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1. INTRODUCTION

In this paper, we prove a vanishing theorem for the first Dolbeault cohomology
group of the line bundles Ox(n), n € Z, where X is a complete intersection in an
infinite-dimensional projective space P which admits smooth partitions of unity.

For a given complex Banach space V, the associated complex projective space
P(V) consists of all complex lines in V. The set P(V) has a natural structure
of complex manifold which is described in detail in [3]. For a submanifold X of
finite codimension in P(V') the complexified tangent bundle T¢ X, the holomorphic
tangent bundle 719X, and the antiholomorphic tangent bundle T%!X of X can
be defined as in finite dimensions. Given a vector bundle E — X, we define (0, ¢)-
forms on X with values in E as bundle maps from 799X = AYT%1X to E. For
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any open set U C X, we denote by Cf (U, E) the vector space of all r-times
continuously differentiable (0, ¢)-forms with values in E, 0 < r < oo. We will also
write C”(U, E) instead of C o(U, E), Co,q(U, E) instead of C§ ,(U, E), and C(U. E)
instead of C'go(U FE). When the vector bundle E is holomorphic, the O-operator,
: C,(U,E) — C q“(U E), r > 1, is defined by means of Cartan’s formula for
the exterlor derivative. The Dolbeault cohomology groups H*9(X, E), ¢ > 0, of a
holomorphic vector bundle £ — X are defined as in finite dimensions:

{closed smooth (0, g)-forms with values in E'}
{exact smooth (0, g)-forms with values in E}

H*(X,E) =

We refer to 5] for a detailed treatment of (p, g)-forms with values in vector bundles
and the O-operator on infinite dimensional complex manifolds.

L. Lempert has proved in [5, Theorem 7.3] that if £ — P(V') is a holomorphic
vector bundle of finite rank over localising infinite-dimensional complex projective
space P(V), then H®9(P(V),E) = 0, ¢ > 1. The extra condition on the projective
space P(V) has to do with the existence of bump functions. A differentiable mani-
fold M localises if, for every nonempty open set W C M, there exists a smooth not
identically zero function ¢ : M — R that is supported in W. Every Hilbert space
localises whereas the space I' does not [4]. A projective space P(V) associated
with a locally convex topological vector space V localises if and only if V localises
5, p- 509].

In this paper, we partially extend some of the results in [5] to complete in-
tersections in infinite-dimensional complex projective space. The methods we use
require that even stronger conditions should be imposed on the projective space
P(V). Namely we have to assume that P(V') admits smooth partitions of unity. A
differentiable manifold X admits smooth partitions of unity if, for any open cover
{Ui}ier of X, there are §; € C*°(X), supported in U; such that )., 6; = 1, the
sum being locally finite. Hilbert spaces are examples of such manifolds. Separable
and reflexive Banach spaces that localise are other examples. Paracompact mani-
folds modeled on spaces that admit smooth partitions of unity also admit smooth
partitions of unity. In particular, if V' is a Banach space that admits smooth par-
titions of unity, then the associated projective space P = P(V) admits smooth
partitions of unity. We refer to [1] for more details about smooth partitions of
unity.

Here is a brief outline of the contents of the paper.

In Section 2, we consider a closed form f € Cf ;(P(V),Op(v)(n)), 1 <r < o0,
n € Z. In Proposition 2.2.1 and Proposition 2.2.2, we prove that if V localises
and flw € C§(W,0p(vy(n)) for some none-empty open set W C P(V), then
f is exact. Both propositions are generalisations of {5, Theorem 7.3] for (0,1)-
forms. The difference is that the differential form f is assumed to be smooth in
(5], whereas for our purposes we have to give a proof for differential forms that
are smooth on a proper open subset of P(V). Let us emphasise that these results
are global. The local solvability of the d-equation can not be taken for granted in
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infirite dimensions - see [6] for an example of a complex Banach space V and a
closed form f € C§9(V) which is not exact on any nonempty open subset U of
V. In the proofs we use Lempert’s idea to solve the d-equation on the blow up
Bl P(V") of P(V) at a point z € P(V).

In Section 3, we prove the main result of this paper. The proof consists of
two parts. The first part is to find local solutions to the 5—equation: we con-
sider an arbitrary submanifold X of finite codimension in P(V') and a closed form
f € C§q(X,Ox(n)), n € Z, and construct an open covering {X;};cs of X and a
collection of sections {u; € C*®(X;, Ox,)}ier such that du; = f|x, for i € I. For
this part of the proof we need to assume only that the projective space P(V') lo-
calises. The second part of the proof is to solve the Cousin problem for the cocycle
{u; —u; € H*(U; UU;,Ox)}ijer. That this is possible is proved in [3]. For the
second part we have to assume that X is a complete intersection and P(V') admits
smooth partitions of identity.

This paper is based on the author’s Ph.D. thesis (Purdue University, 2001).

2. THE 9-EQUATION ON INFINITE-DIMENSIONAL PROJECTIVE SPACES

Let X be a complex manifold and let Y be a submanifold of X of codimension
1. We recall that there exists a holomorphic line bundle Ly over X, and a section
uy € H°(X, Ly) such that Yuy'(0) and duy(y) # 0 for any y € Y (where duy (y)
is calculated in some local trivialisation of Ly at y). Let L — X be a complex line
bundle. Given a section u € C(U, L) on an open set U C X, we say that u is locally
bounded at a subset X’ C X if for any 2’ € X’ there exist an open set W 2 2z’ and a
local trivialisation ¢ : L}y — W x C such that the function poulwny : WNU — C
is bounded on W NU. We say that u vanishes at X' if for any 2’ € X' and any
real number € > 0 there exist a neighbourhood W of 2’ and a local trivialisation
¢ : Llw — W x C such that |[pa¢u(z)| < € for all z € W NU. Given a submanifold
Y of codimension 1 in X, and an integer n € Z, we write u = O(|luy|™) at Y (resp.
u = o(|uy |") at Y') if the restriction of u®uy™ to U\Y is locally bounded at ¥ (resp.
vanishes at Y). Given a differential form f € Cy(U, L), we write f = O(juy|") at
Y (resp. f = o(juy|™) at Y) if f(Q) = O(juy|") at Y (resp. f(Q) = o(|uy|™) at
Y') for any vector field Q € C®°(X,1¢cX).

