I'OJMUIHUK HA CO®UNCKUA YHUBEPCUTET ,CB. KIIMMEHT OXPUICKU*“

PAKYJITET MO MATEMATUKA U MHPOPMATHUKA
Tom 95

ANNUAIRE DE L’UNIVERSITE DE SOFIA “ST. KLIMENT OHRIDSKI”

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 95

ON THE ANALOGY BETWEEN
THE MAXWELL ELECTROMAGNETIC FIELD
AND THE ELASTIC CONTINUUM

CHRISTO I. CHRISTOV

We attribute the action at a distance in electromagnetic phenomena to the effect of the
internal stresses in an absolute continuous medium called metacontinuum. We show
that Maxwell equations are straightforward corollaries from the governing equations of
an incompressible elastic medium with the shear waves corresponding to the electro-
magnetic waves. The main advantage of the new description is that it enables one to
incorporate the nonlinearity, whose manifestations turn out to be the presence of the
so-called Lorentz force, and a Galilean invariance of the model. Another generaliza-
tion of the model consists in acknowledging a high-grade elasticity which introduces
dispersion into the governing system. A self-similar solution is found for the plane
dispersive shear waves and shown to result in red-shift even when the source of light
is not moving. In order to detect the existence of an absolute continuum, a revision
of the classical Michelson-Morley experiment is proposed in which the effect is of first
order and is not canceled by the FitzGerald-Lorentz contraction.
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INTRODUCTION

Electromagnetic phenomenon is an epitome of an action at a distance. The
latter is hard to imagine without some kind of a material carrier and the nineteen
centuries tradition has been always connected with some mechanical construct. In
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Cauchy's and Hamilton’s vision it was a lattice whose continuum approximation
yvieided the elastic-body model. In Maxwell’s imagination the medium had inter-
nal degrees of freedom and the action at a distance was mediated by infinitesimai
“gears” trausmitting the monentum from point to point. McCullagh and Sommier-
feld quantified this idea as elastic body with special rotational elasticity (see [1-1]
for an exhaustive review of these theories). After Lord Kelvin came up with the
model of fluid aether and its vortex theory of matter, the coinage “acther” assumed
almost exclusively fiuid meaning. Paying tribute to the tradition, all of the models
for the presumably absolute continuous media underlying the physical world were
called “aether”, although some of them (the different elastic models, for instance)
were quite different from an “aetherial Huid” (where the coinage comes from).

In the 19th century, the question of entrainment of the aether (aether-drift)
was perceived as pivotal and the nil result of Michelson and Morley experiment
[10, 11} was understood as a blow to the whole edifice of aether theories. However,
the notion of a material carrier of the long-distance interactions could not be dis-
missed altogether and the conceptual vacuum was filled by the concept of “phyvsical
vacuum” or the “field” which possessed all the properties of the disgraced aether,
e.g., action at a distance, but it was deliberately exempted from the obligation (o
be checked for aether-drift effect. It was then advertised as a thing in itself not
connected to any “primitive mechanistism”.

In our point of view, the field (physical vacuum, aether) can only be understood
from the point of view of an absolute material continuum in which the niernal
stresses are the transmitter of the long-range interactions. In order to distinguish
it from the mechanical continuous media (bodies, liquids, gases, etc.), we call the
continuum-mechanics model of the unified field metacontinuum in the sense that it
is beyond (reta) the observable phenomena and is their progenitor.

A valid candidate for the luminiferous field is the elastic medinm, because. as
shown from Cauchy himself (see [14]), it gives a good quantitative prediction for the
shear-wave phenomena (light). Building upon our previous work i1, 2], we show
here that the Maxwell equations follow from the linearized governing equations
of the metacontinuum provided that the electric and magnetic fields are properiy
understood as manifestation of the meta internal stresses. The main difference
from the Cauchy’s volatile elastic acther (zero dilational elastic modulus) is that
we consider the opposite limiting case: an elastic continuum with inhinitely tares
dilational modulus (virtually incompressible elastic mediuni).

The model proposed here should not be confused with McCullagh's model or
pseudo-elastic continuum with restoring couples, which tried to explain the unusuas
form of Maxwell equations apparently not fitting into the picture of continuum
mechanics {see [14, 7] for reference and further developments).

Our model naturally incorporates the Galilean invariance, while the Maxwel]
equations are not Galilean invariant and there is no feasible way to make them
such.
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In the end, we address the problems connected with experimental identification
of the presence of an absolute continuum and propose a certain revisiting of the
Michelson and Morley experiment.

