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1. INTRODUCTION

In this paper we deal with search-computability, defined by Moschovakis in
[2], though for the proofs of most of the propositions we have used the Skordev’s
definition of search-computability, in [3] Skordev has proved both are equivalent.

The idea of considering two-sort structures was presented by 1. N. Soskov dur-
ing the cycle of lectures at the Seminar on Computability Theory at Sofia Univer-
sity, 1998. The abstract structure degrees were defined also by him during the same
seminar, as well as their regular enumerations.

The first sort of the mentioned two-sort abstract structures is an arbitrary
denumerable set and the other one is the set of natural numbers. The presence of
the equality among the basic predicates of the structure is required.

In these terms we present an analogue of some notions from the theory of the
enumeration degrees, namely the set genericity and the related results, applying the
techniques used by Copestake in [1]. We generalize the characterization obtained
in [6], stating that a set of natural numbers is generic relatively a set B if and only

41



if it is the preimage of some set A, using a B-generic B-regular enumeration such
that both 4 and its complement are e-reducible to B.

Here we introduce the notion of genericity for abstract predicates. Using the
enumerations of two-sort abstract structures (in the way they are used in [4]), we
obtain a characterization of this type of abstract genericity, which claims that a
predicate A of natural numbers is generic relatively the two-sort abstract structure
B with one predicate if and only if there exist a predicate ¥ on the first sort,
which is search computable in B, and a B-generic regular enumeration f, such
that A = fx' ().

This paper is a part of the author's Master’s Thesis, supervised by 1. Soskov.

2. PRELIMINARIES

We use some standard definitions and notations: <. denotes the enumera-
tion reducibility between sets and ¥, denotes the e-th enumeration operator, i.e.
V. (B) = {z | 3v((z,v) € We& D, C B)}, where W, is the recursively enumer-
able set with Godel code e, B is a set of natural numbers and D, is the finite
set with code v. Recall the join operation for sets of naturals: A @ B is the set
{2z|z € A}U{2z+1|z € B}, used to induce the least upper bound of the e-degrees
of A and B.

Given a countable set N and 0* ¢ N, N* denotes the Moschovakis’ extension
of N, i.e. the smallest extension of NU{0*} closed under the operation ordered pair
(-,-) (we will use the same notation for effective coding of pairs of natural numbers);
w denotes the set of the natural numbers and w* € N* is the set of elements
0%,...,(n+1)*,..., such that (n + 1)* = (0*,n*) € w*. By F we denote the set of
one-argument partlal functions ¢ : N* —o— N*. We write ¢ € SC(¢1,...,¢n) to
say that ¢ is search computable in the set of functions {¢1,...,0n} C F (see [3]).

From now on, we consider the abstract partial two-sort structures:

A = (N,w;::N,?éN;Ely°~-12k>!

with two fixed basic predicates in N?: =y (equality) and #x (inequality), and
partial predicates ¥; C N x w’ such that a;,b; > 0, but not both being zero.
This kind of structures will be denoted by 1(2,,...,3).

The notation ¥y <gc 2 says that Xg is search computable in the set of A’s
predicates, including the equality and inequality, i.e. To € SC(EX,..., 82 2N, #n)
(we also write So € SC(2)), where $: N*—— N* is the semz-chamcterzstzc func-
tion of the predicate.

Soskov has defined A & B to be the two-sort structure with predicates =y,
Ny 2T s TR BT -0 DRy A <sc B if and only if Vi(cicky): 7 <sc B,
and A =gc % if and only if A <gc B and B <gc 2.

Definition 2.1 (Soskov). The abstract structure degrees are the equivalence
classes induced by the relation =sc between structures. We denote them by a, b, c...
and for every a and b in D, aUb =D (A ® B) for some A € a and B € b.
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We write D for the set of all abstract structure degrees with the partial ordering
induced by <sc . Thus the structure (D, <sc,U, D) is an upper semi-lattice with
a least element the empty structure O = (N;w; =n, #n~)-

At the Seminar on Computability Theory in 1998, I. Soskov introduced the
following definition of search computability and proved its equivalence with the
standard ones (see [2] and [3]):

A<sgcBiff Va(B <a=A<La),

where a = (f, R) is an enumeration structure and 2 < a if and only if f~'(2) <. R.
Here we shall use it for a single predicate ¥ C N% x w® in the following particular
form:

Y <gc Aiff (f,?,l(E) <. fN1 (), for every N-enumeration In), (2.1)

where fy :w — N is a total and surjective function that we shall call N-enumeration,
) = ez, ) €Wl (fN(@1), -, fN(20) 31, -, 05) € T}, and
for the structure A = (N,w;=n,#nN;Z1,...,5k) the preimage fr' () is defined
in such a way that it is e-equivalent to

R (E)®, .. 0Ff " (Bk) @ fN (=N) @ fNH(#n)-

3. ENUMERATIONS

Many of the definitions and the proofs from [4] concerning the enumeration
approach and the normal form theorem are applicable in our case. We recall them
in order to use them later in Section 4 and for the characterization in Section 5.