In 2.1.1 we will need the concept of a weak solution of the d-equation. Let
A be an open subset of a complex Banach space V. Suppose that v € C(A) and
f € Cp1(A). We say that Ju = f in the weak sense if for any finite dimensional
affine subspace F C V, 9(u|rna) = f|rna holds in the sense of distribution theory.
For example, if for any z € A and any £ € V the directional derivative

Ou(z; &) = % d/dt|s=o{u(z + t€) + iu(x + it€)}
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exists and Ou(z;€) = f(x;€), then du = f in the weak sense. We will use the
following fact from “elliptic regularity theory”:

Proposition 2.1 If u € C(4), f € C§,(U), 1 <7 < o0, and Ju = f in the
weak sense, then u € C"(A) and Odu = f holds according to the original definition
of the J-operator.

Proof. See {5, Proposition 9.3]. O

2.1. THE O-EQUATION FOR (0, 1)-FORMS ON P!.BUNDLES

In this section, we consider first a trivial P'-bundle 7 : X = B x P! — B over
a complex manifold B. Let g be the projection X = B x P! — P!, For an integer
n € Z, we denote by Ox(n) the holomorphic line bundle g*(Op1(n)) over X.

Let z: P!\ {oo} = Cand w = 271 : P!\ {0} — C be the local coordinates
on P!\ {00} and P!\ {0}, respectively. A section u € C"(W, Ox(n)) on an open
set W C X is represented by a pair of functions u; € C™(W \ B x {o0}) and
uz € C"(U \ B x {0}) such that

ug (b, w) = wuy(b,w™?), (byw) e W, w#0. (2.1.1)

_ Proposition 2.1.1. If f € Cg,](P1 \{v},0pi(n)),y€ P',n€Z,0<r < o0,
is such that f = O(Ju(y}|™), then there is a unique section u € cr(P"\{y},Op:(n))
such that Ju = f and u = o(|u(y,y|") at {y}.

Proof. The section u is unique because if v € HO(P'\ {y},Op1(n)) is such
that v = o(|ug,}|™) at {y}, then v = 0.

To prove the existence of u, we can assume that y = co and write f = F(z)dz
with F € C"(C). Relation (2.1.1) yields f = —w"w 2F(w™')dw, w # 0. Since
f = O(|s{c0}|"), there is a constant C > 0 such that

|F(z)] < C(1+ |2])72, zeC. (2.1.2)
We set . FO)
uy(2) = 27rz_/C/\_Zd)\/\d/\, zeC. (2.1.3)

Integral (2.1.3) converges by estimate (2.1.2). Moreover u; € CT(C) and 0u, /9% =
F' [2, Theorem 1.2.2]. Let up € C™(P" \ {0, 00}) be given by ug(w) = w™uy(w™?),
w# 0. Let u € CT(P'\ {o0},Op1(n)) be represented by the pair u;(z), ua(w).
Then u € CT(P!\ {00}, Op1(n)) and du = f. To complete the proof, we have to
show that

ii_r{loul(w‘l) =0.
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Let G € C(C\ {0}) be given by G(w) = —w2F(w™?'), w # 0. Estimate (2.1.2)
yields
|G(w)] < C(1 + |w|)~?, w#0. ©(2.1.4)

Making the substitutions z = w~! and A = p~! in (2.1.3), we obtain

_ 1 G _ 1 G(u _
u(w™?) = 5 C'uiut)udp/\du— 2m./c ’(‘)du/\du.,

Let U : C — C be given by

1 G(n) _ 1 /G(u+w) _
U(w) = 5 c#_wdp/\dy = i o ” dv Adv.

We claim that U is continuous on C. It is easy to see this when G can be extended
to a continuous function G on C because estimate (2.1.4) yields

G+ w) < CWTH L+ v+ w]) 72 S C(L + )]~ (1 + )2,

and the function |v|7!(1 + |v|)~2 is integrable on C. To deal with the general
case, we use continuous bump functions at 0 to construct a sequence of functions
Gm € C(C), m = 1,2,..., such that |Gn(u)] < |G(p)| for u # 0, G(v) = G(v)
for |u| > m™1, and Gp,(p) = 0 for || < (2m)~1. Let

1 [ Gm(w)

Um(w) - 27('1, CH—W

du A dg, m=12,....

Now each U, is continuous on C and it is not difficult to check that the sequence
Un, m=1,2..., converges uniformly to U as m — 0o. Hence U is also continuous
on C. Since u;(w™!) = U(w) — U(0) for w # 0, we see that limy—ou;(w™!) = 0.
a

Corollary 2.1.2. Suppose that u € CT(P'\{0},0p1(n)),n €Z,1 <r < o0,
is such that u = 0([8{c0}|") at co and Ju = O(|s{cc}|™)- Then

1 [ Ou/oX

AAdA.
27l"i C A—Z d

U1 (z) =

Proof. This follows immediately from Proposition 2.1.1 0

In the next proposition, we denote by o a holomorphic section o : B — X of a
trivial P'-bundle X = B x P! — B. The submanifold o(B) C X will be denoted
by Y.

Proposition 2.1.3. Suppose that f € Cf (X \Y,0x(n)),n€Z,1 <r < o0,
is a closed form that satisfies the following conditions:

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 183-204. 187



(i) £ = O(luy ") at ¥; |
(ii) if 2 € C(X,TcX) is a vector field that is tangent to Y, then f(Q) = o|uy|™)
at Y and 0(f(Q)) = O(Juy|™) at Y.

Then there exists umque u € CT(X\Y,Ox(n)) such that Ju = f and u = o(juy|")
at Y.

Proof. The uniqueness of « is established as in the proof of Proposition 2.1.2.
To prove the existence of u, we can assume that o : B — X is the section given by
o(b) = (b,o0), b € B and thus Y = B x {oo}. Then we write f|yxc = F(b,z)dz

and set
F(b,)\)
27t Jo A -z
where condition (i) makes sure that the integral converges. One verifies, as in the

proof of Proposition 2.1.1, that u; is a continuous function on X \ Y and that wu,
vanishes on Y. Let us be given by

uy (b, z) = dAAdA, (2.1.5)

uz(b,w) = whuy(b,w™1), w#0,

and let u be the section of Ox(n) on X \ Y that is represented by the pair
uy (b, 2),ug(b,w). It is clear that w = o(juy|™) at Y.