1. CAUCHY VERSUS MAXWELL

We begin with the linearized equations of the elastic continuum. For small ve-
locities the Lagrangian and Eulerian descriptions coincide and for the displacements
u of a Hookean elastic medium one gets the linear vector wave equation

v u
—_— = o —— = n\ .
Ho5y =to g = 1Au+ A+ n)V(V -u) 1.1)

= -V xVxu+(A+2n)V(V-u),

where u,v are the displacement and velocity vectors, respectively; n, A are the
Lamé elasticity coefficients and o is the density of metacontinuum in material
(Lagrangian) coordinates. In this paper we concern ourselves with a continuous
medium of constant elastic coefficients 1, A and constant density po.

Equations (1.1) govern both the shear and the compression/dilation motions.
The former are controlled by the shear Lamé coefficient 7, while the latter — by the
dilational (second) Lamé coefficient A, and more specifically, by the sum (\ + 25).
The phase speeds of propagation of the respective small disturbances are

3 on + \\ 2
=) =)
2 (1.2)
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Here c,c; are the speeds of shear and compression waves, respectively. In what
follows, we call them speed of light and speed of sound, respectively. To reduce
the number of governing parameters, one needs to make an assumption about the
second Lamé coefficient or, which is the same, about the speed of sound, ¢;. There
are two options: to consider a so-called “volatile” continuum with ¢, = 0 or an
incompressible continuum with ¢; = oo0. The latter is a continuum whose speed of
sound is much greater than the speed of light, i.e., § < 1.

Here we examine the limiting case of a virtually incompressible continuum
when A > 7 (§ € 1). In this case (1.1) can be recast as follows:

0%
dlc W+Vxqu =V (V- u), (1.3)

and the displacement u can be developed into asymptotic power series with respect
to d:
u=1ug+ou + - (1.4)
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Introducing (1.4) into (1.3) and combining the terms with like powers, for the first
two terms we obtain

V(Vug) = 0, (1.5)
-2 32“0
3 +VxVxu = V(V-uy). (1.6)
From (1.5) one can deduce
V-ug=const, or V-v9=0, (1.7)

which is also a linear approximation to the incompressibility condition for a con-
tinuum. In the general model of nonlinear elasticity with finite deformations, the
incompressibility condition is imposed on the Jacobian of transformation from ma-
terial to geometrical variables, but in the first-order approximation in  the equation

(1.7) holds true.
Henceforth we omit the index ‘0’ for the variable u without fear of confusion.

We denote formally
e _OromVou,  AY v, (1.8)

and recast the linearized Cauchy balance (1.6) in dimensional form as follows:

0A
Ho—5r = —Ve+V -1, (1.9)

where 7 is the deviator stress tensor for which the following relation is obtained
from the constitutive relation (the Hooke law) for elastic body, namely:

r=n(Vu+ Vul) - 29(V - u)I, (1.10)
where I stands for the unit tensor. For the divergence of 7 one has
Vir=-nVx(Vxu) dgE, (1.11)

where E stands for the vector to which the action of the purely shear part of
internal stresses is actually reduced. It has the meaning of a point-wise distributed
body force and we shall call it “electric force.” In terms of E, Eq. (1.9) recasts to
0A
E=~uy— -V 1.12

o5 = Vo, (1.12)
which involves A and ¢. In the same vein we define a “magnetic induction”, B,
and “magnetic field”, H, as follows:

B=uVxA=uH, HYVxA. (1.13)

The system of equations (1.12), (1.13) is nothing else but the equations of elec-
trodynamics in terms of A and ¢, which play respectively the role of the well-known
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vector and scalar potentials of the electromagnetic field. In the framework of the
present approach, however, these potentials are not certain non-physical quantities
introduced merely for convenience. Rather they appear to be the most natural
variables: velocity and pressure of elastic luminiferous continuum. Note that the
density, po, of the elastic metacontinuum appears as the magnetic permittivity of
the Maxwell field.

Now one can derive the original Maxwell equations. Taking the operation curl
of (1.12) and acknowledging (1.13), one obtains

oB
EF=—— 1.14
V x 9 (1.14)
which is nothing else but the first of Maxwell equations (the Faraday law). Respec-
tively, from eqs.(1.11), (1.13) and (1.8) one obtains

%%—szx(Vx%)EVxH. (1.15)

The last equation is precisely the “second Maxwell equation” provided that
the shear elastic modulus of metacontinuum is interpreted as the inverse of electric
permittivity n = e; . This equation has been postulated by Maxwell [9] as an
improvement over the Ampere law incorporating the so-called displacement cur-
rent JE/Jt in the Biot-Savart form. For the case of a void space, however, when
no charges or currents are present, the second Maxwell equation lives a life of its
own and the Ampere law plays merely heuristic role in its derivation. It is broadly
accepted now that the second Maxwell equation is verified by a number of exper-
iments. Here we have shown that it is also a corollary of the elastic constitutive
relation for the metacontinuum and is responsible for the propagation of the shear
stresses (action at a distance) in metacontinuum.