Definition 3.1. 1) N-string 7y is a finite function 7 : [0,...,n — 1] = N,
with domain an initial segment of w with length lh(Ty) = n.

We shall call the strings used in [6] w-strings, i.e. an w-string is a finite sequence
of naturals meant to be an initial segment of w.

2) v Con iff Va(z < lh(tn) = 7 (2) = on(2)).

3) Code of the N-string 7 is defined to be "rn " = (n*,7n/(0),...,7n(n —1)).

Definition 3.2 ([4]). For a structure A(XZ;,...,%;) with £; C N% x wb,
an N-string 7 and a formula F,(z) with e,z € w, define the forcing relation
Tn IFy Fe(2) as follows:

(1) v ko Fe(2) iff 3v((v,2) € W, & 7, Ik Dy);

(2) 75 ko Dy, iff Vu € Dy(u = (i, (T, ..., Tagy Y1,y - -, Up.)) &

1 <i< k& ...zq € Dom(ry) &(rn(z1) .. N (Ta,) ¥t -5 Yp:) € T3V 1 =
0,2(z,y)) & z,y € Dom(rn) & ™n(z) = ™N(y) & u = (0,2(z,y) + 1) & z,y €
Dom(ry) & Tn(z) #n TN (Y))-
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Definition 3.3 ([4]). For an N-enumeration fy : w — N and a structure
A(Ty,...,Ek) with predicates ; C N% x w’, define

fn Ea Fu(2) if and only if z € T (f5' ().

Definition 3.4 ([4]). We say that the predicate & C N® x w® has a normal
form in the structure A(Z;,...,Xx) if there exist e € w, an N-string oy and
T1,...,24 € Dom(dn) such that for all s;,...,5, € N and for all y1,...,y € w,
(815« 8ayY1,y---,yp) € L iff Iy D dn such that Vi<i<a (n(zi) = 8i) & 77 Iy
Fe((zl,...,xa,yl,...,yb)).

The next theorem is a corollary from the Normal Form Theorem in [4] for the
case of two-sort structures.

Theorem 3.1 (Normal Form Theorem). Let 2(X,,...,%;) be a structure
with predicates £; < N% x wb. Then every predicate ¥ C N® x w®, where ¥ is
search computable in A, has a normal form in 2.

4. GENERIC PREDICATES

Definition 4.1. 1) Let £ C N x w® be a predicate. We define the character-
istic function of ¥ to be the function s : N* —— N*, defined as follows:

0%, ifs=1(s1,...,84,2},...,25) &(81,-..,8a:%1,...,Tp) € I,
x2(s) =< 1%, ifs=(s1,...,84,2},...,2;}) &(51,--.,8a,%1,...,%p) € &,
T, otherwise.

2) Let F,, where a + b > 1, be the set of all partial functions ¢ € F such
that Dom(yp) C {(sl,...,sa,x’l‘,‘..,m;) | (81,+..,8a,%1,...,2p) € N® wa} and
Range(p) C w*.

3) Define (a, b)-string to be a finite function @ € F,  with Range(a) C {0*,1%}.
We may define the code of the (a,b)-string a (denote "a™) to be (k*, (s1,a(s1)),
ovy (sg,a(sk))) € N* if Dom(a) = {s1,...,8}; and "@7 = 0* for the empty
function.

Remark. Since an (a,b)-string may have more than one (but only finitely
many) different codes, by a € S* C N we mean that there exists a code of a, which
belongs to the set S*; respectively, a € S* means there is no code of a that belongs
to the set. We say that S* is a set of codes of (a, b)-strings when each element is a
code of some (a, b)-string, it is not necessary for S* to contain all the codes of an
(a, b)-string.

4) Semi-characteristic function of the set S* C N we call the function Cs- :
N* —— N*, defined as follows:

0*, ifseS*
t, otherwise.

Cs-(s) = {
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For a given set b:" C N* and structure B(X,,..., X;), we write S* € SC(*B) when
Cse € SC(EN, #n: 215+, ).