According to Proposition 2.1.1, we have 5(ul{b}xc) = fl{pyxc, b € B. To prove
that u € C™(X \ Y,Ox(n)) and du = f, it is enough to show that A(utlpx(s}) =
flBx{z) weakly for any z € C. This implies Ou = f weakly and then the claim
follows from Proposition 2.1. Let z € C and let w € C°(B x {z},T%Y(B x {z})).
Define a vector field Q € C®(X,T%'X) by Q(b,p) = w(b,z), p € P! It is clear
that  commutes with the vector field 8/8z € C®(X \ Y, T%1X), i.e [2,0/0z] = 0
on X \ Y. Since f is closed, Cartan’s formula yields

0= 3f(R,9/8%) = Q(f(8/9%)) — 8/9Z(f(V)) — F([Q, 8/0z]).
Hence QF = Q(£(8/9%)) = 8/0%(f(%)). Formal differentiation in (2.1.5) yields

L [RGB 1[G,
Qua(b,z) = 27ri_/(; P dAAdA = 27”:/(: - dAAdA. (2.1.6)

Since the vector field Q is tangent to Y = B x {oo}, condition (ii) holds for f(Q)
and it follows, from Corollary 2.1.2, that Qu = f(Q2). Hence g(ule{z}) = flBx{z)
weakly.

Formal differentiation in (2.1.5) is justified as follows. It follows from the
growth estimate 9(f(Q)) = O(|sy|*) that for any by € B there is a neighbourhood
U 3 bg and a constant C' > 0 such that

18/OA(F ()0, N <CA+|A)"2, beUXeC.
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Since the function |X — z](1 4 |A\|)~2 is integrable on C, integral (2.1.6) converges
uniformly in b € U. Thus formal differentiation in (2.1.5) is justified. O

In the next two propositions, we consider a (not necessarily trivial) P'-bundle
7 : X — B over a complex manifold B which has a holomorphic section o : B — X.
The codimension 1 submanifold o(B) C X will be denoted by Y.

Proposition 2.1.4. Let L — X be a holomorphic line bundle such that for
any b € B there is a neighbourhood U 3 b for which L|-1(yy = Op-1(yy(n) for some
fixed integer n < 0. Then for any closed form f € Cj ,(X,L)NC§(X\Y,L), 1 <
r < 00, there exists a unique section v € C™(X \ Y, L) such that du = f and
u=o(luy|") at Y.

Proof. Let {U;}ic1 be an open covering of B such that L|,-1(y,) = Or-1vy,y(n),
i € 1. Denote Y Nn~!(U;) by Y;. Conditions (i) and (ii) of Proposition 2.1.3 hold
trivially for f|;-1(y,) and uy, because n < 0. For each ¢ € I Proposition 2.1.3 yields
a unique section u; € C"(7~Y(U;) \ Y, L) such that du; = f on 7~ }(U;) \ ¥; and
u; = O(I’u,yiln). For 1,] € I the restrictions ugl“—l(ul)n”—l(uj) and Ujl,r—l(yi)nﬂ.-l(uj)
are the same because u;|y,ny; = o|uy,ny;|") and ujly,ny, = o(|uy,ny;|™). Hence
the sections u;, ¢ € I, paste together to a section u € C™(X\Y, L) such that Ju = f
on X\ Y and u = ofjuy [*) at Y. The section u is unique because if a holomorphic
section s € H°(X \ Y, L) is such that s = o(Juy|") at Y, then s = 0. 0

We recall that a smooth vector-valued function u on a real differentiable man-
ifold X vanishes at £ € X of order k + 1 if all differentials d%u, d'u, ..., d*u
vanish at z. Given a vector bundle £ — X and a section u € C*(X, F), we say
that u vanishes at * € X of order k£ + 1 if for some (or any) local trivialisation
¢ : Ely — U x R™ of E about z the vector-valued function pe¢uly : U — R
vanishes at x of order k£ + 1. Given a differential form f € Cf°(X, E), we say that
f vanishes of order k + 1 at z € X, if for any neighbourhood U of z and any vector
field Q2 € C°°(U,TX) the section f(Q2) € C*°(U, E) vanishes of order k + 1 at z.
Let X’ be a subset of X. We will say that f € C§°(X, F) vanishes of order k -+ 1
at X' if f vanishes of order k + 1 at « for any z € X'.

Proposition 2.1.5. Let L — X be a holomorphic line bundle such that for
any b € B there is a neighbourhood U 3 b for which L -1(yy & Op-1(yy(n) for
some fixed integer n > 0. Suppose that f € Cg,(X,L), 1 <r < oo, is a closed
form such that

(i) f € C§4(W, L) for some open set W D Y;

(ii) f vanishes of order n at Y;

(iii) f(§2) vanishes of order n + 1 at Y for any vector field Q € C*°(X,T¢(X))

that is tangent to Y.
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Then there is a unique u € C™(X \Y, L)NC®(W \Y, L) such that du = f on X \Y
and u = o(|uy|™) at Y.

Proof. Condition (ii) yields f = O(juy|™). Condition (iii) yields f(Q) =
o(Juy[™) and 9(f(2)) = O(juy|™) for any vector field Q € C®(X,Tc(X)) that is
tangent to Y. Let {U;}icr and Y;, i € I, be as in the proof of Proposition 2.1.4.
Then conditions (i) and (ii) of Proposition 2.1.3 hold for f|.-1(y,) and uy,, 7 € I,
and the rest of the proof is analogous to the proof of Proposition 2.1.4. 0

2.2. THE 0-EQUATION FOR (0, 1)-FORMS ON PROJECTIVE SPACE

In this subsection, we consider a projective space P(V'), corresponding to a
complex Banach space V, and apply the results from the previous subsection to
construct a solution of the equation du = f for (0, 1)-forms on P(V) with values
in the line bundle Op(vy(n), n € Z. For a description of the complex structure
of P(V), we refer to (3, Sec. 3] . In the proofs we will use the blow up manifold
Bl (P(V)) of P(V) at a point z € P(V'), which is described as follows. For a given
z = [vp] € P(V), we denote by V' the factor-space V/[vg], and by ¢ the factoring
linear map from V to V’. To simplify the notation, we will write P (resp. P’)
instead of P(V') (resp. P(V’)). The blow up Bl.(P) of P at z is the set

(P) ={(lv];[v']) € P x P": q(v) € [v']}.

Let 7 (resp. p) be the restriction of the projection Px P’ — P’ (resp. Px P’ — P)
to Blz(P). To make Bl;(P) into a complex manifold, we first choose a bounded
linear functional [ on V such that z € P; and then, for any I’ € V™, I # 0,
define a coordinate map ¢y : 7"1(P}) — P} x P! by the formula ¢y ([v], [v']) =
([v'], ['(p(v)) : I(v)]). The family of coordinate maps ¢y, I’ € V™, I’ # 0, endows
Bl.(P) with a structure of a complex manifold such that the maps = and p are
holomorphic. Furthermore, the map 7 is a locally trivial projective line bundle over
P’, and the map p is biholomorphic outside the ezceptional divisor E = p~1(z) of
Bl,(P). We note that the map o : P’ — Bl (P), given by the formula o([»']) =
([vo], [v']) for [v'] € P’, is a holomorphic section of 7 such that o(P’) = E.

