let Dy,..., DDy be a resultant system of g;,...,9,. Let di,... dy € C[V] be
the system obtained from Dy,..., Dy after substituting the coefficients of g1,..., g,
in Dy,...,Dy. Then the image p(X) coincides with the set of common zeros of the

polynomials dy,...,d;. O

We observe that if ) # X C V x W is the set of common zeros of r polynomials
in C[V x W] and the projection p : X — V is finite then dimW < r. Indeed, if
dim W > r the dimension of every non-empty fiber of p would be positive.

Now we are going to prove the normalisation lemma for algebraic subsets of
finite codimension in V. Let W be a closed complex vector subspace of V. We will
say that a complex vector subspace V/ C V is complementary to W, or that V’
and W are complementary, if V’ is closed and the natural linear map V' x W — V
is an isomorphism.

Proposition 2.2. (The Normalisation Lemma) Let X be a non-empty alge-
braic set of finite codimension in V, and let (V{, Wy), dim W; < oo, be a pair of
complementary complex vector subspaces of V such that the projection pg : X — V
is finite. Then there is a pair (V/,W), dimW < oo, of complementary complex
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vector subspaces of V' such that W D Wy, V' C V{j, and the projection p: X — V'
is finite and surjective.

Proof. Let X = Z(f1,...fr) with f1,..., fr € C[V]. Denote by S be the set
of all pairs (V’, W) of complementary complex vector subspaces of V' such that
dimW < oo, W D Wy, V/ C Vp, and the projection p: X — V' is finite. It is clear
that dimW < r for any (V',W) € S. Let (V',W) € S be a pair for which dim W
is maximal. Suppose that p(X) # V’. Then there is a polynomial f € I(X)NC[V’]
-with a leading term f; # 0. Choose a vector v € V'’ and a bounded linear
functional T on V' such that fg(v') = 1 and T'(v') = 1. Then V' = U’ x {Cv},
where U’ = Ker T, and f = T% + a;T%" ! + ... 4 aq with a1,...,aq € C[U’]. Now
the projection p(X) — U’ along {Cv'} is finite, which implies that the projection
X — U’ along {Cv'} + W is also finite. Hence (U’,{Cv’'} + W) € §, which
contradicts the assumption that W has maximal dimension. Thus p(X) = V’ and
the pair (V', W) has the required properties. )

Definition. Let X be an algebraic set of finite codimension in a complex
Banach space V. We will say that the pair (V/, W) of complex vector subspaces of
V is an admissible factorisation for X, if dim W < oo, V' is complementary to W,
and the projection map p : X — V' is finite and surjective.

The Normalisation Lemma shows that admissible factorisations exist for any
non-empty algebraic set X of finite codimension in V.

Let X be an irreducible algebraic set of finite codimension in V' x W such that
(V,W) is an admissible factorisation for X. Then the homomorphism p* : C[V]| —
C[X] is injective and the field of fractions L of C[X] is a finite extension of the
field of fractions K of C[V]. We note that for any z € C[X] the coefficients of the
minimal polynomial F of z over K belong to C[V]. Indeed, each coeflicient of F
belongs to K and is integral over C[V]. Since the ring C[V] is integrally closed, all
coefficients of F are in in C[V]. In particular the discriminant D of F also belongs
to C[V]. We will use the following well known fact about integral extensions (see
[6]): if z € C[V] is a generator of L over K then DC[X] C C[V](z], where D is a
discrimininant of the minimal polynomial of z over K.

Proposition 2.3. Let W be a complex vector space of finite dimension n
and let X be an irreducible algebraic set of finite codimension in V' x W such that
(V,W) is an admissible factorisation for X. Suppose that Z € W* is such that
z = Z+I1(X) € C[X] is a generator of the field L over the field K and let D € C[V]
be the discriminant of the minimal polynomial F of z over the field K. Then
Xp = p~}(Vp) is a connected complex submanifold of Vp x W of codimension n
which is dense in X, and p|x, : Xp — Vp is a k-sheeted covering map, where
k=|[L: K]. ‘

Proof. Let ej,...,e, be a basis of W with dual basis Z;,...,Z, such that

156 Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 151-182.



Zy=2Z. Let z; = Z; + I(X) € C[X],i=2,...n. Since Dz; € C[V][z],i=2,...n,
there are polynomials Fi(Z) € C[V][Z], i = 2,...n such that Dz; = Fj(2), i =
2,...,n. All polynomials F(Z,) and DZ; — Fi(Z), i = 2,...,n, belong to I(X)
because F'(z;) =0 and Dz; — Fi(2) =0,i=2,...,n.

We will show first that X is the set of all solutions of the equations

F(Z,))=0, Zo =D 'Fy(Z1), ... , Zn=D"'F,(2)) (2.2)

in Vp x W. Let J (resp. I(X)p) be the ideal generated in C{V][Z,,...,Z,]p by
F(Z,) and Z; — D7YF;(Z1), i = 2,...,n, (resp. by I(X)). It is enough to show
that I(X)p = J. We observe that the factor-ring C[V|[Z,, ..., Zx]p/J = C[V][z]D
is both an integral domain and an integral extension of C[V]p. Furthermore, the
prime ideal I(X)p/J is such that I(X)p/J N C[V]p = (0) (since I(X)NC[V] =
(0)). This implies I(X)p/J = (0) because if A C B is an integral extension of
integral domains and P is a prime ideal in B such that PN A = (0), then P = (0)
(see [5]). Thus I(X)p = J and Xp is defined by equations (2.2).

Next we find local solutions of the equation F(v, Z) = 0 by means of an integral
formula. For a given vo € Vp, let «j, 7 = 1,...,k, be the roots of the F(vg, Z).
Choose a positive real number § such that «; is the only root of F(vg, Z) in the disk
|1Z—a;] <6,j=1,...,k. LetT; be the circle |Z —a;| = §, and let PU§=1FJ-. Since
F does not vanish on {vo} X I, there exists a connected neighbourhood U ¢ A(V)p
of vg such that F' does not vanish on U x I'. For v € U the number of roots of
F(v,Z) (counted with multiplicities) lying inside I'; is given by the holomorphic

function . FL(v. 2)
z\Y .
dZ =1,...,k.
n;(v) = 2m/ F(v, 2) ’ 7=

Since nj(vg) = 1, the polynomial F(v, Z) has exactly one root ;(v) lying inside
I'; for v € U and this root is given by the holomorphic function

FZ v, Z)
Zm F(v,2)

aj(v <= __17d7Z, j=1,...,k.
Hence Flyxw = (Z—al(v))...(Z—-ak(v)). Letg; : U —-UxW,j=1,...,k, be
the graph of the holomorphic map r; : U — W given by

n
ri(v) = a;(v) es + D)) Gilej(v))es, veU.
1=2
Then p~!(U) is the disjoint union of the complex manifolds ¢;(U), 7 = 1,...,k,
and each restriction plg;(v) : ¢;(U) = U, j = 1,...,k, is a biholomorphic map.
The set Vp is connected because for any vy, vo € Vp the complex line joining

v; and v intersects Z(D) in a finite set. Let C be a connected component of Xp. .
Then p|c : C — Vp is a covering of degree k; < k and

F@w2)= [ (Z2-2@) € 0(Vp)2], veVp,

z€p~1{(v)NC
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is a polynomial of degree k; in Z which divides F in the ring O(Vp)[Z]. Since
for any v € V the roots of F(v, Z) are uniformly bounded in some neighbourhood
of v, the same is true about the coefficients of F}, and by the Riemann extension
theorem all coefficients of F; can be extended to holomorphic functions on V.
Moreover, estimate (2.1) shows that the roots of ' grow polynomially, i.e. there is
a natural number N and a positive real number C such that |a| < C(1 + |jo|})V for
any root « of F(v,Z). Hence the coefficients of F; also grow polynomially which
shows that they are polynomials. We conclude that F} = F' because F; divides the
irreducible polynomial F' in C[V}[Z]. This immediately yields C = Xp, and thus
X p is connected.

It remains to prove that Xp is dense in X. Let 20 € X and let O C X be a
neighbourhood of zg. Choose a real number § > 0 such that |Z(z) — Z(zo)| > &
for all z € p~'(p(zo)), * # zo. Since OU {z € X : |Z(z) — Z(zo)| > 0} is a
neighbourhood of p~1(p(zo)) and the map-p is closed, there exists a neighbourhood
U C V of p(xo) such that if p(z) € U, then either z € O, or |Z(z) — Z(zo)| > 4.
After shrinking U we may also assume that for any v € U the polynomial F(v, Z)
has a root « such that |a — Z(zg)] < §. Let v € U N Vp. Then the fiber p~!(v)
contains a point z such that |Z(z) — Z(zo)| < 4, and it is clear that z € O. Thus
the set Xp is dense in X. O

Remark 2. Suppose that (V’/, W) is an admissible factorisation for an irre-
ducible algebraic set X of finite codimension in V. Denote by i : C[V] — C[X] the
natural homomorphism given by i(f) = f + I(X), f € C[V]. Let Z;,...,Z, € W*
be a basis of the dual space W*. Since the elements z; ="i(Z}),...,2n, = 1(Zn)
generate the ring C[X] over the ring C[V”], they also generate the field of fractions
L of C[X] over the field of fractions K of C[V’]. Let A = {(a1,...,a,) € C" :
Z=@121 +...an2y is a generator of L over K}. By the theorem for the primitive
element, A is a non-empty Zariski open set in C". Hence the set Wy = {Z € W* :
1(Z) generates L over K} is a non-empty Zariski open set in W*.