5) For every a and b, which are not both zero, and every function ¢ € F,,
we define the graph-predicate of ¢ to be the predicate £, C N¢ x wb*! such
that for all s;,...,s, € N and zy,...,75,y € w, (81,...,8:%1,...,Z5,Y) € Zy
iff p((s1,...,8a4,2],...,25)) = y*.

Definition 4.2. Given a structure B(X,,...,X), we say that the predicate
¥ C N x w® is B-generic if for every set S* C N* of codes of (a, b)-strings such
that S* € SC(B), the following holds:

JaC xs(a€S*VVB 2D a(B ¢ SY)).

Note. If we consider a structure B(B) with one predicate of naturals and a
predicate ¥ C w, then X is B-generic in the sense of Definition 4.2 if and only if
the set ¥ is B-generic set of natural numbers in the classical sense. The proof uses
the definition of SC via enumerations (2.1).

Proposition 4.1. For every structure B = B(X,,..., L) and a,b € w, such
that a + b > 1, there ezists a B-generic predicate © C N°® x wP.

Proof. For brevity, in this proof and from now on Z will denote a finite sequence
of elements (an appropriate number of them).

We can find such ¥ by building its characteristic function as a union of (a, b)-
strings, that we build at stages, such that at even stages we satisfy the requirements
Dom{xs) to be a domain of a predicate’s characteristic function and at odd stages
~ the genericity.

Let us have some enumeration Sg,...,S;,... of the domains of the partial
functions from SC(B), i.e. S;, = Dom(yp) for ¢ € SC(‘B).

Stage 0. Define ag = 2.

Stage 2n+1. We have defined o, for ¢ = 2n. Let (3,7") € N* be such that
(5,7) is the least according to some order in N® x w® element for which (3,7")
¢ Dom(a). Define az41 to extend o, with one new argument, i.e. such that
g+1({S1,--.,8a,27,...,2;)) = 0*.

Stage 2n+2. We have defined a, for ¢ = 2n + 1.

Case 1. If there exists in S, an (a,b)-string 3, extending a,, define ay41 to
be the first such .

Case 2. Otherwise, define oy = ay.

o0

Finally, we can define yy = U oy, that is the characteristic function of some
q=0
B-generic predicate. 0

Proposition 4.2. Let B be an abstract structure and ¥ C N® x w® be a
B-generic predicate. Then the following holds:
P1) The predicate ¥ C N® x w® is B-generic.
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P2) There is no infinite predicate C C N® x w® such that C <s¢c B and C C .
P3) X is infinite.
P4) S £s¢ B.

Proof. Each of (P3) and (P4) follows directly from the previous properties.
To prove (P1), we may assume it is false. Therefore there is a set of codes of
(a, b)-strings, namely P* € SC(*B), such that:

(a) Ya C x5 (a ¢ P* & 38 D a(B € P*)).

There is a recursive function translating (codes of) (a,b)-strings into their
reverse, e.g. the reverse of a being the (a,b)-string @, such that Vs € Dom(a),
a(z) = 0" iff @(x) = 1*. Thus the set S* = {a | @ € P*} € SC(B) and therefore
there exists an o C xx (and therefore @ C x55) such that the next (1) or (2) holds:

(1) @ € S*. Then @ € P* and @ C x5, which is a contradiction with (a).

(2) V8 D a (B € S*). But from (a) for @ follows there exists an (a,b)-string
B € P* extending @. Since B = B, we have that 3 € S* and 3 D a, which is a
contradiction.

In both cases we have found a contradiction, therefore ¥ is B-generic.

To prove (P2), we may assume there exists such C C N® x w® and define
aset S* = {a| 3s1,...,8 € N, 3y1,...,yp € w ((1,-.,5a,%1,---,%) € C &
a((s1,.-.,8a,Yls--+,¥y;)) = 1%)}, that will lead to contradiction. []

Definition 4.3. Let us define the structure A(X},...,£%) to be total iff £F
<sc A for 1 <i < n. The generalization of the quasi-minimal and the minimal-like
structure (see [1]) will have the following form:

1. 2 is gquasi-minimal over B if the following two conditions hold:

e B <sc AUand A Lsc B;

e For every total structure €, if € <gc U, then € <g¢ B.

2. A is minimal-like over B if the following two conditions hold:
e B <gc Uand A £sc B;

» For every function v € F,p, if ¢ € SC(2), there exists a function ¥ € F,
such that ¢ C ¢ and ¥ € SC(B).