Proposition 2.2.1. Zet f € Cf(P,0p(n)), r > 1, n <0, be a closed form.
If dim P > 1, then there exists a unique section u € C"(P,Op(n)) such that
Ou=f.

Proof. Since H°(P,Op(n)) = 0 for n < 0, the equation du = f cannot have
two distinct solutions. To prove the existence of a solution u, it is enough to show
that, for any x € P, there exists a section u, € C"(P \ {z},Op(n)) such that
duz = f on P\ {z}. Indeed, let y € P, z # z, and u, € C"(P \ {y},0p(n
be such that dv, = f on P\ {y}. Then s = u, —u, € H'(P\ {z,y},0p n)
extends to a global holomorphic section § of Op(n) by Hartogs’ theorem. Let
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u € C"(P,0Op(n)) be given by u; on P\ {z} and by u, + 3 on P\ {y}. Then
Ou = f.

Solet z € Pandlet f = p*f € Cg.1(Blz(P),p*Op(n)). By Proposi-
tion (2.1.4), there is a section @ € C"(BIl. P\ E, p*Op(n)) such that 84 = f. Now
the map p is biholomorphic on Bl (P)\ E, and u; = (p~1)* f € CT(P\ {p}, Op(n))
is such that u, = f on P\ {z}. 0

To deal with (0,1)-forms with values in the line bundles Op(n), n > 0, we
consider a special class of Banach spaces. They have the property that for any
nonempty open subset W C V, there exists a not identically zero function w €
C*(V) that is supported in U. A differentiable manifold M that has this property
is called localising (cf. [5, Sec. 7]), or we will say that M localises. The projective
space P(V) localises if and only if the Banach space V localises [5, Sec. 7]. All
Hilbert spaces localise because the square of the norm is a smooth function. The
Banach space I! is an example of a space that is not localising [4].

Proposition 2.2.2. Let V be a Banach space that localises. Suppose that
f € C§,(P,0p(n)), n 20,721, is a closed form such that f € C§3 (W, Op(n))
for some nonempty open set W C P. Then there exists a u € C"(P,0Op(n)) N
C>®(W, Op(n)) such that du = f.

Proof. We will assume that V is an infinite dimensional Banach space (for
dimV < oo the proposition is well known under much weaker conditions on the
regularity of f). Then it is enough to show that for any z € W there is a
u; € CT(P\ {z},Op(n)) such that du, = f on P\ {z} (cf. the proof of Proposi-
tion (2.2.1)

So let z € W and P’ be a hyperplane in P which does not contain z. Let W’
be a neighbourhood of = such that W’ ¢ W and W’/N P’ = (). Since the line bundle
Op(n) trivialises on W', there exists v’ € C®(W’,0Op(n)) such that f|w. — ou’
vanishes of order n at z (see [5, Theorem 3.6]). Let w € C*(P) be a cut-off
function that is supported in W/, and equal to 1 in a neighbourhood of z and let g =
f—08(wv). Then g € C} 1(P,0p(n))NCSS (W, Op(n)) is a closed form that vanishes
of order n at z. Consequently, § = p*g € C§ 1(Blp(P),p*Op(n)) is a closed form
that is smooth on p~1(W) and vanishes of order n at E. Moreover, if 2 is a smooth
vector field on Bl,(P) that is tangent to E, then §(§2) vanishes of order n+1 at E
because p.(TcF) = 0. By Proposition 2.1.5, thereisa @ € C" (Bl (P)\E, p*Op(n))
such that 0t = § on Bl.(P)\ E. Set u; = (p~)*@ +wv € C™(P\ {z},0p(n)).
Then du, = f on P\ {z}, which completes the proof. 0

3. ANALYSIS OF REGULARITY

Let X be a submanifold of finite codimension n and degree d in P = P(V)
and (V',W, z) be an admissible triple for X (see [3, Section 3]). Let p : X —
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P(V'") be the map induced by the projection V. = W x V' — V', According
to {3, Proposition 4.2}, for any given f € C§,(X,0x(n)), n € Z, there exist
unique forms f; € CF ,(P(V')p,Opvy(n—=3)), j =0,...,d— 1 such that f|x, =
Y90 (Plxo)"9; ® .

The differential forms f;, 7 = 0,...,d — 1, should not be expected to behave
in a regular manner along the divisor D = Z(D) (see Example 1 below). However,
their behaviour can be improved to a degree by twisting with powers of D. Thus
for any natural number N, we define new forms

f;N € Co(P(V"),0pwn(n—j+ NdegD)), j=0,...,d-1,
in the following way:

(b, €) = { D(b)N f;(b,€) for be P(V')p and € € T P(V'),
P 0 for b¢ P(V')p and £ € T, P(V").

The following proposition is the main result in this section.

Proposition 3.1. Let f € Cj(X,0x(n)), 1 <r<oo,n€Z. If N >4r+3,
then

Y € Cy (P(V),Opwn(n—j+NdegD)), j=0,...,d-1.

The proof of Proposition 3.1 will be given later in this section.

Since the vector bundle w : P\ P(W) — P(V’) trivialises over every affine open
set P(V')p, 0# h € V', we will prove first an affine version of Proposition 3.1.

From now on we will assume that X is an algebraic manifold of finite codi-
mension n in a Banach space V. Let (W, V') be an admissible factorisation for X,
and let Zi, ..., Z, be a basis of W* such that z = Z; + I(X) € C[X] generates the
field of fractions of C[X] over the field of fractions of the C{V’]. We denote by D
the discriminant of the minimal polynomial of z over the field of fractions of C[V”].
The restriction of the projection p : X — V' to Xp will be denoted by pp. By
[3, Proposition 2.3] the holomorphic map pp : Xp — Vp is a covering of degree
d = deg F. For a given f € Cf;(X), let g = f|x,,. By [3, Proposition 4.3] there

exist unique forms g; € Cg,(Vp) j =0,...,d ~1 such that g = }:;:3 2 n*g;. For
any natural number N we define new forms gJ’." € Co1(V"), 7=0,...,d—1, in the
following way:
¥ (b,6) = D(b)Ng;(b,€) for be V) and € T,;:v'
7 0 for bgV) and €e€T,V'.