Remark 3. Let (V',W) be an admissible factorisation for an irreducible
algebraic set X of finite codimension in V. Proposition 2.3 and Remark 2 show
that there exists an open dense subset Vj of V' such that for any y € V{ the
fiber 771(y) = {y} x W intersects X transversely in k regular points of X, where
k=[L:K].

Corollary 2.4. For any irreducible algebraic set X of finite codimension in V'
the set X, is a connected locally closed submanifold of finite codimension in V/,
which is dense in X. Moreover, for any pair (V’, W) of complex vector subspaces
of V that is admissible for X, the dimension of W is equal to the codimension of
Xreg in V.

Proof. Let (V', W) be an admissible factorisation for X. According to Remark
2, there exists Z € W* such that 2 = Z + I(X) € C|[X] generates the field of
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fractions L of C{X] over the field of fractions K of C[V']. Let F € C[V'][Z] be
the minimal polynomial of Z over K, and let D € C[V’] be the discriminant of F.
Then Xp C Xyeg by Proposition 2.3. Since Xp is connected and dense in X, so is
Xreg. Proposition 2.3 implies codimy X,y = codimy Xp = dim W. 0O

In view of Corollary 2.4 we define the codimension of an irreducible algebraic
subset X in V as the codimension of the submanifold X,eg in V. The codimension
of X in V will be denoted by codimy X. The next lemma describes the behaviour
of the codimension under finite projections.

Lemma 2.5. Let X be an irreducible algebraic set of finite codimension in V,
and let (V/, W) be a pair of complex vector subspaces of V' such that dim W < oo,
V'’ is complementary to W, and the projection p : X — V' is finite. Then the
set X’ = p(X) is an irreducible algebraic set of finite codimension in V', and
codimy X’ = codimy X — dimW.

Proof. Let (V”,W') be an admissible factorisation for X’ in V’. Then the
pair of subspaces (V/,W’ x W) is an admissible factorisation for X in V, and
Corollary 2.4 yields codimy' X' = dim W' =dimW’' x W —dim W = codimy X —
dim W. ‘ O

Let X be an irreducible algebraic set of finite codimension n in V. The next
two lemmas will be used to prove that for any z € X,¢4 there exist n polynomials
ff,\ ... o§n € I(X) such that their differentials dfy,...,df, are linearly independent
at .

Lemma 2.6. We keep the notation and the assumptions of Proposition 2.3.
Suppose that o = (vg, wo) € Xyeq is such that:

(i) the fiber 71 (m(20)) = {vo} X W is transversal to X at xo;

(ii) Z(zo) # Z(z) for all z € p~(p(z0)), = # xo.
Then Z(zo) is a simple root of F(vp, Z).

Proof. It follows from (i) that there exist neighbourhoods U C V of wy,
B C W of wg, and a holomorphic map f : U — B such that X N U x B = I'(f),
where I'(f) C U x B is the graph of f. Let § be a positive real number such
that |Z(z) — Z(zo)] > 0 for all z € p~'(w), = # x0, and let X5 = {z € X :
|Z(z) — Z(zo)| > d}. Since p is a proper map, the fiber p~!(v) is contained in
U x B U X; for all v that are close to vp. Let | be the multiplicity of Z(zy) as a
root of F(vp,Z). For all v € Vp that are close to vy, the fiber p~!(v) contains !
distinct points z;, i = 1,...,1 such that |Z(z;) — Z(z¢)| < d fori =1,...,l. Hence
for all v € Vpp that are close to vy, the graph I'(f) contains ! distinct points of the
fiber p~!(v). This implies [ = 1. . 0

Lemma 2.7 Let X be an irreducible algebraic set of finite codimension in
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V, and let V' C V be a closed complex vector subspace such that codimyV’ =
codimy X. Then there exists a finite dimensional complex vector subspace W C V
such that (V’, W) is an admissible factorisation for X.

Proof. The claim is true when codimy X = 0. Suppose that codimy X = n > 0,
and that the lemma is true for all irreducible algebraic subsets of codimension less
than n in a Banach space. Let f be a non-zero polynomial in I(X) with leading
term fy. Since the set V \ V' is dense in V, there exists a vector v € V \ V'
such that fy(v) = 1. Let T be a bounded linear functional on V' such that U =
KerT D V' and T(v) = 1. Then C[V] = C[U][T] and f = T¢ + Z:Ll a;T%* with
a; € C[U}, i =1,...,d. Thus the projection p; : X — U along {Cv} is finite, and
by Lemma 2.4 the set X’ = p;(X) is an irreducible algebraic subset of codimension
n—11in U. Since codimy V'’ = codimy X', there exists a finite dimensional complex
vector subspace W’ C U such that (V’/, W’) is an admissible factorisation for X’ in
U. Then (V', W’ x {Cv}) is an admissible factorisation for X in V, which finishes
the proof. 0

Proposition 2.8. For any regular point zo of an irreducible algebraic set X
of finite codimension n in V, there exist polynomials fi,..., fn € I(X) such that
their differentials dfi,...,df, are linearly independent at zp.

Proof. By Lemma 2.7 with V' = T, X, there is an n-dimensional subspace W
of V such that (V’', W) is an admissible factorisation for X in V. Let Z,,...,Z,
be a basis of W* that satisfies the following two conditions: (i) Z;(z) # Zi(zq) for
z €p p(x0)), z # zo, i =1,...,n; (ii) 2 = Z; + I(X) € C[X] generates the field
of fractions of C[X] over the field of fractions of C[V'], i = 1,...,n. The existence
of such a basis of W* follows from Remark 2. Let g; € C[V’][Z;] be the minimal
polynomial of z; over the field of fractions of C[V’], i = 1,...,n. Then dg;|lw =
9:(p(z0), Z;(x0))dZ;, i = 1,...,n, and since by Lemma 2.6 gi(p(zo), Zi(zo)) # 0,
i =1,...,n, the differentials dg,,...,dg, are linearly independent at . 0

3. PROJECTIVE ALGEBRAIC SETS

In this section we first consider a complex Banach space V and briefly describe
the complex structure of the corresponding complex projective space P(V'). After
that we study the properties of algebraic subsets of finite codimension in P(V').

Let V be a complex Banach space with a dual space V*. The projective space
P(V) associated with V' consists of all complex lines in V. The set P(V) is given
a structure of a complex manifold as follows. For any v € V, v # 0, the complex
line spanned by v will be denoted by [v]. For a given bounded linear functional
heV* 1l#0,let P(V), = {[v] € P(V) : h(v) # 0}. Denote by A, the affine
hyperplane A, = {v € V : h(v) = 1}, and let pp : P(V), — Ap be the coordinate
map given by @i ([v]) = h(v)~'v. The family of sets P(V)n, h € V*, h # 0, is a
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covering of P(V) by the Hahn-Banach theorem, and it is easy to verify that the
coordinate maps @, h € V*, h # 0, endow P(V) with a structure of a complex
manifold.

We note that for any h € V*, h # 0, the open set P(V), is an affine space.
Moreover, for any F € C[V]y, the function f : P(V), — C given by f([v]) =
h(v)~¢F(v) for [v] € P(V)4, is a polynomial on P(V), because fop;! = F|,, is
a polynomial on the affine hyperplane Aj. Since for every polynomial f on Ay there
exists a homogeneous polynomial F' on V such that f = F|4,, the ring C[P(V )]
of all polynomials on P(V), is naturally isomorphic to the so called homogeneous
localisation C[V)y = {F/h?: F € C[V]q, d > 0}.

A subset X ¢ P(V) is an analytic set of finite codimension in P(V), if for any
z € X there exist a neighbourhood U and a finite number of holomorphic functions
P1y---,¢s € O(U) such that X NU = Z(y1,...,ps). We say that the point z € X
is regular, if there exist a neighbourhood U of x and a finite number of holomorphic
functions ¥, ..., ¥, € O(U) such that XNU = Z(¢, -..,¥n) and the differentials
dy1,...,dyY, are linearly independent at z. The subset X4, consisting of of all
regular points of X, is open in X, and it is known that X,y is dense in X (see
[8]). An analytic set X of finite codimension in P(V) is a submanifold of finite
codimension in P(V), if every point of X is regular.