For the (a, b)-string a we define a predicate a* to be the set

{(s1,--+r8a, 21, .., @) | @{(81,...,84,2],...,25)) = 0*}.

If X is a predicate and B(X,, ..., Ex) is a structure, we denote by ¥y @B the
two-sort structure with predicates ¥g,%,,..., Xk.

Proposition 4.3. For given B(X,,...,X;) and B-generic predicate ¥y, the
structure Yo @ B is minimal-like over B.
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Proof. Since Xy is B-generic, ¥g £sc B and therefore B $sc Lo @ B. Let
(ai,b;) be the arity of the predicate ¥; C N% x wbi.

For ¢ € Fa4, such that ¢ € SC(X @ B), we define its graph-predicate X,
for which ip € SC(Xp @ B), i.e. ¥, <gc Zo ® B, and from the Normal Form
Theorem 3.1 it follows that ¥, has a normal form in %, @ B, i.e. there are e € w,
an N-string oy and z,...,2, € Dom(dy) such that for all sy,...,5, € N and
Tiyeoos Ty Y € W,y (S1,...,8a,%1,...,Tp,y) € Ny iff Iy D dn, where (Ta(2;) = s;
& TN ksgem Fel((z1,...520,21,...,25,y)). If we denote by P, ; the set of codes
of all (a, b)-strings and by Py the set of all codes of N-strings, we may define the
set S* to be the set of all By € Py, 3, for which there exist 3; € Py, », for Vi<i<s,
such that 8" C X;, and there exist 74, 7% € Py, both extending §5 and such that
Z1y--+y2a € Dom(rx) N Dom(7%), and there exist natural numbers z1,...,z5 €
W, Y1 # Y2 € w, such that 75 ”_‘21([3:,;3]*,...,6;”) Fe({z1,...,2a,21,...,2p,Y:)) for each
¢ € {1,2}, where (8], 581 ,,...,,5) denotes the structure with finite predicates
8 € N% x wb. Therefore S* € B and there is an (ag, bo)-string a C xs, such
that a € S*or VB D a (B € S*).

In the first case, since a C x5, then o™ C Xy, and from 7§, oot gt,..80)

F,({(z1,...,24,21,...,Tp,Ye)) follows that 75, IFeopm Fe((z1,...,2a,Z1,-- -, Tb, Ye)),
and using the normal form of £, we obtain a contradiction. So, it remains the sec-
ond case Y3 D aff € S*) and now we can define a predicate ¥, as follows:
Ed) = {(sl,'”asa,xla' ..,l'b,y) I (3ﬂ0 € P(lo,bO"":a;Bk € Pak,bk) 3TN € PN)
such that ([30 2 a & Vici<k 6:‘ CY &T1w 2N & Vi<j<a ™w(z;) = 8; &
™ “_ﬁ(BJ,B,*.....B,f) F.({(z1,...,2a,Z1,...,2p,y)), which is the graph-predicate of
some function 1 and it is search computable in B, therefore 1) € SC(‘B).

Using the above definition and the normal form of £, it is not difficult to verify
that £, C £y, from which follows that ¢ C ¢, and this proves our proposition. 0

Given a structure €(2,..., ;) and a predicate ¥ C N® x w®, if ¥ <s¢ € and
¥ <sc €, then its characteristic function yx € SC(€). This fact can be used to
prove the following:

Proposition 4.4. Given a structure B(31, ..., LX) and a B-generic predicate
¥, the structure ¥ @ B with predicates ¥, 24, ..., Lk 18 quasi-minimal over ‘B.

The above is true for a single predicate, but not in the general case with
multiple B-generic predicates. For example, for any total structure 2A(X,Y) with
B-generic predicates £ and ¥ C N% x w”, the structure A& B is not quasi-minimal
over B.

5. GENERIC REGULAR ENUMERATIONS

The regular enumerations are introduced by I. Soskov in [5] and here we shall
use their modification for two-sort structures. An enumeration for two-sort struc-
tures is the pair f = (fwn, fu), where fy : w =& N and f, : w = w are total
surjective functions.
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Gr(fn) = {(s,z) | fn(z) = s} C N x w is the graph of fn.

Gr(f.) = {(z,y) | fu(z) = y} C w is the graph of f,.

The enumerations f = (fn, f.) define a unique structure 2A(Gr(fn),Gr(f.)),
denoted by ;.

Since every two-sort structure (with finite number of predicates) is equivalent,
in terms of search computability, to a structure with one predicate, in this section
we consider only structures with one predicate.

