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1. INTRODUCTION

Given a countable abstract structure 2, we define the degree spectrum DS(%)
of 2 to be the set of all ecnumeration degrees gencrated by the presentations of 20 on
the natural numbers. The co-spectrum of 2 is the set of all lower bounds of DS(%21}).
As a typical example of a spectrum one may consider the cone of the total degrees,
greater than or equal to some a, and the respective co-spectrum which is equal to
the set of all degrees less than or equal to a. There are examples of structures with
more complicated degree spectra, e.g. [11, 8, 2, 7, 15]. In any case the co-spectrum
of a structure is a countable ideal and as we shall see, every countable ideal can be
represented as co-spectrum of some structure.

Here we shall prove some general properties of the degree spectra, which show
that the degree spectra behave with respect to their co-spectra very much like the
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cones of cnumeration degrecs. Among the results we would like to mention the
analogs of Selman’s Theorem [14], the Minimal Pair Theorem and the existence of
a quasi-minimal enumeration degree. These results are known in two versions in the
theory of the enumeration degrees — above one fixed degree and above a sequence
of degrees, while our approach gives a unified treatment of both cases. Another
possible benefit is that the objects constructed in the proofs are elements of the
degree spectra or closely related to them. which gives an additional information
about their complexity.

Finally, our results pose some restrictions on the sets of degrees, which can be
represented as degree spectra. For example. using the existence of quasi-minimal
degrees, we obtain that if a degree spectrum posseses a countable base of total
degrees, then it has a least element. As a consequence of this. we get that for every
two incomparable Turing degrees a and b there does not exist a structure 2 such
that DS(L) is equal to the union of the cones above a and b, answering negatively
a question apparently posed by Goncharov.

2. PRELIMINARIES

2.1. ORDINAL NOTATIONS

In what follows we shall consider only recursive ordinals o, which are below a
fixed recursive ordinal 7. We shall suppose that a notation ¢ € O for 7 is fixed and
the notations for the ordinals a < 5 are elements a of O such that a <, e. For the
definitions of the set O and the relation " <,” the reader may consult [12] or [13]. We
shall identify every ordinal with its notation and denote the ordinals by the letters
a3, and 6. In particular, we shall write a < 3 instead of a <, 3. If a is a limit
ordinal, then by {a{p)}yex we shall denote the unique strongly increasing sequence
of ordinals with Iimit a, determined by the notation of «, and write a = lim a(p).

2.2. ENUMERATION DEGREES

Let 4 and B be sets of natural numbers. Then A is enumeration reducible to
B, A <. B,if A =T.(B) for some cnumeration operator I'.. In other words. using
the notation D, for the finite sct having canonical code v. and Wy, ..., W..... for
the Godel enumeration of the r.e. sets, we have

AL B = 2Ve(ze A < F{{(v,x) e W. & D, C B)).

The relation <, is reflexive and transitive and induces an equivalence relation
=, on all subsets of N. The respective equivalence classes are called enumeration
degrees. We shall denote by d.(A4) the enumeration degree containing 4 and by
De = (D.,<,0.) the structure of the enumeration degrees. where ” < ¥ is the
partial ordering on D,, induced by 7 <, ", and 0. is the least enumeration degree
consisting of all recursively ennmerable sets. For an introduction to the enumeration
degrees the reader might consult Cooper ([6]).
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Given a set, A of natural numbers, denote by AT the set 4 & (N 4). The set
A s called total iff A =, . An enumeration degree is total if it Lontams total
set. The substructure ’Dr of D.. consisting of all total degrees, is isomorphic to
the structure of the Turing degrees. Therefore we may identify the Turing degrees
with the total enumeration degrees.

The enumeration jump operator is defined in Cooper [3] and further studied
by McEvoy {10]. Here we shall use the following definition of the e-jump, which is
m-equivalent to the original one, see [10]:

Definition 2.1. Given a set A, let K% = {{x,z) : 2 € I'.{(4)}. Define the
c-jump A" of A to be the set (K9)*

The following properties of the enumeration jump are proved in [10]:

Let A and B be sets of natural numbers. Set B®) = B and B\"*1 = (B{")}".

(J1) If 4 <, B, then 4" <, B".
(J2) Ais £, relatively to B iff 4 <, (BT)".

Given an enumeration degree a = d.{4), let for every natural number n,
al™ = d,(A"™). Notice that the jump is well defined on all enumeration degrees
and that it is consistent with the Turing jump on the total enumeration degrces.

For every recursive ordinal a the a-th iteration of the enumeration jump a'®
is defined in a way similar to that one used in the definition of the a-th iteration of
the Turing jump, see [17]. Again it turns out that both definitions are consistent
on the total enumeration degrees.

2.3, DEGREE SPECTRA

We shall consider structures of the kind A = (N; Ry, .... Ry ), where ” =" and
" # 7 are among Ry, . ... R

Enumeration of 2 is every total surjective mapping of N onto N.

Given an enumeration f of 2 and a subset of A of N%, let

A) = {(z1.we) s (flan), o f(wa)) € A
By f~1(A) we shall denote the set f~'(Ry) @ --- f~'Ry). In particular, if
f = Az.z. then f~1(A) will be denoted by D{2A).
Definition 2.2. The degree spectrum of A is the set
DS(A) = {d.(f~'{A)) : fis an enumeration of 2A)}.

If a is the least element of DS(). then a is called the degree of .

The notion of degree spectrum is introduced in [11], where the first results
about degrees of structures are obtained. In [8] Knight defines the so-called jump
degrees of structures:

Definition 2.3. Let o < w{X. Then the a-th jump spectrum of 2 is the set
DS, = {d(f i’l)(“’) : f is an enumeration of 2},
If a is the least element of DS,, then a is called the a-th jump degree of 2.
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There are two main differences between the standard definition of the notion
of degree spectrum of a structure considered in [11] and [8] and the one introduced
here.

First of all, in the cited papers the pullback f~*{2) of a structure is defined
by taking into account not only the positive part of the predicates. but also the
negative one. So the degree spectrum in the sense of [11] and (8] is equal to DS(A™).
where

AT = (N.Ry....,Rp, =Ry, ...~ Ry).
[t can be easily seen that DS(2") consists only of total enumeration degrees. We
shall call structures of that kind fofal. More precisely,

Definition 2.4. A structure A is total if all elements of DS(2) are total.

The second difference is connected to the enumerations. In [11] and [8] the
degree spectra are defined by taking into account only the bijective enumerations.
while we allow arbitrary surjective enumerations. The choice of the class of enumer-
ations reflects on the notion of degree spectrum of a given structure. For example.
let A = (N:=,#). Clearly. if we define the degree spectrum of A by taking into
account only the bijective enumerations, then it will be equal to {0.}. while if
we take all surjective enumerations, then DS(2() will consist of all total enumera-
tion degrees. Fortunately. this difference does not affect the notion of degree of a
structure. Namely, the following Proposition is truc:

Proposition 2.1. Let f be an arbitrary enumeration of A. There exists a
bijective enumeration g of A such that g~ (A) <. f1{A).