A subset X of P(V) is an algebraic set of finite codimension in P(V), if there
is a finite number of homogeneous polynomials fi, ..., f. € C[V] such that X is the
set of common zeros of fi, ..., fr in P(V). Every algebraic set of finite codimension
in P(V) is a closed analytic set of finite codimension in P(V'). The ideal generated
by all homogeneous polynomials on V' that vanish on X will be denoted by I(X).
Let I(X)a be the vector space I(X)NC[V]q4. Since I(X) = P >0 1(X)a, the ideal
I(X) is a homogeneous ideal in the graded ring C[V]. The factor-ring C[V]/I(X)
is denoted by S[X] and is called the homogeneous coordinate ring of X. Since
I(X) is a homogeneous ideal in C[V], the ring S[X] inherits the grading of C[V];
S(X) = @459 S(X)a, where S(X)q = C[V]a/I(X)4. The set Z(I(X)) C Visa
cone in V and will be denoted by C(X). It is clear that C(X) is an algebraic set
of finite codimension in V' and C[C(X)] = S(X).

Forany h € V* h # 0, the open set X;, = XNP(V), is an algebraic set of finite
codimension in the affine space P(V),. If F € I(X)q4, then F/h% € I(X}) and,
conversely, if F/h® € I(X},) for some F € C[V]y, then Fh € I(X)44,. Hence the
coordinate ring C[X}] of X}, is isomorphic to the so called homogeneous localisation
S(X) -

We will say that X is an irreducible algebraic set of finite codimension in
P(V) if S[X] is an integral domain. If X is an irreducible algebraic set of finite
codimension in P(V), then X, is an irreducible algebraic set of finite codimension
in P(V)y, for any h € V*, h ¢ I(X). It is clear that, for every irreducible algebraic
set X of finite codimension in P(V), the family of sets C = {P(V),}, h € V*,
h ¢ I(X), is an open covering of X. Moreover, for any P(V)p,, P(V)n, € C the
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intersection P(V'),, N P(V), is dense in both P(V)s, and P(V)y,. Hence all sets
P(V), € C are dense in X.

Proposition 3.1. For any irreducible algebraic subset X of finite codimension
in P(V), the set X,  is a connected open subset of X which is dense in X.

Proof. This follows from Corollary 2.4 and the considerations above. O

In view of Proposition 3.1, we define the codimension of an irreducible algebraic
subset X in P(V) as the codimension of the locally closed submanifold X,eg in
P(V'). The codimension of X in P(V) will be denoted by codimp(y) X.
' Let W be a finite-dimensional complex vector space of dimension n. The
projection map V x W — V induces a holomorphic map

m: P(V x W)\ P(W) — P(V)

given by p([(v,w)]) = [v] for [(v,w)] € P(V x W)\ P(W). For h € V*, h # 0,
let 8y : =Y (P(V)y) — P(V)r x W be the trivialisation given by mx([v,w]) =
([v], h(v)~1w). It is easy to verify that the family of trivialisations 8, h € V*,
h # 0, makes 7 into a locally trivial vector bundle over P(V) with fiber W.

Let Zy,...,Z, be a basis of W*. For any algebraic set X of finite codimension
in P(V xW), we denote by p : X\ P(W) — P(V) the restriction of 7 to X \ P(W),
and by p* : C[V] — S[X] the ring homomorphism given by the composition C[V] <
C[V])[Z1,...,2Z,) = C|[V x W] — S[X]. It is clear that the homomorphism p*
respects the grading of C[V] and S[X], i.e. p*(C[V]4) C S[X]4, d > 0. Furthermore,
for any h € V*, h ¢ I(X), the homomorphism pj, : C[V]n) — C[X}], associated
with the projection pp = p|x, : Xn — P(V)n, is induced by the homomorphism
p* : C[V] — S[X] (via homogeneous localisation with respect to h). Hence if p* is
finite, then pj, is finite for any h € V*, h ¢ I(X).

Remark 1. If p* is a finite homomorphism, then all fibers of the map p¢ :
C(X) — V are finite sets. In particular the cone pEI(O) = C(X)NW is a finite
set. Hence C(X) = NW{0}, which implies X N P(W) = 0. The next proposition
shows that the converse is also true.

Lemma 3.2. Let X be an algebraic set of finite codimension in P(V x W) such
that X N P(W) = (. Then the homomorphism p* : C[V] — S[X] is finite, the set
Y = p(X) is an algebraic set of finite codimension in P(V'), and I(Y) = I(X)NC[V].
If the algebraic set X is irreducible, then the algebraic set Y is also irreducible,
and codimp(y) Y = codimp(y) X —dimW.

Proof. As in the proof of Proposition 2.1, we may assume that dimW =1, i.e.

W = {Ce}, e # 0. Let Z € W* be a basis of W*. Since [(e,0)] € X, the ideal I(X)
contains a homogeneous polynomial g = Z®+a; Z*" ' +...+ap, a1,...,a, € C[V],
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with leading coefficient 1 with respect to Z. Thus p* : C[V] — S[X] is a finite
homomorphism. Let C(X) C V x W (resp. C(Y) C V) be the cone of X (resp.
Y). By Proposition 2.1 the set C(Y) is an algebraic set of finite codimension in V
and I(C(Y)) = I(C(X)) N C[V]. Hence Y is an algebraic set of finite codimension
in P(V) and I(Y) = I(X)NC[V’]. If X is irreducible, then I(X)NC[V’] is a prime
ideal in C[V’], and Y is also irreducible. Let h be a bounded linear functional on
V'’ such that Yy = P(V/)p NY # 0. Since the projection p|x, : Xp — P(V')x
is finite, codimp(y+), Y» = codimp(y), Xp —dim W by Lemma 2.5. This proves
the last claim of this lemma because X, and Y}, are open and dense in X and Y
respectively. . O

The Normalisation Lemma has a natural analogue for projective spaces:

Proposition 3.3. (The Projective Normalisation Lemma) Let X be an alge-
braic set of finite codimension in P(V) and Wy be a finite dimensional complex
vector subspace such that P(Wp)NX = (. Then there is a finite dimensional com-
plex vector subspace W O W, such that for any complementary complex vector
subspace V”’ the projection map p: X — P(V’) is surjective.

Proof. Let Vj be a complex vector subspace which is complementary to Wj.
Since the homomorphism p§ : C[Vy] — S[X] = C[C(X)] is finite by Lemma 3.2,
we can apply Proposition 2.2 to the pair (Vg, Wp) and the cone C(X). Thus there
exists a pair of complementary complex vector subspaces (V/,W), dimW < oo,
W > Wy, V' C Vj, for which the homomorphism p* : C[V’] — §(X) is finite and
I(X)NC[V’'] = (0). Remark 1 shows that P(W)N X = 0, and Lemma 3.2 shows
that the projection map p : X — P(V’) is surjective. If V] is another complex
subspace that is complementary to W, then

CV{] = {f € C[V]: f(v+ w) = f(v) for any w € W} = C[V],
which shows that the projection map p; : X — P(VY) is surjective too. 0

Definition. Let X be an algebraic set of finite codimension in a projective
space P(V). Given a pair (V/,W) of complementary complex vector subspaces
of V, we say that (V',W) is an admissible factorisation for X if dimW < oo,
P(W)N X =0, and the projection p : X — P(V’) is surjective.

The Projective Normalisation Lemma shows that admissible factorisations ex-
ist for any algebraic set X of finite codimension in P(V). If X is irreducible, then
a given pair (V’, W) of complementary complex vector subspaces is an admissible
factorisation for X if and only if P(W)N X =0 and dim W = codimp(y) X.

We note that if the pair (V, W) is an admissible factorisation for an irreducible
algebraic set X of finite codimension in P(V x W), then p* : C[V] — S[X] is an
injective homomorphism, and the field of fractions L of S(X) is a finite extension
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of the field of fractions K of C[V]. Now we are going to prove an analogue of
Proposition 2.3 for irreducible algebraic sets of finite codimension in projective
space.

Proposition 3.4. Let W be a complex vector space of finite dimension n
and let X be an irreducible algebraic set of finite codimension in P(V x W) such
(V,W) is an admissible factorisation for X. Suppose that Z € W* is such that
z = Z + I(X) € S[X] is a generator of the field L over the field K, and let
D € C[V] be the discriminant of the minimal polynomial of z over K. Then
Xp =p Y P(V)p) is a complex submanifold of P(V x W)p of codimension n and
plxp : Xp — P(V)p is a d-sheeted covering map, where d = [L : K].

Proof. We note that for a given h € V*, h # 0, the fraction z/h generates
the field of fractions Ly of S[X]sy over the field of fractions Kj of C[V](). Let
Dy, be the discriminant of the minimal polynomial of z/h over K. According to
Proposition 2.3, the set (X3)p, is a complex submanifold of (P(V)n)p, x W of
codimension n and the map pul(x,)p, * (Xn)p, — (P(V)n)p, is a kp-sheeted
covering map, where k, = [Lj : Kh]. Since K = Ky(h), L = Lp(h), and h
is transcendental over K}, we see that k, = d for h € V*, h # 0. A simple
calculation shows that D), = D/h**=1) which implies (P(V)x)p, (P(V)p)r. To
finish the proof, we observe that the family of sets (P(V)p)r, h € V*, h # 0, is an
open covering of P(V)p. 0

Definition. Let (V/,W) be an admissible factorisation for an irreducible al-
gebraic set X of finite codimension in P(V) and z € S(X);. We will say that
(W, V', z) is an admasstble triple for X, if z is a generator of the field of fractions L
of S(X) over the field of fractions K of C[V]. Given an admissible triple (W, V”, z)
for X, the discriminant of the minimal polynomial of z over K is denoted by D.