Proposition 3.2. Let f € C§,(X), 1 < r < oo, and let g = f|x,. If
N > 4r+3, then gV € CJ (V') j=0,...,d - 1,

- The proof of this proposition will be given later in the section.
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The following example shows a typical behaviour of the forms g;, along the
divisor D = Z(D). Let V = C? and let X = {(Y,Z) € C? : Z% = Y/4}. Set
z=Z|x € C[X]. Let W = {(0,Z2) € C*: Z € C}and V' = {(Y,0) e C*: Y € C}.
Then the projection p: X — C given by p(Y, Z) = Y is finite and surjective, and
z generates C[X] over C{V'] = C[Y]. The discriminant of the minimal polynomial
F=2?-Y/4is D=Y. Thus D = {0}, V) = C\ {0}, and Xp = X \ {(0,0)}.

Ezample 1. Let X C C? be the quadric described above and f = dZ|x. Then
8zdz = p*(dY’), and solving for dz, we obtain
= L d7) = o (dY) = 2ph(—d¥)
9 = g PolOT) = gz PoICY) = 2Pt )
Hence go = 0 and g; = 27 !|Y|~1dY. It is easy to see that, for every natural number
r, there exists a natural number N, such that §)¥ = 2-1|Y|~'YV dY € C™(C) for
N > N,. However, there is no natural number N such that g € C*(C).

Suppose that r : U — X is a right inverse to pp on some open set U C V), i.e.
ppor = idy. Let e1,..., e, be the basis of W which is dual to the basis Z;,...,Z,.
Let R; = zjor € H'(U,Oy), j=1,...,n. Then

n
r(b) = (b, > Rjb)e;) € XC V' xW

3=1
for all b € U. Since F(z) = 0, where F' is the minimal polynomial of z, we

obtain F(R;) = 0. As in (3, Lemma 2.3, there exist polynomials F; € C[V’]{Z],
J=2,...,n,such that

R; =D 'Fy(R1), j=2,...,n. (3.1)

The holomorphic map r : U — X C V induces a complex linear map 7.
from the complexified tangent space of b € U to the complexified tangent space of
r(b) € X, ra : TgU = Ty X C TV, for all b € U. For € € TLU, we denote by
r.(b, &) the image of £ in Tf(b)X . Since V' and V are vector spaces, we can naturally
identify T,CU and T\q,,V with V'@V” and VoV = (V'@&V")x (WaW), respectively.
Since the map r is holomorphic, r, (Tbl’oU ) C T:(‘E)X and . (Tb0 ) ¢ Tf(’;)X . The
restriction of r, to Tbl °U will be denoted by dr, and the restriction of r, to T,? Ty
will be denoted by dr. For any vector £ € Tbl 0T, its conjugate vector £isin Tz? U,

and d7(b,&) = dr(b,€). It is clear that for £ € Tbl‘OU we have

k
0
r.(b,€) = (&, zde(b,g)ﬁ)eV'xW, (3.2)
j=1 J
where dR; is the differential of the holomorphic function R;, j =1,...,n.
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The next lemma is the main step in the proof of Proposition 3.2.

Lemma 3.3. There exists a smooth function H : V x V' — V such that:
(i) for any open set U in V}, and any right inverse 7 : U — X to pp on U we have
dr(b, &) = D(b)"2H(r(b),€) for be U and £ € V/;
(ii) H(z,£) € T}MOX forz € X and £ € V/;
(iii) H is linear in £ € V.

Proof. We want to find the coefficients dR;(b,£), j = 1,...,n, in (3.2). Since
the function R; satisfies the equation F'(R;) = 0, we use implicit differentiation to
find dR;(b,£). Then we differentiate (3.1) to find dR;(b,£), 7 = 2,...,n.

Let F = Z¢+ a;29! + ... 4 aq, where a,, € C[V'], m = 1,...,d, and let
F' € C[V'][Z] be the derivative of F with respect to Z.

Since F'(R;) = 0, we obtain

d
F'(R1(b))dRy(b,6) + Y dam(b,€) Ra(b)*™™ =0. (3.3)
m=1
It is well known (see for example [7]) that there exist polynomials 4, B € C[V'|(Z]
such that
AF + BF' =D.
Hence
F/(Ry(b))™" = D(b) ' B(Ra (b)) (34)
forbe U and £ € V'. Let H; € C°°(V x V') be the function given by

d
Hy(v,€) = ~B(Z1(v)) Y dam(n(v),€)Z1(v)* ™.

m=1
It follows from (3.3) and (3.4) that
dRi(b,€) = D(b) ™" H(r(b),€) (3.5)

forbe U and £ € V. |

Let F; = %0 apn;24 ™! € C[V')[Z), 5 = 2,...,n, where ap,; € C[V]
for j =2,...,n,and m = 0,...,d - 1. Let F] € C[V'|[Z], j = 2,...,n, be the
derivative of F; with respect to Z. Since R; = D7'F;(Ry), j = 2,...,n, (by
equation (3.1)), we obtain

dR;(b,€) = —D(b)~*dD(b,€)F;(R1 (b)) + D(b) ™ dRi (b, &) F;(R1(b))+

d—1
+ D)™ D dam;(b, &) Ri(B) ™ (by (3.5))

m=0

= —D(b)"*dD(b,€)F;(Ra(b)) + D(b) ™2 Hy (r(b), €)Fj(Ra (b)) +
d-—1
+ D)™ dam;(b, &Ry (b)) ™" (3.6)

m=0
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Let H; € C®(V x V'), j=2,...,k, be the function given by

Hj(v,€) = —dD(n(v),€) Fj(Z1(v)) + Hi(w,§) Fj(Z1(v))+

d—-1 )
D(p(v)) Y dam;(p(v),€)Z1(v)* ™.

m=0

It follows from (3.6) that dR;(b,€) = D(b) 2H;(r(b),€) for j =2,...,n
Finally, let H : V x V' — V be the smooth function given by

> .
H(v,£) = (D(ﬂ'(v))2§’ D(‘R’('U))}:Il(v,f)a_gI + ZHj(v’é)a—g—
j=2

It follows from (3.1), (3.5), and (3.6), that (i) holds for H.
To prove that (ii) holds for H, we notice first that if z € Xp then there exists

an open neighbourhood U C V}, of p(z) and a right inverse r : U — X to pp on U

such that r(p(z)) = z. By part (i) we have H(z,£) = D(p(z))? r.(p(z),€) € TH°X
for all £ € V'. Thus (ii) holds for H if z € Xp. Let H: X x V' — TV = VxV

be given by the formula H (z,€) = (z, H(z,§)) for (y,£) € X x V'. It is clear that
H is a continuous map and H(Xp x V') ¢ T*°X. Since 710X i _is a closed subset of
TV, and Xp x V' is a dense subset of X x V', we see that H(X x V') ¢ T*°X.

Hence condition (ii) holds for H. Finally, condition (iii) also holds for H because
all functions H;, 1 =2,...,n, are linear in . 0

We will need a similar result for the restriction of r, to the bundle T9U.