Proof. Let Ef = {{x.y) : f(z) = f(y)}. Clearly, EJT <. f 1 (20). Define the

function i by means of primitive recursion as follows:

h(0) =~ 0,
hin+1) ~ pz[(Vk < n)({h(k),z) € Ep)l.

Set g(n) = f(h(n)). Now one can easily check that g is bijective and g~ () &
S
f — f (Ql). D
The main benefit of defining DS(2() by taking all surjective enumerations is
that it is always closed upwards with respect to the total enumeration degrees:

Proposition 2.2. Let g be an enumeration of A. Suppose that ' is a total set
and g~ (A) <. F. There exists an enumeration f of A such that f~1(A) =, F.

Proof.  Fix two distinct elements s and t of N. Define the mapping f(z) as
follows:
g(z/2), if ris cven,

flx) =~ < s, ifr=2z+1and z € F,
t, ifr=2:+1and z ¢ F.
Since ”=" and "#” are among the underlined predicates of . we have that

F <. f~H).
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To prove that f~'(A) <, F. consider the predicate R; of 2. Let us fix two
natural numbers ry and &, such that girg) ~ s and g{zy) >~ t. Let op..... 0, be
arbitrary natural numbers. Define the natural numbers yy... .. yr, by means of the
following recursive in F' procedure. Let 1 < j < ;. If 25 is even. then let yja; /2.
Ifr;=2:+1and z € F.thenlet y; = a,. f 2; =22+ 1 and z ¢ F, then let
y, = ry. Clearly.

(1o e f HUR) <= (n.oue) €97 (R,

Since g~ (A} <, F. from the last equivalence it follows that f~YR;) <. F. So we

obtain that f~1(A) <, F. O

Remark. The requirement that the set F'is total is necessary for the truth of
the proposition. Indeed. if the structure 2 were total. then for all enumerations f
of A the set f~ 1A} would be total.

The results in [11] show that there exist structures, e.g. linear orderings,
which do not posses degrees. Further investigations in [8, 2, 7] show that for every
recursive ordinal o there exist linear orderings with a-th jump degree 0'°!, which
do not possess J-th jump degree for 3 < a.

3. CO-SPECTRA OF STRUCTURES

Definition 3.1. Let A be a set of enumeration degrees. the co-set of A is the
set co{A) of all lower bounds of A. Namely,

colA)={b:beD, & (Va e A)(b <, a)}.

The co-set of the a-th jump spectrum of a structure A will be called a-th jump
co-spectrum of 2 and will be denoted by C'S,(21). In particular. if a = 0, the set
C'S, (2} will be denoted by CS{2) and called co-spectrum of 2.

Evidently. for every A C D, the set co{A) is a countable ideal. As we shall see
later. every countable ideal can be represented as a co-spectrum of some structure
2.

Definition 3.2. Let 4 C N a <« and let f be an enumeration of 2. The
set A is called a-admissible in the enumeration f if A <, f~1(A)l0,

The set 4 is a-admissible in 20 if 4 is admissible in all enumerations of 2.

Clearly. an enumeration degree a belongs to C'S, (2} iff a contains an a-
admissible set. Our close goal is to show that the a-admissible sets admit a char-
acterization in terms of the structure 2. Thus we shall obtain some information
about the elements of C'S,(2l). Our characterization is a generalization of the one
presented in (3], where only total structures are considered. Another reason for
presenting this characterization here is that we want to obtain an upper bound of
the degrees in DS, (%), which determine the elements of C'S, ().

Let us fix a structure A = (N: Ry ... Ri).

49



3.1. GENERIC ENUMERATIONS

In what follows, we shall use the term “finite part” to denote arbitrary finite
mappings of N into N. The finite parts will be denoted by d. 7. p. etc.

Definition 3.3. Let a < «$™. An enumeration f of 2 is a-generic if for every
3 < a and for every set S of finite parts such that S <, D{()"! the following
condition holds:
ErCHreSvVp2T){p€S))
Proposition 3.1. Suppose that a < % and let f be an a-generic enumera-
tion. Then for every 8 < a, f~'(A) £. DA and hence f~1(A)7 £, DAY,
Proof. Let 3 < a. Consider the set E = {{x.y) : f(x) # f{y)}. Clearly.
E <, £ 20, Assume that f~1(A) <. D(A)¥. Then the set
S = {r:(3z,y € Dom(r))({z.y) € E & 7(x) =~ 7{y))}
is enumeration reducible to D(2)'?! and hence there exists a 7 C f such that 7 € S
or (Vp 2 7)(p & S). Evidently, both conditions are impossible. (]
Corollary 3.1. If f is an a-generic enumeration. then d.(f~ (%)) does not
belong to CSz(A) for any 3 < a.
For every a, e and a in N we define the relations f =, F.(x) and f =, ~F.(2)
as follows:
(i) f E=o F.(z) iff there exists a v such that (v.z) € IV, and for all v € D,
F)A<i<k&u={(i,zf,....00 ) & (fla))..... f(z;)) € R):
(ii) Let «« = 3 + 1. Then
f Ea Felz) <= (v)({v.2) e W, & (Vu € D)
(u={0,ey.2y) & f =35 Fo (Tu))V
(u= (1w} & f =g ~Fe, (2u))));
(iii) Let o = lim a(p). Then
fEa Folz) <= (Fu){{v,z) e W, & (Vu € D, ){
u = <p(n€u:'7~'u> & f ':u(p‘,] Fe., (Iu)}};
(iv) fl=a ~Fe(z) <= f#a Fel2).
An immediate corollary of the definitions above is the following:
Lemma 3.1. Let 4 C N and let o < w§ ™. Then A <, f~H(A)' iff there
exists an e such that A = {z: f =, F.(x)}.
For every a < wS'K. e and z in N and every finite part 7 we define the forcing
relations 7 b, F,(2) and 7 Ik, = F.{z). following the definition of " =":
(i) 7o F,(r) iff there exists a v such that
(v,a) e W, andforall u € Dy, u = (i.xf,....ak), 1 <i<k,
... ..zy € dom(r) & (r(z)).....7(2} ) € Ry

Ty LI
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(1) Let ¢ = 3+ 1. Then
Tl Folr) <= (3Sv)({v.a) € W, & (Vu € D)
(u=1{0.e.a) &Tlks F. (x,)V
(u= (1€ 1y & 7lk3 =F (r.))));
(iii) Let o = lima(p). Then
Tl Fo(a) <= (Fv)((v.x) € TV, & (Vu € D)(
U= (py.ey,x,) & 7 Fatpa) Feu(Tu)))s
(iv) 7lka Fe(x) <= (¥p 2 7){p s F.(r)).