Thus the two main (time dependent) equations of the Maxwell form have al-
ready been derived. The condition div H = 0 (third Maxwell equation) follows
directly from the very definition of magnetic field. Similarly, taking the diver-
gence of both sides of (1.11), one immediately obtains the fourth Maxwell equa-
tion divE = 0. Thus we have shown that the Maxwell equations follow from
the linearized governing equations of the Hookean elastic medium whose dilational
modulus is much larger than the shear one.

Thus the first objective of the present work has been achieved. We have shown
that the linearized equations of elastic continuum admit what can be called Mazwell
form. In the framework of such a paradigm, each point of the elastic continuum
experiences a body force F to which the action of the internal elastic stresses is
reduced. We call it “electric force.”
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2. NONLINEARITY, GALILEAN INVARIANCE AND LORENTZ FORCE

Let us note that the governing equations of the metacontinuum are Galilean
invariant, while the linearized version (1.1) (and hence, the Maxwell form) has lost
this important property. The lack of Galilean invariance of Maxwell equations is
their strangest property.

A far reaching consequence of the previous section is that it gives a clue of
how to seek for a Galilean invariance of the equations of the luminiferous field (the
metacontinuum). In the classical continua the Galilean invariance is connected to
the convective (advective) nonlinearity of the governing equations. The question
of what kind of effects are to be expected due to the presence of the advective
nonlinear terms stands. In other words, which interactions in the metacontinuum
are perceived as additional forces if the observer is limited by the concept of linear
Maxwell field.

Looking for confirmation of the possible nonlinearity of the model, one stumbles
into a very strange (from Maxwell’s point of view) entity called “Lorentz force”.
Consider the governing equations of an elastic continuum in the so-called Lamb
form (see, e.g., [12]):

(g: Vl'vl2 —v xrot'v) +Vyp=-F, (2.1)
where we have already substituted the notations for the above defined scalar po-
tential and electric field.

This form allows one to assess the forces acting at a given material point of the
metacontinuum due to the convective accelerations of the latter. The gradient part
of the convective acceleration can not be observed independently from the pressure
gradient ¢ in the metacontinuum. In fact, one can measure only the quantity
01 =+ %vz. Thus the only observable effect of the nonlinearity is connected with
the last term of the acceleration. By virtue of our definition of magnetic induction
(1.13), the term under consideration adopts the form

Fy = pov x B. (2.2)

Equation (2.2) expresses the force acting in each material point of the meta-
continuum. This force is a part of the inertial force in the metacontinuum. In order
to find its relation to the Lorentz force, one has to insert a test charge propagating
through the continuum, to integrate (2.2) over the support of the charge and to get
something proportional to the Lorentz force experienced by a moving charge. The
exact coefficient of proportionality can be checked only after the notion of charge
is incorporated into the model (see, [2]). Yet the expression (2.2) has an important
bearing, because it involves the same quantities as the Lorentz force. It points
out the direction in which the governing equations (1.1) of the electromagnetic
dynamics can be generalized so that to become Galilean invariant.
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3. DISPERSION AND “RED SHIFT”

The paradigm based on incompressible metacontinuum has already been in-
strument in restoring the Galilean invariance in the electromagnetic phenomena.
However, the significance of the new concept is important in much wider field. It
opens a more natural way of treating the mechanical properties of the unified field.

Let us consider now the (1+1)D-motions (plane waves). This is a good ap-
proximation for the spherical waves far from the emitting source. The governing
equations for nonlinear elastic waves reduce to

Pw o, 1+6w P?w  O'w
T bz *

dz2  Hzt’ (3.1)
where w = u,(z,t) is one of the transversal components of the vector of elastic
displacements u and c is the phase speed of the shear waves (speed of light). Re-
spectively, k is the dispersion coefficient. It is completely natural to have some
higher grade elasticity in the metacontinuum, which results in the fourth-order
terms.

Consider now the evolution of the wave profile w(z, t) in the frame moving with
velocity ¢ in the positive z-direction and introduce new independent coordinates
and sought function:

1
tlzita T =z —ct, w(t,z) = wi(ty, z1).