Lemma 3.4. There exists a smooth function H : V x V' — V such that:
i) for any open set U in V}, and any right inverse r : U — X to pp on U we have
D g

dr(b, & £) = D(b) H(r(b) €) forbe U and € € V7,
(ii) H(z,€) € TO'X for z € X and £ € V7,
(iii) H is linear in £ € V.

Proof. Let H : V x V! — V be given by H(w,§) = H(w,§) for w € W,
§ € W'. It follows from Lemma 3.3 that (i), (ii) and (iii) hold for the map H
because d7(b, &) = dr(b, ). 0

We denote by Xg the real manifold associated with the complex manifold X.
For any x € X there is a natural inclusion

Te Xgp = TEX = C Qg T Xg = TMX @ TO1X

given by

1 | 1 |
T:Xgr 37+ 5(1®17+z7®z17)69-2—(1®77— ;@m) eETIXoTX.
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For a given vector n € T Xw, we denote by n*? and 7% the vectors 3(1®n+ 1 ®in)
and 3 (1 &n— ; ® i7), respectively.

If E is a complex vector space, then the real tangent bundle TEyx — Ejp is
naturally isomorphic to the trivial bundle Fg X Egp — Eg. Thus, for any b € Ek,
we can canonically identify Ty Eg with Eg.

Lemma 3.3 and Lemma 3.4 are combined in the next lemma, to prove a similar
result for the map r, : TUg — TVg.

Lemma 3.5 There exists a smooth function R : Vp x V§ — Vg such that:
(1) for any open set U in Vj, and any right inverse r : U — X to pp on U we have

re(b,7) = D(b)~2 D) R(r(b),n) for b € Ug and 5 € Vg;
(i) R(z,n) € Ty Xg for z € Xg and n € Vg;
(iii) R is R-linear in 7 € Vj.

Proof. For any b € Ug and any n € Vg

ro(b,n) = . (b,n*°) + . (b, n°Y)
= dr(b,n"°) + dr(b,n"")

= D(b)*H(r(b),n"?) +
)

= D(b)*DE)  {D)

b) “H(r(b),n°")
(

(
H(r(o),n"%) + DEPHEE) ")} . (37)

Let R: Vg x Vg — Vg be the map given by

R(v,n) = D(w(v)) 2 H(-v,n]'o) + D(7r('v))2 ﬁ(v,no*l), veWr,neVg. (3.8)

Eq. (3. 7) shows that condition (i) holds for R. If z € Xg, then the vectors

D(p(:z:)) H(z,n"%) and D(p(z))*H(z,n*') are conjugate to each other. Hence
R(xz,n) € Ty Xy for z € Xg. Thus condition (ii) holds for R. It is clear from (3.8)
that R is R-linear in 7. O

Lemma 3.6. Suppose that g € C§,(Xp) is such that g = f|x, for some
f € C§1(X). Then there exists a function G € C"(X x V’) such that:
(i) for any open set U in V], and any right inverse r : U — X to pp on U we have
rg(b,8) = D(B) G(r(b),E) for be U and € € V7;
(ii) G is linear in € € V7.

Proof. Forz € X and € € V7, let G(z,€) = f(z, H(z,£)), where H is the

map c_ieﬁned in Lemma 3.4. We note that the right-hand side makes sense because
H(z,&) € TO'X by part (ii) of Lemma 3.4. Let us verify that (i) holds for G:

r*g (b,€) = f(r(b), dr(b,E)) = F(r(b), D)  H(r(4),8) = D(b)  G(r(b),E).
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The definition of G shows that it is linear in £ € V. 0O

Proposition 3.7. Let f € Cf;(X) and g = f| Xp- Suppose that g; €
Co(Vp) j =0,....d —_1, are such that ¢ = Zj_é 27 m*g;. Then there exist
functions G; € CT(X¢ x V'), j =0,...d — 1, such that: _

(i) each function G; is symmetric in (21,...,74) € X% and linear in £ € V7;

— 9 —
(i) 95 (b, £ = 1D(b) Gj(ri(b),...,rq(b),§) for j = 0,...,d -1, b € V],
£ € V7, where {n (b) rq(b)} is the fiber of pp : Xp — V[, over b € V5.

Proof. Let b € Vj, and let U C V}, be a neighbourhood of b such that the
covering map pp : Xp -+ V}, has d distinct right inverses r; : U — Xp on U,
por; =idy, t = 1,...,d. Then, according to {3, Proposition 4.3],

9;(b,€) = D(b) "1 A(b) det A; (b, €)

where
A(b) = [T Grau®) - (@),

1<ii<i2<d

and A;(b,€) is the d x d matrix

L oar(®) - 2m®)P T rig(E) ArB)t o a(r(b)d?

Io2(ra(0) -+ 2(r2(0))7 r3g(0,€) 2(ra(®))F - z(ra(b))d

1. . z( Td( b)) ........ z (Td(b)) o Tég(b ’ €) . z(rd(b))a+l ........ z(rd( b))d-l
According to Lemma 3.6 rig(bh,€) = _(—55_2 G(r ()E) for i = 1,...,d. Hence

det A;(b,E) = D(b) ~ det B;(b, E), where B;(b,E), j=0,...,d— 1, is the matrix

2(r() oo 2(mB)Yh G(ra(b),§) 2(r(b)yFt oo 2(ry(b))*]
2(ra(b)) -+ 2(r2(0))1 G(ra(b),€)  z(ra(b))FT .- 2(ra(b))*?

..........................................................................

1 oz(ra(b)) - z(ra@®)P ' Glra(0),€) z(ra(0))*' - z(ra(b))*!

Let § : X4 — C be the smooth function given by

8(y,....za)= [  (2(mi) — 2(z,)).

1<4 <ip<d

Let Cj(z1,...,24,), 7=0,...,d — 1, be the matrix

1 z(z) - zm)Y G(z1,8) 2@ )it - z(z)d?
1 z(z2) - z(y)l ! G(x,€) z(y)t - z(zp)d?
i. . z(xd) ........ z(xd)a = G(xd,g) . z(xd)ﬁl e z(xd)d—l
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Finally, let G; : Xtx V' —-C,j=0,...,d—1, be given by
Gj(:rl,...,:l:d,f) = 0(z1,...,Zq) deth(:L'l,...,:vd,E)

for j = 0,...,d — 1. The definition of G; shows that it satisfies (i). Since A(b) =
§(r1(b),...,7rq(b)) and B;(b,§) = Cj(r1(b),...,ra(b),£), we see that (ii) also holds
for Gj, 7=0,...,d—1. 0

Let w € C§ 1(V)) and let ny,...,nm be vectors in Vg, (m < r). The derivative
of order m of w at the point (b,€) € (V5)r x V' in the directions 71,...,7m will be
denoted by df*w(b,&; M1, - . ,Nm). Foranyw € Cg§.1(Vp) and any natural number N,
we will denote by w? the form DVw € C§ (V). The next lemma is an extension
of Proposition 3.7 to the derivatives of the forms g;, 7 =0,...,d - 1.