Definition 5.1. Given a structure B(Z®) with one predicate @ # X% C
N° x w?, we say that the enumeration f = (fw, f.,) is B-regular if the function f,
is an fy'(Z%®)-regular enumeration of w in the sense of [5} and [6], i.e. f, is a total
surjective mapping of w onto w such that f,(2w) = fy'(E%).

Definition 5.2. 1) A pair of strings 7 = (Tn,7,) is the pair of an N-string
T~ : w —o—> N and an w-string 7, : w —— w (see Definition 3.1). The pair
@ = (Dn,D.) is referred as the empty pair of strings.

2) Given a structure B(L®) with predicate @ # 2 C N°® x w’, we say that
the pair of strings 7 = (7n, 7,) is B-regular if 7, (2w) C T~ (E2), where TEI(E“B)
= {(&1,...,Ta, Y1, -, Yb) € Dom(1n)* x w* | & (TN (21), -, TN (Ta), Y1, -+, U) €
Y2} and 7, (2w) ={y| 3z (7.(2z)=y)}.

3) The N*-code of 7 = (7n,7,) is denoted by "7 and defined to be the pair
of codes "7 = ("7 ™,77,™), where "7x ™ = (n*, (1*,7n(1)),..., (n*,7n(n)))
and "7, 7" = (m*, (1%, (1, (1)%), ..., (m*, (7 (m))*)), n = lh(rn) and m = lh(7,);
define "™ = 0* and "9, ™ = 0*.

4) We say that 7 extends o, write o C 7, if both oy C 7n and o, C 7,. For
an enumeration f = (fn, fu) and a pair of strings 7 = (7n,7.) we say that 7 C f
when both 74 C fny and 7, C f..

Remark. Given a structure B(EZ®), let Regy denote the set of codes of all
B-regular pairs of strings. Thus 7 € Regs & 7,(2w) C 1-;,1(2‘3), and therefore
Regyp € SC(*B).

Definition 5.3. Given a structure B(2?) with predicate @ # £® C N xw?,
we say that f = (fwn, fo) is a B-generic regular enumeration if it is B-regular
enumeration and for every set S* C N* of codes of B(X%)-regular pairs of strings,
for which S* € SC(B), there exists a pair of strings 7 C f such that 7 € S* or
Vo o1 (0 ¢gS*)

Proposition 5.1. For every structure B(E®) with one predicate @ # £ C
N® x wb, there ezists a B-generic regular enumeration f = (fn, fu)-

Proof. Let S§,...,Sk,... be a sequence of all the sets S* € SC(B) and
80,---35n,... be all the elements of N. We can build a *B-generic regular enu-
meration in the standard way starting from the empty pair of strings and building
an increasing sequence of B-regular pair of strings such that at even stages we

48



will monitor the n-th set S} and take care to satisfy the requirements for gene-
ricity. At odd stages we will satisfy 79(2w) C (72)~*(X®) and in the same time
fnt C fu(2w), as follows:

Suppose at Stage 2n+1 we have defined 7, = (75,7%) for q = 2n. We may
define T,'{,“ to extend 74, so that for £ = lh(r}), T‘”’l(ax) . For the set
(r51)~1(2®) we have two possibilities: if it is empty, define rq‘“ = 7'" otherwise,
(r4") =1 (£®) # @. In this case we consider the set A, = (7 qul)"1(2‘3) \ 79(2w)
and define 797! to extend 77 such that in the first odd number z; € Dom(7J)
define 79+ 1(:::1) = n, and in the first even number zo ¢ Dom(79) define 797! (x)
to be the first y € A, if 4, # @, or the first y € (r§7')~1(ZB) if 4, = Q.

In this way we obtam the desired enumeration. []

To prove the following proposition and the lemma, it may be convenient to
define two notations for a (0, 1)-string a and an N-string 7 :

emp(a, 7) if and only if Vz € w (z* € Dom(a) < z € Dom(ry)),

a ~x 7y if and only if Vz* € Dom(a) (a(z*) = 0" & 7n(z) € X).

Proposition 5.2. For a structure B(E®) with one predicate @ # £ C
N® xw® and a B-generic regular enumeration f = (fn, f.) the following properties
hold:

(1) B <sc ;.

(2) As £5¢ *B. _ _

(3) For every predicate ¥ C N°® x w®, if £ <g¢c B and T <gc Uy, then &
<scB.

(4) For every predicate ¥ C N, if @ # ¥ <g¢ B and @ # ¥ <g¢ B, then
fRH(E) is a B-generic predicate.