For everv recursive ordinal a, e,r € N set X = {p:plks F.(x)}.

Given a sequence {X;} of sets of natural numbers, say that {X,} is e-reducible
to the set P if there exists a recursive function g such that for all n we have
Xy =y (P). The sequence { X, } is T-reducible to P if the function An,z.y x, ()
is recursive in P.

From the definition of the enumeration jump it follows immediately that if
{X,} is e-reducible to P. then {X,} is T-reducible to P’

Lemma 3.2. For every o the sequence { X3} is uniformly in o e-reducible to
FHA, and hence it is uniformly in a T-reducible to f~1{A) e+,

Proof.  Using effective transfinite recursion and following the definition of the
forcing. one can define a recwrsive function g(a,n) such that for every a, X2 =
-1
rg{o.n)(f (Ql)(al)' 0
The next propertics of the forcing relation follow casily from the definitions
and the previous lemma:

Lemma 3.3. (1) Let a be a recursive ordinal, e,x € N, and let 7 C p be
finite parts. Then
Tlra (R)F(2) = plha (2)F(2).
(2) Let f be an a-generic enumeration. Then
fEa Fe(z) &= (3r C f)(rlFa Fe()).
(3) Let f be an (a + 1)-generic enumeration. Then
f o ~Fu(z) &> (Gr C f)(7 ko ~F(2)).

Definition 3.4. Let 4 C N and let a be a recursive ordinal. The set A is
forcing a-definable on 2 if there exist a finite part 4§ and e,z € N such that

A={z: (31 28)(7 Ikq F.(z))}.

Clearly. if 4 is forcing a-definable on 2, then 4 <, f~1(2){®). The vice versa
is not always true. As we shall see later, the forcing a-definable sets coincide with
the scts which are a-admissible in 2.

The next proposition follows easily from the definitions:



Proposition 3.2. Let B = (N, R}....  R}) be a structure isomorphic 1o 2
and « be a recursive ordinal. Then every forcing a-definable on B set is forcing
a-definable on .

Proposition 3.3. Let a be a recursive ordinal. 3 < o and let A C T8 be not
forcing 3-definable on . There exists an a-generic enumeration f of % satisfying
the following conditions:

(1) f<e AT @ DY

(2) If v < a, then fH(A) <, f= DAY

(3) AL frHA)I.

Proof. We shall construct the enumeration f by steps. At cach step g we shall
define a finite part §,, so that §, C d,41, and take f = [J ;. We shall consider
three kinds of steps. At steps ¢ = 3r we shall ensure that the mapping f is total
and surjective. At steps g = 3r + 1 we shall ensure that f is {a + 1)-gencric and at
steps ¢ = 3r + 2 we shall ensure that f satisfies (3).

Let S denote the set of all finite parts. If @ = £ + 1, then for every natural
number n set Y, = L, (D) NS, If @ = lima(p) is a limit ordinal. then set
Y,y = Do (D@D 0 S,

In both cases we have that the sequence {}},} is T-reducible to D(2l)
consists of all sets S of finite parts which are enumeration reducible to D(2)!"/ for
some vy < (.

Let &g be the empty finite part and suppose that 9, is defined.

a) Case ¢ = 3r. Let g be the least natural number which does not belong to
dom(d,) and let s be the least natural number which does not belong to the range
of d,. Set 3,01 (o) = so and d,uq () >~ 0, (x) for @ # xo.

b) Case ¢ = 3r + 1. Consider the set Y.

Check whether there exists an element p of Y} such that d, C p. If the answer
is positive, then let 4,41 be the least extension of d, belonging to Y. If the answer
is negative, then let 6,41 = 4.

c) Case ¢ = 3r + 2. Consider the set

Cr={z:(3r 2 4,)(r k3 Fr.(x)}}.

Clearly, C, is forcing 3-definable on 21 and hence C, # A. Notice that C) <.
D(2)? uniformly in r and d,. Therefore the set C,, is recursive in D)) uniformly
in 7 and 4,. Let x, be the least natural number such that

r,eC. &, g AV, €C, & 2, € A
Suppose that x,. € C,.. Then there exists a 7 such that
8 Cr & 1lks Frlz,). (3.1)

Let 0,41 be the least 7 satisfying (3.1). If z,. ¢ C'.. then set §,.; = 4,. Notice
that in this case we have §,41 b3 ~Fr(z;).

From the construction above it follows immediately that f = |J d, is e-
reducible to AT @ D()'* and hence it satisfies (1).
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Let v < a. Then there exists an e such that f~1(A)'") = {&: f =, F.(
Since [ is a-generic. we can rewrite the last equality as f~'(24)" = {2 : ET
fir i, F.(r)}. Thercfore f~HA) <, f= D)

It remains to show that A £, £~ ()Y, Towards a contradiction assume that
A<, f7HAY Then there exists an r such that

A={r:f =5 F.(x)}.
Consider the step ¢ = 3r + 2. By the construction we have
:l?r Q’ -—1 \&: ‘5!17" H-'} F,-(.l',‘) VJ"* E ‘4 & o‘q+l ”—'j ﬁFp(I-,-).
Hence by the genericity of f
r, A& fEs Fle ) Ve, € A& f =3 ~F(x,).
A contradiction. J

Repeating the proof above without bothering about the set 4, we get also the
following:

mw—

Proposition 3.4. Let o be a recursive ordinal. Then there exists an c-generic
enumeration f such that f and f~1(A)'*) are enumeration reducible to D()!°?,

Theorem 3.1. Let o be a recursive ordinal, 3 < a and let A C N be not
forcing 3-definable on A. Let Q be a total set such that AT o D(A)'Y <, Q. Then
there exists an enumeration f satisfying the following conditions :

(1) The enumeration degree of f~1() is total;

(2) A g f7HE)E

(3) fHR) =, Q.

Proof.  According Proposition 3.3 there exists an enumeration g of 2 such
that g <. Q. ¢~ ()" <, Q and A £, g~ ()",
From Jump Inversion Theorem [17] it follows that there exists a total set F
such that the following assertions are true:
(i} g7HA) <, F:
(ii) A £, F90.
(iv) Flal = . Q.
By Proposition 2.2 there exists an enumeration f such that f~'() =, F. [

Definition 3.5. Let () be a total subset of N and a < w{' . An enumeration
fof Ais a, Q-acceptable if f satisfies the following conditions:

(i) The enumeration degree of f~1(A) is total;

(ii) FH) =, Q.

Theorem 3.2. Let a be a recursive ordinal, 3 < a and let A C N be not forcing
definable on A. Consider an enumeration g and a total set Q >, g~ (AN @ 4T,
There exists an «, Q-acceptable enumeration f of A such that A £, f~1(A)¥).