Remark 2. According to Remark 2 in Section 2, if (V’, W) is an admissible
factorisation for an irreducible algebraic set X of finite codimension in P(V), then
there is an element z € S(X); such that (V’/, W, z) is an admissible triple for X.

If (W,V’,2) is an admissible triple for an irreducible algebraic set X of finite
codimension in P(V) and y € P(V')p, then the fiber 7~!(y) = {y} x W intersects
the manifold X,., transversely in d points, where d = [L : K|. Let U C V
be the complex vector subspace spanned by W and y in V. Then dim P(U) =
codimp(yy X and P(U) intersects the manifold X, transversely in d points. The
next lemma shows that the number d is the same for all admissible triples for X in
P(V).

Lemma 3.5. Let X be an irreducible algebraic set of finite codimension n in

P(V), and let U, Us be n + 1-dimensional complex vector subspaces of V such
that both sets P(U;) N X, P(U;) N X consist of regular points of X and both
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intersections P(U1) N X,eq, P(Uz) N X,ey are transversal. Then the cardinality of
the finite sets P(U;) N X and P(U;) N X is the same.

Proof. If dimV < oo, then the lemma is true because the cardinality of both
sets P(Uy) N X and P(W2) N X is equal to the degree of X in P(V). Let V'’ be
a finite dimensional complex vector subspace of V which contains both U; and U,
and let X’ = XN P(V’). Then both sets P(U;)NX’, P(W>2)N X’ consist of regular
points of X’ and both intersections P(U1) N X;.,, P(U2) N X,,, are transversal.
Hence the cardinality of the sets P(Uy) N X, P(U2) N X is the same. O

In view of Lemma 3.5 the following definition makes sense.

Definition. Let X be an irreducible algebraic set of finite codimension in P(V).
The degree of X in P(V') is the degree of the field of fractions of S(X) over the field
of fractions of C[V’] for any admissible factorisation (V’, W) for X. The degree of
X in P(V) will be denoted by deg X.

Remark 3. Let X be an irreducible algebraic set X of finite codimension
n < oo and degree d in P(V). Then for any given point o € P(V) \ X there
exists an n + 1-dimensional complex vector subspace U of V such that P(U) passes
through zo, and P(U) intersects X transversely in d distinct regular points of X.
Indeed, let (V',W,2) be an admissible triple for X such that zo € P(W) (see
Proposition 3.3 and Remark 2). Then for any y € P(V')p the complex vector
subspace U, spanned by W and y in V, has the required properties.

Now we are going to show that if ¢ is a regular point of an irreducible algebraic
subset X of finite codimension n and degree d in P(V), then there exists an n + 1-
dimensional complex vector subspace U of V' such that P(U) passes through zg,
and P(U) intersects X transversely in d distinct regular points of X.

Let zp be a regular point of an irreducible algebraic set X of finite codimension
in P(V) and let | C P(V) be a projective line passing through zy. We say that [ is
a tangent line to X at xg if f|; vanishes of order > 1 at z¢ for any f € I(X). The
union of all tangent lines to X at zo will be denoted by P,,X. It is clear that the
set P, X is a projective subspace of codimension n in P(V). Let V' be a closed
hyperplane in V' such that zo ¢ P(V’) and let 7 : P(V)\{zo} — P(V’) be the map
induced by the projection p; : V2 V' xz9g — V’. Let Z: V — C be a bounded
linear functional on V' such that Ker Z = V’. Then for any given homogeneous
polynomial 0 # f € C[V] there are unique homogeneous polynomials a;(f) € C[V’],
i=0,...,m,such that f =37, ai(f) 2™ ao #0, and dega; + m — i = deg f,
1=0,...,m.

Lemma 3.6. Let zy be a regular point of an irreducible algebraic set X of
finite codimension n in P(V') and V' be a hyperplane in V such that zo ¢ P(V’).
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Then+
T(Peo X \ {z0}) = {[v'] € P(V') : ao(f)(v') =0 for all f € UazoI(X)a\{0}}.

Proof. Let vo € z¢ be such that Z(zo) = 1. Since P(V)z is by definition
the affine subspace vg + V' C V, we will identify the tangent space T, P(V) with
V’. Then Po, X \ P(V’) = {[v/,w] € P(V)z : v € T;,, X} and n(FPr, X \ {z0}) =
P(T,,X). Thus it is enough to prove that

TeoX = {V €V’ : ap(f)(v')=0forall f € UgsoI(X)a\{0}}. (3.1)

Denote by A;,X the set on the right-hand side of (3.1). For f € Ua>o I(X)4 \ {0},
let g € I(Xz) be given by g([tv/,v0]) = f(v',v0) = Y ivg @i(f)(@'), ¥' € V'. Then
9(x) = ;50 ai(f)(z — x0) for all z € P(V)z, which shows that ao(f) is the
leading term of the holomorphic germ g,, € Z;,(Xz). Hence Ay, X D C: X,
where Cz,X is the tangent cone of X at zo. According to Proposition 2.8, there
exist polynomials g; € I(Xz), j = 1,...,n such that the differentials dg;,...,dgn
are linearly independent at z. Let g;([v',v0]) = i @ij(v’), v € V’, where
aij € C[V']iy1 for j =1,...,n,0 < i < m;. Then the linear functionals ag;,...,a0n
are exactly the differentials of g1,...,9, at zo. Let f; € C{V]m,+1 be given by
fi(v) = Z:’;’o aij(pr(v)) Z(v)™* v e V,j=1,...,n. Then f; € I(X)m,;+1
and ao(f;) = aoj, j = 1,...,n. Hence Tz X D Az, X. Since T, X = C, X (see
Remark 1 in Section 2), we conclude that A, , X =T, ,X. O

In the next lemma we keep the notation and the assumptions of Lemma 3.6.

Lemma 3.7. Let Y = n(X \ {zo}) Un(Px, \ {z0}).- ThenY is an irreducible
algebraic set of finite codimension in P(V’) such that I(Y) = I(X)NC[V’]. If h :
V' - C, h ¢ I(Y), is a bounded linear functional which vanishes on 7( P, \ {zo}),
then 7|x, : Xp — P(V')s is a finite map (in the sense that the homomorphism
Pn) : C[V](h) — S(X)n) is finite).

Proof. Let f; € I(X), j =1,...,n, be the polynomials which were defined in
the proof of Lemma 3.6. Choose homogeneous polynomials G; = 3 1 bi; Z™ % €
I(X),j=1,...,rsuch that G; = f; for j = 1,...,n, and X = Z(Fy,...,F}).
Lemma 3.6 shows that Z(bos,...,bor) = m(Pr, \ {z0}). Let Dy,..., Dy € C[V’] be
a resultant system of Gy,...,G, (see the proof of Proposition 2.1). The properties
of Dy,...,Dp imply Z(Dy,...,Dp) = w(X \ {zo}) U Z(bo1,...,bor) =Y, which
proves that Y is an algebraic set of finite codimension in P(V").

We note that ao(f) = f for any homogeneous polynomial f € I(X) N C[V’].
Hence any f € I(X) N C[V’] vanishes on both sets m(X \ {zo}) and 7(Py, \ {z0}),
which yields I(X) N C[V’] C I(Y). Since any f € I(Y) vanishes on X, we obtain
I(Y) = I(X)nC[V’].

166 Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 151-182.



Suppose that h € V'* vanishes on m(P, \ {zo}) = Z(bo1,.-.,bon). Then
h belongs to the subspace which is spanned by the linear functionals h; = boj,
j=0,...,n,in V', which shows that the ideal generated by h;/h, j=1,...,n,in
C[V]}(n) is exactly C[V](). Thus, in order to prove that the homomorphism p),
is finite, it is enough to prove that all localisations (p(n))ni/n : (C[V')(n))ni/m —
(S(X)n))njsny 3 =1,...,n, of p(p) are finite. In view of the natural isomorphisms
(CIV')m)nism = (CIV')n;))n/n; and (S(X)my))nj/n = (S(X)(n;))n/n,, We see that
it is enough to prove that all homomorphisms p(s,) : C[V'|n,) = S(X)n;), J =
1,...,n, are finite. To this end we note first, that C{V](,) = C[V'|u,)[Z/hj), j =
1,...,n. Let dj =degf; j =1,...,n. Then h;d’fj € C[V')(n;)[Z/h;] is a monic
polynomial which belongs to I(X4;), j = 1,...,n, whence all homomorphisms
P(h;) C[V'](hj) > S(X)(hj), 7 =1,...,n, are finite. O

Lemma 3.8. For any regular point zo of an irreducible algebraic subset X
of finite codimension n and degree d in P(V), there exists an n + 1-dimensional -
complex subspace U of V such that P(U) passes through zo and P(U) intersects
X transversely in d regular points of X.