Lemma 3.8. Let f € C§,(X), 1 <7 < 00, and g = fIXD Suppose that

g; € C51(Vp), 3 =0,...,d — 1, are such that g = Z;i 3 27 w*g;. Then for any

0<m<r0<j< d — 1 and any natural number N there exists a function
GN, € CT"™(X* x V' x V'g") such that:

(1) Gf’m is symmetrig in LITRRRRE 2" € X% and linear in £ € V7;

(ii) for any b€ Vp,, £ € V', and m1,...,0m € TpVg = Vg we have

dg‘g;v(b’z;nla XX ’ﬂm) =
, —_c—-2m-2 —_
D(b)N—2m—1D(b) G_‘I)'vm(rl (b)a KRS Td(b), €a M-y nm) o

Proof. The proof is by induction on m. For m = 0 the lemma is true by
Proposition 3.7. We are going to show that if 1 <m < r and there exists a function
Glim-1 € C™H(X? x V7 x V'g"™") such that (i) and (ii) hold for GJ,,_;, then
there exists a function G;-vm € CT~™(Y4x V' x V'g") such that (i) and (u) hold for
GN..

jm

Let b € V[, and let U C V}, be a neighbourhood of b such that the covering
map pp : Xp — Vp, hasd dlstmct right inverses r; : U — Xp, i =1,...,d,on U,
ror;=idy,i=1,...,d.

To find dj*g; (b,f, M,.-.,Nm), we differentiate the function

DEN=2HDE) TGN (r1(B), -, ra(b) E o s T

in the direction 7, € T,Vg = Vi. After applying the product rule and the chain

rule, we obtain the following terms:
2

L ANm D(O)N=2™dD(b,nm) D(B)  GNpe 1 (r1(b),-- -, 7a(0), &M - 1),
where ANm = N 2m — 1 and dD(b,ny,) is the derivative of D in the direction
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Let Fjy, € CT~™+1(X4 x V7 x Vg™) be the function given by

fﬁn(xl""'xd’zﬂh,---,nm)=
2 —
Anm D(b)D(b) dD(b,nm) Gy (@1, - 2a, &M,y Imm1) . (3.9)

IL By D)N-2m+1D(8) " dD(b, 1) Gy (11(B)s- -+, 7a(B) Es s - - - Tty
where B, = —2m — 1 and dD(b,7,,) is the derivative of D in the direction 7,, €
TyVE = V. .

Let G, € CT~™+1(X4 x V7 x V™) be the function given by

gfyln(xl’ v axdyz7nli vo ﬂ?m) =
By, D(b)2 D(b) dD(b, 1m) Gjm-1(T15 - -1 Zds &, My -+ -y M1 - (3.10)

_ —_——2m aGf,m_l -
111 D(b)N dmctl D(b) _a‘y"'__(rl (b)’ R ,rd(b)a §: My - )nm—l)(rit(b’ T"M))’

i1=1,...,d, where

oGY  _ -
T2 (), a0 B ct) T X = €
1
is the “the partial derivative” of G},,_; with respect to z;, i =1,...,d, and
Ti,,(b,-) :TbVé — r,-(b)XR: 1= 1,...,d,

is the R-linear map from T}V to Ty, ;) Xr that is induced by r; : U — Xp for
i=1,...,d. By Lemma 3.5,

rie(bym) = D(6) "2 D)~ R(ri(b), 7hm) i=1,..,d.

Let HY . € CT"™(X? x V' x V§™) be the function given by

jmi

H_;Vmi(xl)'"1$dﬁganl,“.,‘f]m) =

oG

5;—1 (ID], R 7$dvgv My snm-—l)(R(yi,nm)) (311)

fori=1,...,d. o
Finally, let GIY,, € CT~™(X% x V' x Vg™) be the function

d
Gl =Fm 4+ G+ Hiei (3.12)
=1

It follows from (3.9), (3.10), and (3.11) that (ii) holds for G;,,. We note that the
functions F1Y, and G, are symmetric in z1,...,7q. Since the function "5, MY, .

is also symmetric in z1,...,z4, we see that Gf,’n is symmetric in zj,...,z4. The
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function Gf’m is linear in € € V7 because all terms on the right-hand side of (3.12)
are linear, too. Thus (i) holds for G’;-Vm. 0

In the proof of Proposition 3.2 we will need the following simple lemma.

Lemma 3.9. Let X, Y, and W be metric spaces and let p: Y — Z be a proper
map. Let d be a natural number and suppose that GG is a continuous function on
Y% x W. Then, for any zo € Z and any wo € W, there are neighbourhoods i
and W of zp and wyg, respectively such that the function G is bounded on the set
p~HU)E x W.

Proof. Since p is a proper map, the fiber FF = p~!(z) is compact. Since
Féx {wp} is a compact subset of Y¢x W, there exists an open set A C Y4 x W which
contains F'¢ x {wg}, and is such that G is bounded on A. By the tube lemma from
topology there exist an open set V C Y that contains F' and a neighbourhood W of
wq such that V¢ x W C A. Since p is a proper map, there exists a neighbourhood
U of zg such that p~1() C V. The function G is bounded on p~}(U)¢ x W because
p~HU) x W C A O

Proof of Proposition 8.2. Let (bo,&p,m0) €D x V/ x V'™ for 0 <m < r. We
will prove that if N > 4r + 3, then:

(i) For any 0 < m < r — 1 and any sequence {b,}3>; C VJ such that
limn_.oo bn = bo

N -
lim d‘lr;ng_y (b'lh £0t T)O)

=0, i =0,...,d—1.
n—oo ||bn — bol| 7

This shows that §V¥ has a derivative of order m + 1 at (bg, £y, 70), and that this
j 0

derivative vanishes at (bo, £, 70)- _ .
(ii) For any 0 < m < r and any sequence {(bn,&,,7n)}oe1 C Vp x V/ x V'™
such that lim, o0 (0n, &, ) = (b0, &g, 70)

im dp*gl (bn,&ysmn) =0, j=0,...,d—1.
n—oo
This shows that all derive tives d{,"g]N , m=0,...,r, are continuous.