Proof.  According Proposition 2.1 there exists a bijective enumeration h such
that A= 1(A) <. g~'(A). Denote by B the structure (N:h 1 {Ry)..... h=Y{(R)).
Clearly. 4 is not 3-forcing definable on B and D(B) =, h="(A). Hence DIV <,
(2. Let i be an enumeration such that the enumeration degree of i~'(B) is toral.
1B =, Qand A £, i7 (B)F. Set f = Ar.h(i(x)). Then fFHA) =, i (B).
Thus f is a, Q-acceptable and 4 £, f~1(). O

Corollary 3.2. For every total Q >. g~ (A)'*! there exists an a. Q-acceptable
enumeration of A.

Theorem 3.3. Let a be a constructive ordinal and A C N, Let 3 < a.
Consider an enumeration g of A. Suppose that Q >, g7 (A}, Q is a total set
and for all a. Q-acceptable enumerations f of A we have 4 <, f=HA)'¥'. Then A
18 forcing 3-definable on 2.

Proof. First we shall show that 41 <, Q. Clearly, there exists an enumeration
h of 2 such that h is @, Q-acceptable. Then 4 <, h~'(2)*“). By the monotonicity
of the enumeration jump we can conclude that

A< hH Y <, 0.

Since AT <, A’, we get that AT <, Q.
Assume that 4 is not forcing a-definable on 2. Applying Theorem 3.2, we ob-
tain an a, Q-acceptable enumeration f such that A £, f7 ()2}, A contradiction.

3.2. NORMAL FORM OF THE FORCING DEFINABLFE SETS

In this subsection we shall show that the forcing definable sets on the structure
2 coincide with the sets which are definable on 20 by means of a certain kind of
positive recursive £ formulae. This formulae can be considered as a modification
of the formulae introduced in [1], which is appropriate for their use on abstract
structures.

Let L = {T1,...,T}} be the first order language corresponding to the structure
. So, every T is an 7;-ary predicate symbol. We shall suppose also fixed a sequence
Xo,..., Xy, ... of variables. The variables will be denoted by the letters X. 1. 11
possibly indexed.

Next we define for a < w{'® the ©F formulae. The definition is by transfi-
nite recursion on a and goes along with the definition of indices (codes) for every
formula. We shall leave to the reader the explicit definition of the indices of our
formulae, which can be done in a natural way.

Definition 3.6.

(i) Let @ = 0. The clementary ©7 formulae are formulae in prenex normal
form with a finite number of existential quantifiers and a matrix whicl is a
finite conjunction of atomic predicates built up from the variables and the
predicate svmbols Ty, . ... Tk.



(i) Let a = 3+ 1. An elementary £7 formula is in the form
=) NTE=) 1.V £ . CUII U U S8 B
where A/ is a finite conjunction of atoms of Sj formulae and negations of
S; formulae with free variables among X, .... X7, Y7..... Y5,
(iii) Let a = lima(p) be a limit ordinal. The clementary 1 formulae are in
the form
Y. MG N YY),
where )M is a finite conjunction of E:(p) formulae with free variables among
Ny XY Y.
(iv) A £ formula with free variables among Xi...., X;isanr.e, infinitary dis-
junction of elementary Yo formulae with free variables among R ST ¢

Notice that the £ formulae are effectively closed under existential quantifica-
tion and infinitary r.e. disjunctions.

rrue on A under the variable assignment v such that v(117) =#;,... (W) =ty

Definition 3.7. Let A C N and let a be a constructive ordinal. The set A
is formally a-definable on 2 if there exists a recursive function g(z) taking values

indeces of £ formulae @, with free variables among Wi,..., W, and elements
f1.....t, of N such that for every element = of N the following equivalence holds:
€A = Ak 3, (W /t.... T /t).

We shall show that every forcing a-definable set is formally a-definable.

Let var be an effective mapping of the natural numbers onto the variables.
Given a natural number z. by X we shall denote the variable var(z).

Let 11 < y2 < ... < yg be the elements of a finite set D, let () be one of the
quantifiers 3 or ¥ and let ® be an arbitrary formula. Then by Qly :y € D)@ we
shall denote the formula QY7 ... QY. ®.

Lemma 3.4. Let D = {wy,....w,} be a finite and not empty set of natural
numbers and x. ¢ be elements of N. Let a < w$'™. There exists an uniform effective

way to construct a S formula ®%, , , with free variables among Wi.... . W, such

that for every finite part § with dom(8) = D the following equivalence is true:
A= ¢4, (W /8(wy).... . W /d(w,)) <= bk, F.(x).

Proof. We shall construct the formula ®%, , , by means of effective transfinite
recursion on a following the definition of the forcing relation "IF".

1) Let a = 0. Let V" = {v: {(v,z) € WW.}. Consider an clement v of V. For
everv u € D, define the atom II,, as follows:

a) fu = (i,z¥.....a%). where 1 <i <k andall af,....x; are elements of

L

D. then let T, = T, (X[ ..., X )

b} Let IT, = 117 # 11 in the other cases.

]
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Set Iy = A cp, Hy and 3, = Vtci II .
2) Let a = 3+ 1. Let again 1" = {v: {(v.x) € 1.} and v € V", For everv
w & D, define the formula II,, as follows:
a) If u=(0.e,.2,). then let IT,, = d,)("
b) If u = {(1,e,,2,). then let

I, =-[ \/ GyeD \D)d,.
D<oD

\
Ly

NESTINTA u]'

. — §° A C emge
c) Let IT, = <I){U} 00 N ﬂfb{o} 0.0 In the other cases.
Now let IT, = A cp I, and set ®% , . =V oy IL..
3) Let o = lim a(p} be a limit ordinal. Let 17 = {v: (¢v.2) € . }. Consider a
. o )
v € V. For every element v = {(p,.e,.xr,) of D, set II, = ‘I”,i,(_':_‘_,r‘ .
Q S « . (43 —
Set nl' _ /\UED,. H“ and )l).f'..‘r - Vr,'é‘l' 1
An ecasy transfinite induction on a shows that for every a the ¥ formula
&< satisfies the requirements of the lemma. [
Dea {

Theorem 3.4. Let a < 05 and let A C N be forcing a-definable on . Then
A is formally a-definable on 2.

Proof. Suppose that for all » € N we have

red & (IrD)(ri, F.lx)).