Proof. Since the claim is obvious when X is a linear projective subspace of
finite codimension in P(V'), we will assume that deg X > 1. Let V’ be a closed
hyperplane in P(V) such that zo € P(V’) and let = : P(V) \ {z0} — P(V’) be
the map induced by the projection p; : V = V/ x g — V’. Then according to
Lemma 3.7, the set Y = n(X \ {zo}) Un(Ps, \ {Zo}) is an irreducible algebraic set
of codimension n — 1 in P(V'), and the set n(P,, X \ {zo}) is a linear projective
subspace of codimension n in P(V). Let (V”, W’) be an admissible factorisation for
Y in P(V’) and let W be the n-dimensional vector subspace of V' which is spanned
by W” and zo. Then P(W)N (X U P, X) = {zo} because P(W’) = NY. Denote
by 7' : P(V)\ P(W) — P(V") (resp. «" : P(V')\ P(W') — P(V")) the map
induced by the projectionV = V" x W — V" (resp. V! = V" x W' — V"). Since
the set n'(Pr, X \ {zo}) is a projective hyperplane in P(V"), there exists a linear
functional ' € V" such that Z(h') = n'(Pr, X \ {zo}). Let h € V'* be given by

the composition V' = V" x W' - V” X, C. Then h vanishes on 7{ Pz, \ {Z0}) and
the map n|x, : Xp — P(V’), is finite by Lemma 3.7. Taking into account that
the map 7|y : Y — P(V") is finite and surjective, we conclude that 7’| x, : Xp —
P(V")ps is a finite surjective map. Hence P(V), 2 P(V")p x W is an admissible
factorisation for Xj in P(V);. According to Remark 3 in Section 2, there is a point
y € P(V"), such that the set 7'~ (y) N X} consists of regular points of X», and the
intersection of 7'~ *(y) and X, is transversal at each of these points. We also note
that 7'~ (y) N Xp7' " (y) N X and 7'~ (y) N Py, X = 0 because 7'~ (y) C P(V)p.
Let U be the n + 1-dimensional complex véctor subspace spanned by W and y in
V. Since P(U) = '~ (y) U P(W), we obtain P(U)N X = (7'~ (y) N Xx) U {z0}
and P(U)N P,, X = {zo}. Hence the set P(U)N X consists of regular points of X
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and the intersection of P(U) and X is transversal at each of those points. O

Proposition 3.9. If X is a submanifold of finite codimension in P(V'), then
for any zo € P(V) there exists an admissible triple (V/, W, z) for X such that
xo & P(W) and 7(zg) € P(V’)D.

Proof. Let n = codimp(y) X and d = deg X. Choose an n + 1-dimensional
complex vector subspace U of V which passes through zo and intersects X trans-
versely in d regular points z;, i = 1,...,d, of X (see Remark 3 and Lemma 3.8).
Choose an n-dimensional complex vector subspace W of U such that z; ¢ P(W),
i=0,...,d. Let V' be a vector subspace of V which is complementary to W.
Then (V’, W) is an admissible factorisation for X and #~!(n(zo)) = P(U)\ P(W).
Let y = w(xo) = [vp), vg € V', and let z; = [vg + wi), ws € W, i = 1,...,d.
Choose a linear functional Z : W — C such that Z(w;) # Z(w;) for i # j, and set
z =27+ I(X) € S(X). Let F(v',Z) € C[V'][Z] be the minimal polynomial of z
over the field of fractions of C[V']. Since F(v), Z(w;)) =0, ¢ =1,...,d, the degree
of the polynomial F is equal to d. Hence z is a generator of the field of fractions of
S(X) over the field of fractions of C|V] and n(zp) € P(V')p. O

Corollary 3.10. For any submanifold X of finite codimension in P(V'), there
exists a family of admissible triples {(V//, W}, 2;) }ier, for which the family of open
sets { P(V)p, }ier is an open covering of P(V).

Proof. This is just a rephrasing of the previous proposition. 0

4. A REPRESENTATION THEOREM FOR DIFFERENTIAL FORMS

In this section, we consider a submanifold X of finite codimension in P = P(V)
and an admissible triple (V', W, z) for X in P. We note that p*Op(y+(k) = Ox(k),
where Ox (k) is the restriction of the line bundle Op(k) to X, k € Z. According
to Proposition 3.4, the map p|x, : Xp — P(V’)p is a finite covering of degree
d = deg X. We will show that, for any differential form g € C}, ,(Xp,Ox(k)), there
exist unique differential forms g; € C} (P(V')p,Opwv(k—7)), =0,...,d -1,
such that

d-1
9= (plxp)79;®2. (4.1)
-

Representation (4.1) will be derived in a more general setting. Let Y and Z
be complex manifolds and let 7 : Y — Z be a covering map of finite degree d. Let
L — Z be a given holomorphic line bundle over Z and let M — Y be the line
bundle 7* L. The ring Snez H%(Z, L™) will be denoted by S.

Proposition 4.1. Let s € H)(Y,M) and @; € H%(Z,L*), i = 1,...,d, be
such that s¢ 4 (7*a;)s? ™! + .-+ + (7*ag_1)s + m*aq = 0. If the discriminant D €
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H(Z. L¥4=1)) of the polynomial Z¢ + ;291 + ... + ay_1Z + a4 € S[Z] vanishes
nowhere on Z then for any given differential form g € Cp (Y, M *), n € Z, there
exist unique differential forms g; € Cr (2, Lk=3), §=0,...d — 1, such that

d—1
9= mg®s. (4.2)
) =0

Furthermore, the differential form g is _5-£losed (resp. _5-_exact) if and only if all
differential forms g;, j =0....,d — 1, are J-closed (resp. J-exact).

Proof. Since the claim is local with respect to Z, we may assume that L = Oy
and that 7 has d distinct right inverses r; : Z — Y, gr; =idz, i = 1,...,d. Let
s; =ris € H°(Z,0z), i = 1,...,d. Then s; (b) # si,(b) for iy # iz and b € Z
because D vanishes nowhere on Z. Eq. (4.2) is equivalent to the linear system

d-1
Zsfg,-::r;’g, i=1,...,d.
—

[ts determinant is

A= H (8iy — Siy) -

1< <ix<d

Since A? = D, the holomorphic function A vanishes nowhere on Z. Thus the
differential forms g;, 7 = 1,...,d, are determined uniquely by Cramer’s formulae:
g; =A~1det(A;),j=0,...,d -1, where A;, 5=0,...,d — 1, is the matrix

-1 i1 —
1 s s : 19 s{+1 s
j -+ d—1
A = S2 ) 59 8 2
J llllllllllllllllllllllllllllllllllllllll
1 41
1 sS4 sh 39 sff s‘; !

Since rig € C} ,(Z) for i = 1,...,d, all differential forms g;, j = 0,...,d — 1, also

belong to C} (Z). We note that g = Z?;& 7*(0g;) ® s7 because the section s is
holomorphic. Since the representation (4.2) is unique and the homomorphism 7*
is injective, the differential forms g;, j =0,...,d — 1, are d-closed (resp. O-exact)
if and only if the differential form g is 0-closed (resp. O-exact). O

Now we can deal with Representation (4.1).
Proposition 4.2. Let (V',W, z) be an admissible triple for X in P. Then for

any differential form g € C';'q(X p,Ox(k)), k € Z, there exist unique differential
forms g; € Cp (P(V')p,Opviy(k —3)), 5 =0,...,d — 1, such that

d—1
9= (plxp)g®z2.
j=0
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Furthermore, the differential form g is -closed (resp. d-exact) if and only if all
differential forms g;, 7 =0,...,d — 1, are J-closed (resp. J-exact).

Proof. By Proposition 3.4, the holomorphic map p|x, : Xp — P(V')p is a fi-
nite covering of degree d = deg X . Proposition 4.2 now follows from Proposition 4.1
with Y = Xp, Z = P(V')p, L = Opwv(1)|p(v),, and s = z|x,. O

We also need a version of Proposition 4.2 for an algebraic submanifold X of
finite codimension n in a Banach space V. Let (V',W) be an admissible fac-
torisation for X as in Section 2, and let Z;,...,Z, be a basis of W* such that
z = Zy + I(X) € C[X] generates the field of fractions of C[X] over the field of
fractions of C[V’]. Let D € C(V’] be the discriminant of the minimal polynomial
F of z over the field of fractions of C[V']. By Proposition 2.3, the holomorphic
map pp = plx, : Xp — V}, is a covering of degree d = deg F. We note that
the vector bundle 779V’ — V'’ is canonically isomorphic to the trivial bundle
VI x NPV AV S V.

Proposition 4.3. For any differential form g € C} ,(Xp), there exist unique
differential forms g; € C§ ,(Vp), 5 =0,...,d — 1, such that

d—1
9=> 2pp9
Jj=0

If U is an open subset of V, such that pp has d distinct right inverses r; : U — Xp
onU,mor; =idy,i=1,...,d, then

g;(b,€,€) = D(b)~! A(b) det A;(b,&,8), §j=0,...,d—1,
for be U, € € APV, € € NTW’, where
A(b) = H (2(ri, (b)) — 2(r3, (b))

1<i1<iz2<d
and A;(b,&,€) is the d x d matrix

1 z(ri (b)) --- Z(Tl(b))J:-l T;g(b,{,:f:) z(rl(b))J:+1 Z(T;(b))d_l
1 z(ra(b)) -+ z(ra(B))! 139(b,€,€) z(ra(b))Ftl oo z(rg(b))d?