Let us prove (i). Let H[J € C™"™(X?) be the function given by

Hﬁln(ml,.. . ,.’Bd) = G;Vm(ml,. . ,.’I:d,go,T]o)

for (x1,...,74) € X% By Lemma 3.9, there exists a neighbourhood ¥ of by such
that Hj“,’n is bounded on p~!(U)¢. Since lim, .00 bn = by, the sequence

{G?In(rl (bn)) ey rd(bn)320? 770)}?:1
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1s bounded. By Lemma 3.8,

dzng]N(bszanO) _
|6n — bol|

—_—2m=2

_ D(bx) 2" D(ba)
16 — bol

HES /5] Griton - a(6a) o) |

G;Vm(rl (bn), s »Td(bn)1501770) =

D(bn)N—4m—3
o = bol|

We note that N —4m — 3 = N —4r — 3+ 4(r — m) > 2 because N > 4r + 3 and

0<m<r-—1. Hence
, . D(bn)N-4m—3
lim

=0.
n=00 an - bO“

Since the sequence

oo

{[D6n) /D] it 7a(00). o) |

n=1

is bounded, we see that

d™gN (bn, €
im b g) (bnafﬂ‘ "70) =0.
n—0o lbn — bol|

The proof of part (ii) is similar. By Lemma 3.9 there exist neighbourhoods
U and W of by and (€y,70), respectively such that G;-Vm eCT (X4 x V' x V'™)

is bounded on the set p~ ()¢ x W. Since limp—oo = (bn, &, 7n)(bo, €, M0) the
sequence

{vam(rl (b‘N)a < 5Td(b7't)1zna 77n)}2°=1
is bounded. By Lemma 3.8,

d;;ng;v(bna E‘n‘ M) =
[ ——) 7' Y ] R
= Db )N ID(Bn) G (ra(ba), -y Ta(bn),Ens )

= D)% 3 { [ D)/ D] Gl(rs(ba) Talbn). Bt |-

We note that N —4m — 3 > 1 because we assume that 0 <m <r and N > 4r + 3.
Since the sequence

o0

{ [D(bn)/mrqu G (r1(br), - .., Td(bn):gnrnn)}

n=1

is bounded, we obtain lim, L”gf"(bmgm M) = 0 which finishes the proof. [J

Proposition 3.1 is derived from Proposition 3.2 as follows.
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Proof of Proposition 3.1. For any h € V'*, h # 0, we set D, = D/hdd-1) ¢
C[P(V')n] and g = f/h™ € C§,(Xn). Let g; € C§(P(V')h N P(V')p), j =
0,...,d —1, be such that

d-1
9lxo, = D (z/hY (plxs,)"05-
§=0
It is easily seen that gJN = p~ntj-NdegD ff’lp(w),‘, j=0,...,d—1. According to

Proposition 3.2, we have g € C§;(P(V’)p) for N > 4r+3and j=0,...,d - 1.
Hence FNpwn. € C(P(V)h,Opwnin —j + Ndeg D)) for N > 41' + 3 and
j= .,d — 1. Since the open sets {P(V')r, : 0 # h € V'*} cover P(V’),
Proposmlon 3.1 has been proved. 0O

Corollary 3.10. If (V/,W, 2) is an admissible triple for a submanifold X of
finite codimension in P, and f € C§q(X,0x(n)), n € Z, is a closed form, then
there exists u € C*°(Xp, Ox(n)) such that:

(i) Ou = f|Xp;
(ii) D®u = v}x, for some v € C}(X, Ox(n + 8deg D)).

Proof. Let f; € C§9(P(V')p,Opwvry(n—3)), 7 =0,...,d— 1, be such that
flxo = Ej;é (plxp)*fi ® 27. Then f} € C5,(P(V'),Op(vy(n + 8deg D)) for
j=0,...,d—-1, by Proposition 3.1, and ff, 7 =0,...,d—1, is an exact form that
is smooth on the open set P(V’)p. By Proposition 2.2.1 (if n + 8deg D < 0) and
Proposition 2.2.2 (if n + 8deg D > 0), there exist sections

uj € CY(P(V'), Op(vr)(n + 8deg D))

such that du; = fjs for j=0,...,d — 1. Proposition 2.1 shows that all sections u,,
j=0,...,d—1, are smooth on P(V')p. Let

d—1
u=D78%" (plx,)"(us]p(v1),) ® 2 € C*(Xp, Ox(n))
§=0
and
d-1
v="3 (plx)'u; ® 2 € CY(X,0x(n+8deg D)).
7=0
Then u and v satisfy (i) and (ii). a

Now we can prove the main result of this paper. In the proof we use the
complex C(X,Ox(n)) which was defined in [3, Section 5].

Theorem 3.11. Let V be a Banach space that admits smooth partitions
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of unity and P = P(V). Then H*!(X,0Ox(n)) = 0, n € Z, for any complete
intersection X in P.

Proof. Let f € C§5(X,0x(n)), n € Z, be a given closed form. According to
(3, Corollary 3.10], there is a collection {(V, Wi, z;) }ier of admissible triples for X
in P such that U = {Pp, }ier is a covering of P. By Corollary 3.10 in this paper,
for any i € I there exist u; € C®(X;,Ox(n)) and v; € CY(X,Ox(n + 84d;)) such
that du; = flx, and u; = D;S(v,lxi). For any 1,5 € I, let

pij = ujlx,; — uilx,; € C%(Xy;,0x(n)),
¢ij = D8¢; — D8g; € C1(X, Ox(n +8d; + 8d;)).

Then Oy;; = 0 for any i,j € I, which implies that ¢;; € H°(X;;,Ox(n)) for
any %,j € I. Furthermore, the global section @;; is holomorphic on Xj;; for any
i,j € I because (D;D;)8pi; = @ij|x,; - Since @;; is continuous on X, the Riemann
removable singularity theorem yields @;; € H°(X,Ox(n + 8d; + 8d;)) for any
i,7 € I. Therefore the cocycle ¢ = {i;}i jer belongs to the group C3(X,Ox(n))
(see [3, Section 6]). Since ¢ is a closed cocycle and H'(C(X,0x(n)) =0, n € Z,
by (3, Theorem 6.5], there exists a collection of holomorphic sections

¥ = {w; € H%(Xi, 0x(n))}ier € C°(X, Ox(n))

such that 69 = . This means that (u; — wi)x.nx;, = (u; — w;)x.nx, for all
i,j € I. Let u € C*(X,0x(n)) be given by ulx, = ui —w;, i € I. Since
(Ou)lx. = O(u; — w;) = Ou; = flx. for any i € I, we obtain du = f. O
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