(5) For every predicate ¥ C N, if @ # ¥ <gc B and @ # ¥ <gc B, the
structure A(f5' (), L) is quasi-minimal over B.

Proof. These properties follow easily from the definitions and the properties of
the enumerations. For example, for the proof of (4) we may assume that f5'(Z) is
not a ‘B-generic predicate. Then there exists a set of (0, 1)-strings S that fails the
genericity, and consider the set of B-regular pairs of strings:

P* = {1 € Regy | Ja € S(cmp(a,7n) & a ~5 Tn)}.

Since for each 7 there is a unique « such that emp(a,7x) and a ~5. 7x, and for
each o there is such 7y, we can obtain a contradiction with the genericity of f. 0

Lemma 5.1. Given a structure B(E?) with @ # 2 C N® x w®, a pair
of strings §, a B-generic predicate A C w and a predicate . C N, such that
@ #Y <scB and @ # ¥ <s¢ ‘B, for which the following two conditions hold:

(1) & is B-regular;

(2)Vz < lh(dn) (z € A & én(z) € X),
if S* C N* is a set of codes of B-reqular pairs of strings and S <g¢ B, then there
exists a pair of strings o with the following properties:
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(a)o 2 ¢,

(b) o is B-regular,

(c)Vz < lh(on) (z € A & on(z) € X) (this is the property (2) for o);
(d)oeSVVr(r2o=>17¢Y5).

Proof. The proof is very similar to the one of the corresponding lemma in the
classical case (Lemma 2.4. in [6]). O

Proposition 5.3. Given a structure B(S®) with @ # ©®, a B-generic pred-
icate A C w, and a predicate ¥ C N, such that @ # ¥ <gc B and @ # ¥ <s¢ B,
there exists a B-generic reqular enumeration f such that A = fh“,l(E).

Proof. We can build f by the standard construction of increasing sequence of
pairs of strings o, (starting from the empty pair of strings) with the properties (1)
and (2) from the above lemma. Moreover, we want them to satisfy four additional
properties:

(3) InVe > n (lh(oxi ™) > lh(o%) and lh(c2t1) > Lh(02));

(4) Vs € N 3e (s € Range(oxt')) and Yy € w e (y € Range(a2et1));

(5) ¥p ¥z € (05)~1(E2) 3e (& € 02+ (2w));

(6) Ve (if Se C Regy, then (0242 € Se V VT D 02e42 (T € Se))), where S, is
the e-th search computable in B set in some given enumeration of all the sets from
SC(B), and Regs is the set of the B-regular pair of strings.

o

These requirements guarantee that f = U o4 will be a B-generic regular enu-
meration and A = fy'(X). q=0

Stage 2e+1. Suppose o, is defined for ¢ = 2e. Define o to extend o,
with new elements and to have the property (2) defined in the previous lemma. If
(0%) " H(E®) is empty, we define 64! = o, otherwise define o4*! to extend oy,
with the first two elements zo € 2w \ Dom(0?) and z; € (2w + 1) \ Dom(c}) for
which:

g+1
N

e g%+l (z,) = the first y such that y ¢ Range(c%);

o 09t1(zg) = the first y such that y € (¢7)"1(X%®) \ 09 (2w) if not empty, or
the first y € (09)~1(£%) otherwise.

Stage 2e+2. Suppose o, is defined for ¢ = 2e + 1. Let G be the set of all pairs
of strings having the properties (1) and (2) from the previous lemma. We have two
possibilities:

Case1.30 Do, (0 €G& (0 €S VVT Do (T € Se))). Define 0441 to be the
first such o.

Case 2. Otherwise, define 0,41 = 0y.

Now it can be verified that this construction meets the requirements (3) — (6),
defined earlier in the current proof. For example, to verify (6), we can use the
previous lemma to show that Case 2 never happens if S, is a set of B-regular pair
of strings. 0
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Theorem 5.1. Let a structure B(E®) with one predicate @ # £ C N x w?
be given. Then for any predicate A C w, A is B-generic if and only if there exists
a predicate ¥ C N such that @ # % <s¢ B and @ # % <sc B, and there exists a
B-generic reqular enumeration f such that A = fy'(2).

Proof. (<) The Proposition 5.2(4).

(=) Consider the predicate ¥ = {s} for which it is clear that @ # ¥ <gc B
and @ # ¥ <gc B. From the previous proposition it follows that there exists a
B-generic regular enumeration f such that A = f ;,1(2). O
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