..........................................................................

1 z(rq(d)) --- z(ra(b))y! r;g(b,ﬁ,z) z(rg(®)PFY - 2(rq(b))*?

Proof. We use Proposition 4.2 with Y = Xp, Z =V}, L = OV/), and s = z.
Since 8; = r?(s) = z or;, we have s;(b) = z(r;()), i = 1,...,d. Hence

ABZ = [ (sia(b) =i, (b))

1<, <iz<d

= JI (u®)-zr,0)? = D),

141 <iz<d
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which gives D(b)~*A(b) = A(b)~!. The claim now follows from Cramer’s formulae
as in the proof of Proposition 4.2. 0O

Propositions 4.2 and 4.3 are used in full generality in [3]. Here we use them
only for p = g = 0. Let us consider first the affine case.

Lemma 4.4. We keep the assumptions and the notation of Proposition 4.3.
Let g € H°(X,0Ox) and g; € H*(V},,0v+), 5 =0,...,d — 1, be such that

d-1
9= 2ppy;-
=0

Then there exist §; € H(V/,Ov:), 5 = 0,...,d — 1 such that Dg; = gjlvy for
j=0,...,d—1.

Proof. By virtue of Riemann’s removable singularity theorem it is enough to
show that, for any by € Z(D), there is a neighbourhood U of by such that all
functions Dg;, j = 0,...,d — 1, are bounded on U NV},. Let Gj; : X4 - C,
7 =0,...,d—1, be the holomorphic function given by

Gj(z1,22,...,24) = A(z1,22,...,2q) detA;(z),Z2,...,2Z4)

where

Az, x2,...,2a) = H (2(zi,) — 2(z3,))

1< <2 <d

and A;(z1,x2,...,Z4) is the matrix

1 2(z1) - z(@)™! g(xy) 2(z:)tr oo z(zy)d?
1 z(m2) - z(z)™! glze) z(za)t! oo z(zp)d!
1. . z( xd .). e z(md) o g(zd) . z(md)rl- e ;('a;(;).é—“l

Since the fiber p~1(by) is a finite set, there is a neighbourhood N of p~!(bp) such
that the functions G;, j =0,...,d~1, are bounded on N¢ and sincep: X — V' is
a proper map, there is a neighbourhood U of by in V'’ such that p~!(U) C N. By
Proposition 4.3, D(b)g;(b) = Gj(z1(b), z2(b),...,z4(b)), 5 =0,...,d—1, forb € V},
where {z1(b), z2(b),...,za(b)} = p~(b). Hence all functions g;, 7 =0,...,d -1,
are bounded on U N V), because {z1(b)} x {za(b)} x ... x {za(b)} € N for any
beUNVp. O

Lemma 4.5. We keep the assumptions and the notation of Proposition 4.2.
Let g € HO(X,0x(k)), k € Z, and g; € H(P(V')p,Opvry(k—35)), i =0,...,d -
1, be such that |

d-1
glxp = Y (Plxp)*g5® 2.
7=0 ‘
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Then there exist §; € H(P(V'),Opwn(k —j +degD)), j = 0,...,d — 1, such
that ng = ngP(V’)D fOl’j = 0, . ..,d— 1.

Proof. Let s = deg D = d(d — 1). It is enough to show that for any h € V'".
h # 0, the holomorphic functions Dg;h?=%=% € HO(P(V')p N PV, Opyn, )

7 =0,...,d—1, can be extended to holomorphic functions on P(V’),. Since
d—‘l . °
gh“klxoﬂxr. = Z (Z/h):’ (plxonxh)'(gjh]—k) )
j=0
this follows from Lemma 4.4. 0

Proposition 4.6. If X is a submanifold of finite codimension in P = P(V)
and (V’, W, z) is an admissible triple for X in P, then for any g € H°(X, Ox(k)),
k € Z, there exists § € H°(P,Op(k + deg D)) such that Dg|x, = glx,-

PT‘OOf. Let g; € HO(P(VI)D,OP(VI))(’C - ]), ] o O,d - 1, and g,— €
HO(P(V'),Op(k —j+degD)), j=0,...,d — 1, be as in Lemma 4.5. Choose
a bounded linear functional Z : V -— C such that Z|X = Z + I(X) = z, and
set Jo = Y50 7°G; ® Z7 € HO(P\ P(W),0p(k + deg D)), where  is the
vector bundle P\ P(W) — P(V’). Since codimp P(W) < 1, there exists a
§ € H°(P,Op(k + deg D)) such that glp\p(w) = Jo. According to Lemma 4.5, we
have golx, = Dg|x, which implies §|x, = Dg|x- 0

5. A DOLBEAULT ISOMORPHISM FOR INFINITE-DIMENSIONAL
PROJECTIVE SPACES

In this section, we will assume that V' is a Banach space which admits smooth
partitions of unity. In general we say that manifold X admits smooth partitions of
unity if for any open cover {U;}ic; of X there are 8; € C°°(X), supported in U;
such that )7, ., 6; = 1, the sum being locally finite. Hilbert spaces are examples
of such manifolds. Separable and reflexive Banach spaces that localise are other
examples. Paracompact manifolds modeled on spaces that admit smooth partitions
of unity also admit smooth partitions of unity. We refer to [2] for more details. In
particular if V' is a Banach space that admits smooth partitions of unity, then the
associated projective space P = P(V) also admits smooth partitions of unity.

For a finite-dimensional complex manifold X, the Dolbeault cohomology groups
and the Cech cohomology groups of a holomorphic vector bundle on X are the same
by the Dolbeault isomorphism. Let X be a submanifold of finite codimension in
P and let £ — X be a holomorphic vector bundle over X. We will consider
a covering {X;};c; of X with Zariski open sets and define a complex C(X, E)
which is a subcomplex of the usual Cech complex associated with {Xi}ier and E.
In this section, we will prove that HY(C(P,E)) & H%9(P,E) for ¢ > 0. Since
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H™(P,E) = 0 for ¢ > 1 (see (4, Theorem 7.3]), we obtain H%(C(P,E)) = 0 for
g > 1. The vanishing of the higher cohomology groups of the complex C(P, Op(n)),
n € Z, is used in the next section.

Let D = {D; € C[V]}ics be a collection of homogeneous polynomials such that
U = {Pp, }icr is a covering of P. The degree of the polynomial D; will be denoted
by d;, i € 1. The open set

Xp,N...nXp, ={z€X : D, (z) #0 form=0,...,q}

will be denoted by Xio...i,- The complex C(X, E)), corresponding to the collection
D, is defined in the followmg way. For any natural number N, we define first a
complex of abelian groups

Cn(X.E) = {C4(X, E), 6} 450

as follows: Let C{,(X, E) be the subgroup of []; g€l H°(X,..i,, E) that consists

of all ¢ = {@i,...i, € HXiy...i,» E) }io.....i;er Such that for any io,..., i, € I there
exists a global section @y, ;, € HY(X,E ® Ox(Nd;, + ...+ Nd;,)) for which

(p‘in...i,, = (Di() o Diq)_N((ﬁio---iq)lxio...iq *
We use the standard convention for alternate cochains: if {mg...m,} is a permu-
tation of {0...¢}, then ¢;,, i, = (=1)¢tmo-may, ., where e(myg ... my) is the
parity of the permutation {my...m,}. The differential § : CL(X, E) — C% (X, E)

is the Cech coboundary operator:

qg+1
(dcp)iﬂ---iq&-l = Z (~-]')"z (p'io...{;:...i,,+1 'Yio---"¢1+1 . (5.1)

m=0

Since

g+1
(D’:O te 1q+l)l\r(6ip)il)-niq+l - {Z ( 1)m DA’ ~10 'lm 1(14-1)} IX;() 1 (5'2)

m=0

4 is well defined. We note that for any N € N, there is a natural injective chain
map

CN(X, E) - CN+1(X1 E)
The complex C(X, E) is now defined as the union of all complexes Cy (X, E):

C(X,E) = G Cn(X,E). (5.3)
N=0

Remark 1. The definition of the complex C(X, E) was suggested by the
proof of {4, Theorem 8.2]. We note, however, that the proof of [4, Theorem 8.2]
is not rigorous since it assumes implicitly that P is paracompact with the Zariski
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topology. We also note that the complex C(X, E') depends not only on the covering
U = {Pp,}ics but also on the collection of polynomials D = {D;};c;. For example,
let I = N and let D = {D; € C[V]}ier be a collection of homogeneous polynomials
such that U = {Pp,}ier is a covering of P. Let D] = (D;)', i € I. Then the
covering U’ = {Pog}ie 1 is the same as the covering U, but the complex C'(X, E),
corresponding to the collection of homogeneous polynomials D’ = {D]}e/, is not
necessarily the same as the complex C(X, E).

The next theorem is the main result of this section.