Let D = dom(d) = {wy,.... w.} and let 6(w;) =t ¢ = 1..... . Consider a
finite set D™ 2D D. By the previous lemma
AE3yeD \D)®p. , (W /t...., L)

if and only if there exists a finite part 7 such that dom(r) = D*. + 2 4 and
T Ik Fel(x).
Hence we have that for all € N the following equivalence is true:

red = AR \/ 3yeD\D)®Y , (Wi/ty..... 11 /L),
D*2D
Set.
yy =\ By eD\ D)o}, (1.1
p*DD
Clearly, for all x € N we have

€A &= AR Py,
Hence A is formally a-definable on 2. O

Evidently, every formally a-definable set is a-admissible in all enumerations f
of /. So we have the following theorem:

Theorem 3.5. Let A CN and a = d.(4). Let a be a recursive ordinal. Then
the following are equivalent:

(1) ae CSa(A);
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(2) A is forcing a-definable:
(3) A is formally a-definable:
(1} A is a-admissible in all enumerations of A.

3.3, REPRESENTING THE COUNTABLE IDEALS AS CO-SPECTRA OF STRUCTURES

[n this subsection we are going to prove that every countable ideal of enumer-
ation degrees can be represented as a co-spectrum of some structure.

Definition 3.8. Let 2 be a countable structure. The enumeration degree d
is called co-degree of 2 if d is the greatest element of CS(A). If o < w{'" and d is
the greatest element of C'S,. then d is called the a-th jump co-degree of L.

Clearly, if d is the a-th jump degree of a structure 21, then d is also the
a-th jump co-degree of 2. The vice-versa is not always true. For example. let
A = (N <. =.#) be a linear ordering. It is casy to sce by a direct analysis of the
formally O-definable on 2 sets that the co-degree of 21 is 0. On the other hand,
there exist linear orderings without a degree. see [11]. From the results in [8] it
follows that the first jump co-degree of 2 is 0’ and again there are examples of
linear orderings without first jump degree.

Obviouslv. if a structure A has a co-degree. then C'S(2) is a principle ideal.
Building on results of Coles. Downey and Slaman [4]. we shall show that cvery
principle ideal of enumeration degrees can be represented as C'S{G) from some
subgroup G of the additive group of the rational numbers @ = (Q: +.=. #}.

Let us fix a non-trivial group G C Q. Let a # 0 be an element of G. For every
prime number p set
k. if kis the greatest number such that p*ie in G,

hyla) =
1p(a) . if p*la in G for all k.

Let pg.pi.... be the standard enumeration of the prime numbers and set
S Gy = {{i.j) ] < hy (a)}.

It can be easily seen that if a and b arc non-zero elements of G, then S,(G) =,
Sp(G). Let di = d.{S,{G)). where a is some non-zcro element of G.

In [4] it is proved that for every total enumeration degrec a there exists a
bijective enumeration f of G such that f~1(2) € a if and only if di < a. Since for
every enumeration f we have that f~1(G) is a total set and dg < d.(f~1{(G)), we
get the following proposition:

Proposition 3.5. DS{G) = {a:a is total & a > dg}.
Corollary 3.3. C'S(G) = {b:b <ds}.

Proof.  Clearlv. b € CS(G) if and only if for all total a > d¢, a > b.
According Selman’s Theorem [14] the last is equivalent to d¢; > b. O

Corollary 3.4. The group G has a degree if and only if dg is total.

(2]
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Corollary 3.5. ([1]) Every group G C Q) has a first jump degree.

Proof. Tt is sufficient to show that dj; € DS\ {(). Indeed. Ly the Jump
Inversion Theorem [16] there exists a total degree a > dg such that a' = di,.
Obviously, a’ € DS (G). O

It remains to see that for every enumeration degree d there exists a subgroup
G of (Q such that dg = d. Indeed. let D C N, Consider the set

S={{.j):j=0vj-1&ieD}
It is evident that S =, D. Consider the least subgroup G of () containing the set
{1/p) - (i,j) € S}. Then 1 € G and S;(G) = S. So. dg = d.(D).

Now let us turn to the representation of an arbitrary countable ideal I of
enumeration degrees. Without a loss of generality we may assume that there exists
a sequence by < b; <--. <by... of elements of I such that

acl <= (Jki(a<by).
For every k fix a set By € by.
Consider the structure A = (N: G ., 0. =, #}. where GG . is the graph of the total
recursive function ¢ such that o({(z,y)) ~ (r + 1.y) and
o={{z,y): B}y =2kvy=2k+1& x € By)}.
Proposition 3.6. CS(2) = [.

Proof. To show that I C CS(Rl), it is sufficient to see that (Vk)(by € CS(2A}).
Indeed, let us fix a k and let f be an enumeration. Let f~1G.) = GY, f o) = o/
and fix a natural nuinber z; such that f(xy) = (0,2k + 1). Then for every r € ™
we have

€ By < 3y ... 3y G (xey) & GHyroyo) & GHyaoy.ye) & ol (u2)).

Thus By <. f~ ().

To prove the inverse inclusion. we shall show that if 4 is a formally definable
on A set of natural numbers. then 4 < By for some k. Let us suppose that g is
a recursive function taking values indeces of £ formulae ® 42y with free variables

among Wy...., W, and t,,....{; are natural numbers such that

red &= U |= (ng(l‘i} /fl e ”',-/tr).
Without a loss of generality we may assume that every ¢; = (0./;). where [,..... [,
are distinct natural numbers. Assume that /;,....[; are the odd numbers among
Ly,....,and let [; =2k; +1,i=1,...,s. Set & = max(k;.....ky). We shall show
that A <, By. Indeed, let us consider an elementary £7 formula

S=3Y... 3 M(Y...., Y, Wi . T,
where A is a finite conjunction of the atoms Ly..... L,. We shall show that there
exists a uniform recursive procedure, which cither decides that 2 = S(1 /... ..
1. /t.} or constructs finite sets of natural numbers E|... .. E. such that

2A ':- S(‘“"l/tl... .,H',./f,.} +— F, - Bk; L. & E, - BA-_‘.
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Substituting all atomic predicates of the form G.(Z.T) by T = (Z), we may
assume that the predicate G . does not occur in S.

1. Check if all L; are of the form Z # T or o™ (Z)). If there is an L of
the form Z # Z. then vield 2 = S(11, /t... .. . /t,) and go to 6. Otherwise. for
j = 1....5set

Ei={n;:ao(™" (W) €{L.....L,}}
and go to 6. If not all L; are of the form Z # T or (¢ (Z)}. then go to 2.

2. Remove all atomic predicates " (117;) = " (1V;). If there exists a predicate
of the form "1 (117} = "= (1), where i # j. then yield 2 = S(W, /¢y, ... W, /t,)
and go to 6. Otherwise go to 3.

3. Suppose that among Ly,..., L, there exists an atomic predicate L of the
form "t (1) = ¢"*(Z}, where ny < na. Then A = S(W /t..... W, /t.). Go to
6. If no such L exists. go 1o 4.

4. Suppose that there exists an L which is of the form "' (Z) = " (T),
where Z & {117..... I} and ny > na. Remove L from the list and replace in
the remaining atomic predicates all occurences of Z by "> 7")(T). Go to 1.
Otherwise. check if there exists an L of the form ¢ (T') = ¢"2(Z), replace it by
S"M(Z) = " (T) and go to 3. Otherwise go to 3.

5. Consider the first L of the form o™ (Z) # ¢"2(T). where max(n;,n,) > 0.
If the variables Z and 7T arve distinct, then replace it by Z # T. If Z = T, then
if ny = no. decide that A B S{11 /t1,.... W /t,) and go to 6. If ny # ny, then
remove L from the list and go to 1. If no such L exists, go to 1.

6. End of the procedure.

Using the above procedure, we may construct an enumeration operator I' such
that for all x

AE Wi/t . W, /t) &= x el (B).

Thus 4 <, By.. 0
4. PROPERTIES OF THE DEGREE SPECTRA
4.1. GENERAL PROPERTIES OF UPWARDS CLOSED SETS

Definition 4.1. Consider a subset A of D.. Say that A is wpwards closed if
for every a € A all total degrees greater than a are contained in A.

By Proposition 2.2 every degree spectrum is an upwards closed sct of degrees.
In this subsection we shall prove some properties of the upwards closed sets of
degrees. The next subsection contains specific properties of the degree spectra, i.e.
properties which are not true for all upwards closed sets of degrees.

Let A be an upwards closed set of degrees.

Notice first that if B C A, then co(A) C co(B).

Proposition 4.1. Let A; = {a:a € A & a is total}. Then co(A) = co(Ay).



o~

Proof. A simple application of Selman’s Theorem [14]. Suppose that b €
co{A¢). Towards a contradiction assume that b & co(A). Then there exists an
clement ¢ € A such that b £ ¢. By Sehnan’s Theorem there exists a total a > ¢
such that b £ a. Clearly. a € A,. A contradiction. (]

The next property can be obtained as an application of the Jump Inversion
Theorem (JIT) from [17].

Proposition 4.2. Let b be an arbitrary enumeration degree. Let o be a re-
cursive ordinal greater than 0. Set

Ap, ={a:ae A& b<a},
Then co(A) = co(Ap.. ).

Proof. Obviously, colA} C co(Ap.n). Assume that there exists a degree
¢ € co(Ap.q) \ co(A). Then therc exists an a € A such that ¢ £ a. By the JIT
there exists a total degree f such thata < f. b < f'“ and ¢ £ f. Clearlv. f € Ap_...
A contradiction. [

4.2, SPECIFIC PROPERTIES OF DEGREE SPECTRA

Let us fix an abstract structure 2.

From Proposition 4.2 it follows that the clements of an upwards closed set
A with arbitrary high jumps determine completely the co-set of A, The next
theorem shows that the elements of the degree spectrum DS{A) with low jumps
also determine its co-set C'S(2A).

Let v > 0 be a constructive ordinal and b € DS, (). Denote by A the set
{a:aec DS(A) & a'*' = b},

Theorem 4.1. C'S(A) = co(A).

Proof. 1t is sufficient to show that co{A) C CS(A). Let ¢ € co(A) and let C
be a set in ¢. We shall show that C' is O-forcing definable on 2. Evidently. there
exists an enumeration g of 2 such that g=1(A)'*’ € b, Since a > 0, Q = g~ (A
is a total set. Let f be an a.@Q-acceptable enumeration. Then d.(f~1()) € A and
hence €' <, f~11). So C is 0-admissible in all a, Q-acceptable enumerations of 2.
By Theorem 3.3, C' is O-forcing definable on 2 and hence ¢ € CS(A).

There exists upwards closed set of enumeration degrees for which Theorem 4.1
is not true. Indeed, consider two sets of 4 and B of natural numbers such that
B £, 4 and 4 £, B'. One may take an arbitrary B £, § and construct the set 4
as a B'-generic set such that B £ 4. Let D = {a:a >d.(4)}U{a:a>d.(B)}.
Let A={a:ae D& a =d.(B)}. Clarly. if a > d.(1). then a ¢ A. Therefore
d.(B) is the least element of A and hence d,(B) € co(A). On the other hand.
d.(B) £ d.(4) and hence d.(B) € co(D).

Now we turn to an analog of the Minimal Pair Theorem for the enumeration
degrees.

Given a partial mapping f of Ninto N. let fy = Az.f(2x) and f; = Ao f(22+1),
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Definition 4.2. Aun enumeration [ is splitting if the functions fy and f; are
enumerations, i.e. fy and f; are surjective mappings of ¥ onto N.

Obviously, if f is a splitting enumeration, then both fi' () and f;7'(A) are
enumeration reducible to f~1{2

Lemma 4.1. Let f be an a-generic splitting enumeration of A. Then both fq
and [y are a-generic enumerations.

Proof.  We shall show that fq is a-generic. The proof of the genericity of f; is
similar. Let 3 < a and let Sy be an enumeration reducible to D{A}' set of finite
parts. Denote by S the set {r: 71 € Sp}. S <. Sy and hence there exists a 7 C f
such that r€e SV (¥p 2D r)(p & 5S).

Clearly. 7o € fy and if 7 € S. then 74 € Su. Suppose that (Vp 2 7)(p € .5).
Assume that there exists a u 2 75 such that p € Sp. Notice that since p 2 79. we
have that for all x if (22} ~ y, then p(x) ~ y. Let

. plx/2), if z is even,
pla) =~ I
T(x). if x is odd.

Then 7 € pand py = p € Sp. So, p € S. A contradiction. [J

Corollaly 4.1. If f is an a-generic splitting enumeration. then d.( fo (A
and d.(f; ()P do not belong to CS3(A) for any 3 < a.

Proposition 4.3. Let f he an a-generic splitting enumeration of A. Set fo =
A (fHAY) and £, = d.(f71 (). Then for every 3 such that 3+ 1 < a,
0 1 !

ol {fo"7! . £177}) = C'S5(A).

Proof. Let 3+ 1 < «. It is sufficient to show that if 4 <, font? and
A<, f7H)Y then A is 3-forcing definable on 2. Indeed. suppose that there
exist ¢g and ¢, such that

(Ve)Y((red & foEsF,(r)&(red < fl ;5 F (2)).
Consider the set
= {7:(Fa)(1 b3 Foo(x) & 7y b3 ~Fe, () V7o Ik ~F (7)) & 1y kg F. (x)}.