Theorem 5.1. Let V be a complex Banach space that admits smooth par-
titions of unity and let P = P(V). Let {D;}ier be a collection of homogeneous
polynomials such that P = U;erPp,. Then HY(C(P,E)) = 0, ¢ > 1, for any
holomorphic vector bundle £ — P of finite rank over P.

To prove Theorem 5.1, it is enough to show that the group H4(Cn (P, E)) =0
for N € N, ¢ > 1. We will prove that HY(Cy(P, E)) & H*9(P,E) for N € N,
g > 0. To this end we define a double complex By (P, E) = {BY(P, E, 4,08}, 430
as follows. Let BR/(P, E) be the subgroup of the group [  C§%(Py,..4,, E)

‘iu,...,iqel

that consists of all ¢ € [][ C§%(Pi...,, E) such that for any idg,...,i, € I
10,...,8¢ €1
there exists a global section

Pig...ig € C3%(P,E® Op(Ndiy + ...+ Nds))

for which
Pio...ig = (Dig - - Dz‘.,)—N%o...-i.,lP.-(,....;, .

The differential
§: BR(P,E) — BY*!(P,E)

is given by formula (5.1). Formula (5.2) shows that § is well defined. The differential
3 : BY(P,E) — B%'9(P,E)

is given by ~
(09)io...iy = OPig...iq» 10,.--18g €1,

for ¢ € BY} (P, E). Since
(Diy -+ Di, )N (8)io..i, = O((Dig - Di, )N @io...iy) = O(Pio...4, |Piy...i,)s
we see that 9 is well defined, too.

Lemma 5.2. Let V be a Banach space that admits smooth partitions of unity
and let P = P(V). Then, foranyn € Z and N € N:
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i) HE(BN(P, E)) =0 for p > 1
ii) Hj(BY(P,E)) =0 for ¢ > 1.

Proof. Suppose p > 1, and let ¢ € BY(P,E) be such that 8p = 0. For
i0,-..,1q € I, let @y, i, € C§oH(P, E® Op(Nd;, + ...+ Nd;,)) be the unique form
such that

(D, - ‘Di.,)N‘Pio...iq = Gig...iy|Pig..c, -
Since the form ¢;,...;, is closed, the form @, .. ;, is closed, too. By [4, Theorem 7.3
there exists a form 1;,-0,._,-,‘ € C§y-1(P,E ® Op(Nd;, + ... + Nd;,)) such that
-3'1,51‘0‘..;',, = Qig..ig- Lt Y € BK,‘“’(P, E) be the cochain given by

wio...'iq = (Dio T Diq)—N('&io...iqIP.‘O,,,,'(‘) = C(?;;—I(Pio...iq)E)) iO, tee 11:(1 €l.

Since 31/),-,,,,,,-,, = Qiy...i, for all ig,...iq € I, we obtain ¢ = . This proves (i).

Suppose ¢ > 1, and let ¢ € BY/ (P, E) be such that do = 0. Let {6;} be a
smooth partition of unity which is subordinated to the open covering { P; }ics, and
let g € I CSS(Piy...iq-1 E) be the cochain given by

i0yeeriq1 €T
Big..igo1 = Z 0iiio...i0—1 (5.4)

i€l
for 4g,...,ig—1 € I. (On the right-hand side of (5.4) we use alternate cochains.) A

simple calculation shows that 6@ = ¢ (see 1, Proposition 8.5]). Let us verify that
7 € BP9 1(P,E).

(D,‘" Tt Di,,_l)N@,,...i(,_l =

= {Z 6: (Dilp.) ™™ [(DiDso -+ Diy, )™ @ity 1}

el
= {Z 0; (Dslp.)~" ¢iio---iq-z}

i€l

Vt'o..,iq_l

‘/ia...l'q_l

Since 8;(D;lp,)™N € C=(P,0p(—Nd;)) and supp8;(D;|p,)~" C supp ; for all
1 € I, we obtain

Y 0:(Dilp) ™ Biig..igs € Cop(P,E®Op(Ndiy +...+ Ndj,_,)).
i€l
Hence g € BP9~1(P, E). Since 6@ = ¢, part (ii) has been proved. 0

Remark 2. We note that we were able to prove part (ii) of Lemma 5.2 because
the same N “worked” for all cochains p;,..s,, i0,...,%q € I, (cf. Remark 1.)

Now we can give a proof of Theorem 5.1.

Proof of Theorem 5.1. As it has already been mentioned, it is enough to show
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that HI(Cn(P,E)) =0forall ¢ > 1,n € Z, and N € N. It is well known (see
for example [1, Proposition 8.8]) that if conditions (i) and (ii) of Lemma 5.1 hold
for a double complex B = {BP?,d',d"}, >0, then the groups HY (HY. (B)) and
'Hg,,(Hg,( B)) are naturally isomorphic for all ¢ > 0. We note that the complex
HY(B(P,E)) is the Dolbeault complex of the vector bundle £ on P, and the
complex HZ O(B (P, E)) is just the complex Cx (P, E). Since the higher Dolbeault
cohomology groups of the vector bundle E on P vanish by [4, Theorem 7.3], we
obtain H1(Cny(P,E))=0forqg>1, N € N. 0]

6. A DOLBEAULT ISOMORPHISM FOR COMPLETE INTERSECTIONS IN
INFINITE-DIMENSIONAL PROJECTIVE SPACES

In this section we assume that X is a complete intersection in P, and that
{(V/, Wi, 2;) }icr is a collection of admissible triples for X such that U = {Pp, }ier
is a covering of P. According to Corollary 3.10, such collections exist for every
submanifold X of finite codimension in P. Let C(X, Ox(k)) be the complex (5.3)
corresponding to the collection of homogeneous polynomials D = {D,}ier and to
the line bundle Ox(k), & € Z. In this setup all polynomials D;, ¢ € I, are of the
same degree d; = d(d— 1), where d = deg X. We will show that if P admits smooth
partitions of unity, then H9(C(X,0x(k))) =0forg> 1,k € Z.

Before dealing with the general case, let us outline the argument in the case of a
hypersurface. Suppose X is the set of zeros of a homogeneous polynomial P € C[V]
of degree d. Then multiplication by P yields the exact sequence of sheaves

0« Ox(k) « Op(k) & Op(k — d) — 0. (6.1)
The sequence (6.1) induces an exact sequence of complexes

0 — C(X,0x(k)) «— C(P,0p(k)) < C(P,O0p(k — d)) « 0 (6.2)

Since by Theorem 5.1 HY(C(P,Op(k))) = 0 for ¢ > 1, k € Z, the long exact
sequence of cohomology groups that is associated with the short exact sequence
(6.2) yields HY(C(X,Ox(k))) = 0 for ¢ > 1, k € Z. This argument carries over
to complete intersections in P because the exact sequence (6.1) is a special case of
the Koszul complex.

To define complete intersections in P, we need the notion of a regular sequence
from commutative algebra.

Let A be a commutative ring and let ay,...,a, € A. Let I;,5 =1,...,n, be
the ideal generated by a1,...,a; in A. The sequence ay,...,a; is called reqular if
I # A and a;+I;-1 is not a zero divisor in the factor-ring A/I;_y for j =1,... n.

Given a commutative ring A and a;,...,a, € A, we define a complex K as

follows: |
Ko*——-“!—-Kp__)(—c-’-Kp(-“-(—-an—O
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(cf. [5]) Set Ky = A. For 1 < p <k, let K, = ®&Aej,..;, be the free A-module of
rank (’r;) with basis {¢}, . ;, }1<j,<...<j, <k The differential d : K, — K is given

by
P

dlegyg) =Y (1) 15851 5,5y
r=1
(for p =1, set d(e;) = a;). One checks easily that dd = 0. The complex K is called
the Koszul complex corresponding to ay,...,a,. We note that d(K;) = I, C A
and coker{ Ko « K1} = A/I,.
The proof of the following important theorem can be found in [5].

Theorem 6.1 Let A be a commutative ring and let a;,...,a, be a regular
sequence in A. Then H,(K) =0 for p > 0. If A is an N-graded ring and ay, ..., ay,
are homogeneous elements of positive degree, then the converse is also true.

It follows from Theorem 6.1 that if A is an N-graded ring and aq,...,a, is a
regular sequence that consists of homogeneous elements of positive degree then any
permutation of a;....,a, is also a regular sequence.

Definition. A submanifold X of finite codimension in P is called a com-
plete intersection if there exists a regular sequence of homogeneous polynomials
Py, ..., P, that generates the ideal I(X).

From now on we assume that X is a complete intersection in P, and P;,..., P,
is a given regular sequence of homogeneous polynomials in C[V] that generates
I(X). We will denote by I the Koszul complex corresponding to P, ..., F,.

Let C(X), C(P), and Cn(P), N € N, be the complexes

C(X)=EPC(X,0x(k),  C(P)=EDC(P,0p(k),
keZ keZ
and Cn(P)=EPCn(P,0p(k)), NEeN.
keZ

Let us note that C(P) = |JyenCn(P). We are going to construct a resolution of
the complex C(X)

0 C(X) & Coemnv i Cpoy ¢ Cptm v = Cp = 0 (6.3)
such that H1(C,) = 0 for ¢ > 0 and p = 0,...,k. This will immediately imply
HYC(X,0x(k))) =0 for g >0 and any n € Z.