Clearly, S is an enumeration reducible to D(2)**17 and hence there exists a 7 C f
such that 7 € S or 7 has no extensions in S. Assume that 7 € S. Then for some
7 we have that fo =3 Fo (@) & fi |F3 oF. (x) or fo s ~Fe,(v) & fi =5 Fe, (7).
which is impossible. So. rhexe exists a 7 C f such that 7 hd‘s no extensions in S.
We shall show that
A={z:(3p270)(plrs Fe ()}

Let + € A. Then fy =3 F.,(x) and hence there exists a p C fo such that
p k3 F..(x). Then 7y C fy and hence we may assume that 7o C p. Assume now
that for some z ¢ A there exists a p O 1 such that p bz F, (x). Then f; 3 F,, (z)
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and hence there exists a p C f; such that ptk3 =F. (7). Again we may assume
that 7 C . Now let

pla2), if & is even,
o{v)~q e
piie/2]y,  if ris odd.

It 1s easy to see that g9 = p and & = p. Therefore 7 € ¢ and o € §. A
contradiction. O

Theorem 4.2. Let a < &% and let b € DS, (A). There exvist elements £y
and fy of DS() such that:

(1) o' <b and ;' < b:

(2) If 3 < «, then o' and £, do not helong to C'S3(2):

(3) If 3+ 1< a, then co({fo{‘al.fl{"‘”}) = C53(A).

Proof. Let g be a bijective enumeration of 21 such that d, (g~ (A)*})
Denote by B the structure (N: g7 (R;). .. .. 9 Y Ry)). Clearly. D(®B) =, ¢~ (B
and for all 3 we have that DS3{) = DS3(B) and CS5(A) = CS;(B). Let f
be an a-generic splitting enumeration of B such that f~1(B)) <, D(B)'*. Set
fo =de(fy " (B)) and fi = d.(f7'(B)). Obviously, fy and fy satisfy the conditions
(1) -(3).0

Again we have that Theoremn 4.2 is not true for arbitrary upwards closed sets
of degrees. Indeed, consider the finite lattice L consisting of the clements a. b.
c.aAb,aAc, bAc, T, L such that T and L are the greatest and the least
element of L, respectively, a >aAb,a>aAc,b>aAb.b>bAc.c>anc
and ¢ > b A c. Since every finite lattice can be embedded in the semilatice of the
Turing degrees, see p. 156 of [9], the lattice L can be embedded in (D, <) and
hence it can be embedded in (D,, <). So we may assume that L is a substructure
of (D, <). Let

< b.
L))

A={deD,:d>avd>bvd > c}.
Clearly, A is an upwards closed set of enumeration degrees. Assume that there
exist fo,f1 € A such that co({fo,f1}) = co(A). Let x9.x3 € {a.b.c} be such
that fo > xg and f; > x;. Let x2 = min{xg.x1}. Then x5 € co({fo.f1}). but
xo & co(A). A contradiction.
Now we turn to the third property of DS(2(), showing the existence of enu-
meration degrees, which are quasi-minimal with respect to C'S(2).

Let L &N,

Definition 4.3. A partial finite part is a finitc mapping of N into NU{L1}. A
partial enumeration is a partial surjective mapping of N onto N.

From now on, by d,p.7 we shall denote partial finite parts. Given a partial
finite part 7 and a partial enumeration f, by 7 C f we shall denote that for all r
in dom(7) either 7(x) ~ L and f(z) is not defined or () € N and f(z} ~ 7(x).



Lot A= (MR, R;) be a structure and f be a partial enumeration. Given
a subset A of ¥, let
A = {{ry. . T ST D v, € dom(f) & (flay)..... flay)) € A}

Let f" () = f~HR) == fHRE). As we shall see later, it could happen
that d.(f~"{A)) &€ DS{A). On the other hand. next lemma shows that for every
partial enumeration f the enumeration degree of f~(2) is "almost”™ in DS(2).

Lemma 4.2. Let X be a total set, let f be a partial enumeration and R <.
N. Then d.(X) € DS().

Proof. It is suﬁ‘icient to show that there exists a total surjective mapping g
of N onto N such that ¢7'() <. X. Let E; = f~!1(" ="). Clearly, £y <. X.
Since dom(f) = {x : {x.z) € E;}, we get that dom(f) <. X and hence, since X is
a total set. dom(f) is r.e. in .X. Let h be a recursive in X enumeration of dom(f).
Set g = An.f(h{n)). Then for every i, 1 <7 < k, we have

Ry ={n,....n. ) (h(ng).. .., hin,)) € f1(R)}.

Thus g1 () <, X. O

Corollary 4.2. For every partial enumeration f the enumeration degree of
F=H) belongs to DS ().

Proof. B\ the Jump Inversion Theorem from [16] there exists a total set F
such that f71() <, F and F' =, f~Y(A)". Then d.(F) € DS(2} and, hence.
d.(F"y € DS, _‘21).

Corollary 4.3. Let f be a partial enumeration. Then d.(f~'(2)) is an upper
bound of CS(A).

Proof. Let a € C'S(A) and let 4 € a. Consider a total set X such that
F7HA) <. X. Then d.(\) € DS(2A) and hence 4 <. X. By Selman’s Theorem
(4], A < f7H2). O

Definition 4.4. Let f be a partial enumeration of 2 and e,2 € N. Then:

) f =0 F.(z) iff there exists a v such that (v.z) € W, and for all u € D,
Gl <i<k&u= (.. .oxf) & A{af.... 2t} Cdom(f) &
(flxy).... . f(zf)) € Ri);
(i) f =0 ~Felr) <= f o Felz).
It is obvious that 4 <, f~* () iff there exist an e such that
(Vr e N)(x € 4 <= f =0 Fe(x)).

Definition 4.5. Let 7 be a partial finite part and e,z € N. Then:
(i) 7 kg F.(z) iff there exists a v such that (v.z) € I, and for all v € D,.
w=(l.zy.. .. 2} ). 1<i<k,
af,..oox) € dom(r) & (r(zf),....7(x;)) € Ri:
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(ii) 7k =F.(x) <= (Vp D 1)(p Ko F.(x)).

Definition 4.6. A subset A of NN is partially forcing definable on A if there
exist an e € N and a partial finite part 4 such that for all natural numbers .

r € d <= (Ir Dd)(rlkg Fo.lr)).
Clearly. if A is partially forcing definable on 2. then A <. D).

Lemma 4.3. Let A C N be partially forcing definable on A, Then d. (4} €
CS{A).

Proof. Let g be an arbitrary (total) enumeration of 2. Consider a structure
B. which is isomorphic to % and such that D{B) <, g7 "{A). Then A is partially
forcing definable on B and hence 4 <. D(®B) <, ¢~ (). [J

Definition 4.7. A partial enumeration f is generic if for every enumeration
reducible to D{2) set S of partial finite parts the following condition holds:

(Fr C filreSVVp27)p & 5)).

We shall list some properties of the partial generic enumerations omitting the
proofs, since they are similar to the proofs of the respective properties of the total
generic enumerations.

Proposition 4.4. (1) For every partial generic f, f~1(A) £, D(A). Hence
d.(fH(A)) & CS().
(2) If f is a partial generic enwmeration. then
(Ve,2)(f k=0 ()E.(2) = (37 C f)(r o (F)F(2))).