In the construction of the resolution (6.3) we will use the existence of a natural

C[V]-module structure on the complexes Cy(P), N € N, and C(P). To exhibit this
module structure, we consider homogeneous polynomials of degree m as sections of

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 151-182. 177



the line bundle Op(m). If P € C[V],, and ¢ € C5(P,Op(k)), then it is easy to
verify that the collection

(Pﬁo)in...z',, — P(pio...i,‘ € HO(Piu...i,l) O.P(k + m)) (64)

is in C§,(P,Op(k +m)). Thus the group C%(P) = ®kez CH(P,0p(k)), ¢ > 0,
has a structure of a C[V]-module that is given by (6.4). It follows from (5.1) and
(6.4) that the coboundary operator & : C%(P) — CLt(P) is a homomorphism of
C[V]-modules. Since C(P) = UnenCn(P) and since the C[V]-module structures
on Cn(P) and Cn41(P) agree for all N € N, the complex C(P) also has a C[V]-
module structure.

Remark 1. For N € Nand i, ...,iq € I, let C[V|(D;, - - - D,-q)‘N be the C[V]-
module generated by (D;, - -+ D;, )~V in the field of fractions of C[V]. It is clear that
CIVI(Ds, - -+ D;, )~V is a free C[V]-module of rank 1. It follows from the definition
of the groups C§, (P, Op(k)) that, for any ¢ € C5(P) = ®rez C% (P, Op(k)), there
exist unique @;,. i, € ®rez H°(P,Op(k)), io,...,iq € I such that

Pi...ig = (Dig =+ Dig) ™ (Big...1) | Pig. 1,

for any io,...,i; € I. Since ®rez H*(P,Op(k)) = C[V], there exists an isomor-
phism of C[V]-modules

P = [[ CWviDi--Di)". (6.5)
10yeenyig €1
The resolution (6.3) is constructed as follows: for p = 0,...,n, let , and
Cp,N, N € N, be the complexes '
C =K, Rciv) C(P) and Cpn = K, Rciv] Cn(P), NEeN. (6.6)

The differential d : K, — K,—; induces chain maps
d'=d®id:Cp - Cp—1 and d'=d®id:Cpn = Cp-1n, NEN, (6.7)

forp=1,...,k.

Proposition 6.1. The sequence of complexes

C04—---<—Cp_1+9—l-cp+—---<——cn+—0

is exact.
Proof. Since C(P) = UnenCn(P) it is enough to check that for any N € N
and any g > 0 the sequence of C[V]-modules

d’
Cg'N‘_""_c:_l’N"“CZ‘N('“"'('—C,'ql’N‘_O (6.8)
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is exact. It follows from (6.6), (6.6) and (6.7) that the complex (6.8) is isomorphic
to the complex

Keci(P)=Ke [] CIVI(Dy---Di,)"".
i0,..yig €T
Since each K,, p = 1,...,k, is a finitely generated C[V]-module, there is an iso-
morphism of complexes
Ko [] CVIDy--Di,)™ = ] K®CWVIDi---Di) ™. (69
10,0 yig €l i, iq€]

Now we note that the complex on the right-hand side of (6.9) is exact because
the Koszul complex is exact by Theorem 5.1, and C[V](Dy, -+ D;, )™V is a free
C[V]-module for any i,...,iq € I. 0

It remains to define a surjective chain map r : Co — C(X) such that kerr =

im{C, 4, Co}. We note that the complex Co coincides with the complex C(P)
because Ko = C[V]. Then the map r : Co — C(X) is given by the restriction of the
sections of the line bundles Op(k), k € Z, to the submanifold X. More precisely,
the restriction homomorphisms

{H°(Pi,..:,, Op(k)) = H*(Xi...ig» Ox (k)) }io,....iq€1 »
HO(Pi,...i,, Op(K)) 3 @ig...iy = (Pia..ig) | Xq..0, € H°(X,..i,, Ox(K))

induce chain maps ry : Cn(P,Op(k)) — Cn(X,0Ox(k)) for k € Z, N € N. The
collection of chain maps {rn}nen then induces a natural chain map

% : C(P,Op(k)) — C(X,0Ox(k)) (6.10)

for any k € Z. The next lemma is instrumental in the proof of the surjectivity of
the chain map (6.10).

Lemma 6.2. Suppose that
® € H(X,,..,,Ox(k)) and &€ H°(X,Ox(k+ Nd;, +---+ Nd;,))

are such that ® = (Dio“‘Di,,)_N(E)lx
sections

¢ € HO(Pi,..i,, Op(k)) and ¢ € HO(P,Op(k + (N + 1)diy + -+ (N +1)d3,))

,,) for some N € N. Then there exist

ige..

SUCh that‘ @ = (p|Xlo...iq a’nd <p = (Dio o .Dill)_N~l¢lpio...iq *

Proof. By Proposition 4.6, there exists a homogeneous polynomial P € C[V]
such that deg P = k + Nd;, + --- + Nd;_ + di, and (Dy, ®)|x,, P|x,,- Let

@¢=D;, - D; Pe H(P,0Op(k+ (N +1)di, +--- + (N + 1)d;,))
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and
Y= (D'iu”'D'q) A -l E HO(Pinn-iq’OP(k))'

.....

Then @ = ¢|x,, , which proves the Iemma. 0

Lemma 6.3. The natural chain map
C(P,0p(k)) — C(X,0x (k)

is surjective for any k € Z.

Proof. Let @ be a cochain in CJ,(X, Ox(k)). It follows from Lemma 6.2 that
for any g, . . .,iq € I there are @;,..;, € H(P,Op(k+(N+1)d;,+---+(N+1)d; ))
and @;,..i, € H*(Pi,.. 1,,Op(k)) such that

—-N-
‘pio...iqlx\’;o_,,,q = (I)iu...i,, and Spiu...i,, = ( i D ) 1(8010 .1, lP i‘l) .

By the definition of the group C% (P, Op(k)), the cochain ¢ = {®i,. i, }ig...i,er
belongs to Cjy_ (P, Op(k)) and ry(¢) = @. 0

Let r: Cp = C(P) — C(X') be the chain map
r=®rezmk : Co = Grez C(P.Op(k)) — @rez C(X,Ox (k) = C(X),
where 71, : C(P,Op(k)) — C(X,0x(k)), k € Z, is the chain map (6.10).

Lemma 6.4. The sequence of complexes 0 — C(X) « Cy & ¢y is exact.

Proof. By Lemma 6.3 the chain map r is surjective. It remains to show that
kerr = im d’. Let

0 = {©iy...i, € Srez H*(Piy..i,, Op (k) }io,... 1,61 € Co x(P) = CL(P)

be such that r(¢) = 0. For any 1'0, - ,zq € I, there exists a polynomial ¢;,  ; €
C{V] such that @i, 4, = (D, -+~ Di, )™ (@iy..4,1x,, . ., )- Each polynomial @;, ;,
iy .. iq €1, vamshes on X because in...i, vanishes on Xj, ; and the set X,
is dense in X. Since the ideal I(X) is gener ated by P;... Pn, for any polynonna.l
Dig...iy» t0s- - -+ iq € I, there exist polynomials Py, i, -, Pni,..i,, such that

n
Pig..iy = E P;iPjiy. i, -
—

Let Pj = {(Di') "'Di,,)"NIDJ.i“...i.,}io ,,,,, i, €1 S C?V(P), ] = 1,...,7’1.. Then @ =
k

Q¢; € K1 ®CL(P) =Cl\(P).

I
1M
b(b
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Then
n n n
d@=d | e@p | =3 de)0¢ =) Py =¢.
j=1 =1 i=1

Thus for any N € N, any ¢ > 0, and any ¢ € Cj 5(P) such that r(¢) = 0, there
exists p € C{ y(P) such that d'(¥) = ¢. (1

Theorem 6.5. Let |V be an infinite-dimensional Banach space that admits
smooth partitions of unity and let P = P(V). If X is a complete intersection in
P.then H1(C(X,0Ox(k))) =0for ¢ > 1 and any k € Z.

Proof. The sequence of complexes

0 C(X) & Coemrmmem Cpoy & Cp e o ov = Cp = 0

is exact by Proposition 6.1 and Lemma 6.4. Since each K, is a free C[V]-module,
we have HY(C,) = K, @ HY(C(P)) for p = 0,...,k, and ¢ > 0. By Theorem 5.1,
HIC(P)) = 0 for ¢ > 1. Hence HY(Cp,) =0 forp=0,...,nand ¢ > 1. Let B;

be the complex coker{C; & Cis1}, 7 = 0,...,n. We note that By = C(X) and
B, =C,. For any 7 = 1,...,n, we have a short exact sequence

0B & C—B;—0

Using the long exact sequence of cohomology groups, we derive by descending
induction cn j that H9B;-,) =0forqg>1and j =n,...,1. Hence HI(C(X)) =0
for ¢ > 1 and this implies H?(C(X,Ox(k))) =0 for ¢ > 1 and any k € Z. 0
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