(3) There exists a partial generic enumeration f <. D(A)' such that [~} {2A)
<, D{A)".

(4) If A <, f7HA) for all partial generic enwmerations f. then A ws partially
forcing definable on 2.

Definition 4.8. Given a set A of enumeration degrees, say that the degree gq
is quasi-minimal with respect to A if the following conditions hold:
(i) q & co(A):
(ii) If a is a total degree and a > q, then a € A:
(iii) If ais a total degree and a < q, then a € co(A).
Notice that from {ii) it follows by Selman’s Theorem that every quasi-minimal
degree is an upper bound of co(A).
If for some d € D.. A = {a : a > d}, then a degree is quasi-minimal with
respect to A iff it is quasi-minimal over d.

Theorem 4.3. Let f be a partial generic enumeration of A. Then d.{f~(2A))
15 quasi-minimal with respect to DS(A).
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Proof. It is sufficient to show that if v is a total function and © <, f~' ().
then d. () € CS(A). Suppose that ¢ is a total function and

(Vr,y e N}(v(z) ~y <= f =0 Fc((x.y))).
Consider the set

So=A{p: B,y # y2)(p o Fel{r.y1)) & plto Fo({x,y2)))}.
Since Sy <, D(21), we have that there exists a partial finite part 7o C f such that
either my € Sy or (Vp 2 m){p & Sp). Assume that 7 € Sy, Then there exist
T,y # y2 such that f o F.((z.y1)) and f =o F.((x,y2)). Then v (r) ~ i and
() ~ y». which is impossible. So, (Vp 2 79)(p & So).
Let
Sy ={p:(37 2 70)(30 2 7)(3d2 D T)(Br,y1 #y2)(7 Cp & 6y I Fol(z.n)) &
&y g Fo({x.y2)) & dom(p) = dom(d;) U dom(dy) &
(Vo € dom(p) \ dom(7))(p{z) = L))}.
Again we have 5; <, D{2) and hence there exists a 7 C f such that either
ne€Syor (Vp2m)(p&S)
Assume 73 € S;. Then there exists a 7 such that 7o € 7 C 7, and for some
1 27.02 D7 and r,y; # y2 € N we have
Oy ko Fol{z. 1)) & 0o kg Fo ({2, y2)) & dom(m) = dom(d,) Udom(dy) &

(Vz € dom(m ) \ dom(7)}(m (x) ~ 1).

Let v(x) ~ y. Then f f=¢ F.({z.y)). Hence therc exists a p 2 7 such that
plro F.({x.y)). Let y # y;. Define the partial finite part pg as follows:

& (x), if x € dom(d,),
po(r) = .
plz), if z € dom(p)\ dom(d,).

Then 79 C po. &1 C po and for all z € dom(p) if p(x) 2 L. then p(x) ~ polx).
Hence py Iro Fe({x,y1)) and po IFg F.({z.y)). So, po € Sp. A contradiction.

Thus. if p 2 7. then p & 5.

Let 7 = 7 U 7p. Notice that 7 C f. We shall show that

vir) ~y <= (36 2 1)(6 ko Fe((z.y))).

The left to right implication is trivial. Assume that 6, O 7. 8, kg F.((x, 1)),
() ~ y» and y; # y». Then there exists a 8y 2 7 such that & kg F,({x.y2)). Set

(2) ~ T(x), if r € dom(7),
PR = 4 if x € (dom(d;) U dom(é,)) \ dom(r).

Then p O 1 and p € S;. A contradiction.

Thus v is partially forcing definable and hence d.(v) € CS(2). O

As we have already pointed out, not every structure has a degree, i.e. it is not
generally true that the set DS} has a least element. The next theorem shows that
if 2 has no degree, then for every countable subset B C DS(2) of total enumeration
degrees there exists an element a of DS(2) such that (Vb € B)(b £ a).
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Definition 4.9. Let A be a set of enumeration degree. The subset B of A is
called base of A if for every element a of A there exists an element b € B such that
b < a.

We need the following lemma. which can be proved by a minor modification of
the proof of Selman’s Theorem prescnted in [16]:

Lemma 4.4. Let Q C N and let {By}ne. be a sequence of sets of natural
numbers such that (¥n)(B, %. Q). Then there exists a total set F such that
Q <. F and (Yn)(B, £ F).

Theorem 4.4. Let A be a set of enumeration degrees possessing a quasi-
minimal degree . Suppose that there exists a countable base B of A consisting of
total degrees. Then A has a least element.

Proof. Towards a contradiction assume that for every b € B we have b £ q.
Let Q € q and {B, : n € w} be a sequence of sets such that B = {d.(B,) :n €
w}. Clearly, for all n, B, €. Q. Let I be a total set such that Q@ <., F and
(Vn)(Bp €. F). Set f = d,(F). Then f is in A and for every b & B we have b £ .
A contradiction. So there exists a b € B such that b < q. Since b is a total degree.
b € co(A). Therefore b is the least element of A. O

Corollary 4.4. If DS(2) has o countable base of total enumeration degrees,
then DS(2) has a least element.

Now it is easy to construct an upwards closed set A of degrees. which does
not possess a quasi-minimal degree. Indeed, let a and b be two incomparable total
degrees. Let A = {c:c>aVe 2 b}. Then A has a countable base of total
degrees, but it has not a least element. So, A has no quasi-minimal degree.

Corollary 4.4 remains true if we consider the more restrictive definition of
DS(A), which takes into account only the bijective enumerations of 2. Let

DS = {d.(f~1()) : f is a bijective enumeration of 2}.

Corollary 4.5. Let DS(2) have a countable base B. Then DS(A) has a least
element.

Proof. According Proposition 2.1, if DS(20) has a least element b, then b will
be the least element of DS(2). So, it is sufficient to show that DS(A) has a least
element. We shall show that B is a base of DS(2). Indeed, consider an element a
of DS(A). By Proposition 2.1, there exists a d € DS() such that d < a. Clearly.
there exists a b € B such that b <d <a. [J

Finally, we would like to point out the following application of the existence of
a quasi-minimal with respect to DS(2) degree.

Definition 4.10. The structure B is called quasi-minimal with respect to 2
if the following are true:

(i) DS(B) C DS(A);

(ii) CS(A) # CS(B);
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(1) If a is a total degree in CS(B), then a € C'S(A).
Theorem 4.5. There exists o quasi-minimal with respect to A structure.

Proof. Let q be a quasi-minimal with respect to DS(2) degree. Consider a
subgroup G of the group of the rational numbers such that

DS(G)={a:ais total and q < a}.

Now (i) is obvious, (ii) follows from the fact that q € CS(G). but q & CS().
and (iii} follows from the quasi-minimality of q. O
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