The different derivatives are expressed as follows:

ow _ 6w1 ow _ lawl 6w1

dr 0z’ Ot 20t 0z
w  10%w, 0% 0%un
522 ~ 4 0  “oton te dz2

(3.2)

If we consider only motions for which the evolution in the moving frame is
very slow, then we can disregard the local time derivatives with respect to the local
spatial derivatives in the sense that

6"‘w1 I 62‘!1)1
y

621.01 '
oz ot? '

e
-1 0t10z,

m
o <cl
I 6t13x71n l

Upon introducing (3.2) into eq. (3.1) and neglecting the terms according to the
above scheme, we arrive at the following approximate equation:

2 2 2 4
w8 [c (Gwl) 6w1}‘ 33)

—cc’)xl@tl - 6931 ? 5537 —F axf
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Since the exact spatial position of the source is immaterial, one can chose it in
a manner so that after one integration with respect to z; the integration constant
to be set equal to zero. Thus eq.(3.3) recasts

Ow c (6w1>2+n63w1
oty 2

The dimension for & is L*T~2, where L is a length scale, T is a time scale. In-
) . =1 - .
verting these relations, we get 7' = ¢®k~2 and L = k2c~ . Then one can introduce
dimensionless variables according to the scheme
fg% K2 né

wy = —w, th = —t, T1=-—1I,
c c c

and to render (3.4) to the following dimensionless equation:

A~ AN 2 3 -
oW 1 (aw) 0°w (3.5)

ot~ 2\az) " 83
In what follows, we omit the “hats” without fear of confusion. The above equation
admits a self-similar solution of the following type:

- T
w=t"F@n), n=2. (3.6)

To demonstrate this, we find the expression for the different terms:

ow ow

F =t='"*[F(n) - anF'(n)], 5 =t (),
*w ~b~3a
553 = ¢ b=3a gt (p),

and introduce them in (3.5) to obtain

t Y F(n) — anF'(n)] = —%t‘”"z“ (F'(m)* + =03 F" (n).

A self-similar solution is possible only if
-1-b=-2b—-2a, -1-b=—-b-3a,

i.e.
a=b=

1
3 (3.7)

This kind of solution has been found in (3] for the Boussinesq equation. The
numerical simulation [3] has confirmed the self-similar behavior of the solution: the
support ir;creases with ¢t'/%, while the amplitude of the pulse decreases proportion-
ally to t73.
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What are the implications of the existence of a self-similar solution? The
second of equations (3.6) yields that the characteristic spatial scale of the solution
increases with ¢3. This means that for harmonic waves the wave length will increase
accordingly. Since we consider a moving frame, then the dimensionless time t is
measured by the distance r = ct travelled by the solution from the source. Then in
our model the Hubble coefficient of proportionality between the relative red shift
and the distance from the source will not be constant, but will decrease as r—2/3.
It is well-known that as the observations push to the far limits of the Universe, the
Hubble constant decreases. And the controversy is still raging about the value of
the Hubble “constant”.

The data for the Hubble constant from a single investigation is not enough to
identify the coefficient x. It will take a more sophisticated approach compiling all
the available data for all different distances. This warrants a special investigation,
which goes beyond the framework of the present paper. What we can claim here
is that far from the source one can not distinguish between the red-shifting due
to the presence of dispersion and the one that results from a Doppler effect (if
present). This means that when a dispersion is present, then the “red shift” can
be alternatively explained without the help of “Big-Bang” hypothesis.

4. ABSOLUTE MEDIUM AND THE FIRST-ORDER DOPPLER EFFECT

The foremost implication of the above described relationship between the
Maxwell equations and the equations of elastic continuum is that there is a place
for absolute continuum. It is clear that one cannot propose anything so radical
without proposing an experimental scheme to detect the absolute continuum or at
least to comment on the known ones. We do not mean some more radical revision
like [13], where new hypothesis about the isotropy of the speed of light has been
tested. Rather we propose revisiting the classical Michelson experiment.

To use interferometry for the verification of Doppler effect has been proposed
by Maxwell [8]. It was widely believed that discovering a Doppler effect would prove
the existence of an absolute medium at rest. Way before the actual experiment was
performed by Michelson, Maxwell pointed out that any interferometry experiment,
involving splitting and reflecting the same ray, inevitably renders the sought effect
of second order with respect to the small parameter d = v.c™! (v, stands for
the velocity of Earth with respect to the quiescent medium). In the worst case
d ~ 10~*, which corresponds to the orbital velocity of Earth. If the whole solar
system is moving faster through the void, then d could be larger and the effect
would be more appreciable.

It was Michelson [10] who implemented such a precise experiment. And after a
nil effect was observed, a prolonged discussion began about the accuracy of Michel-
son’s experimental observations. The set-up was later on refined by Michelson and
Morley [11] (MM, for brevity) and the absence of the expected type of interference
was confirmed more decisively.
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In our opinion, the nil effect of MM experiment cannot disprove the existence
of absolute medium, because the only conclusion that can be drown strictly from
the nil effect is not that the absolute medium does not exist, but rather that in the
medium where the light is being propagated there occurs an apparent contraction
of the spatial scales in the direction of motion of the source (FitzGerald-Lorenz
contraction) proportional to the factor

’U2

__Lz 1-—

2c? c

le
LY

?

which exactly compensates for the expected second-order effect.

All this means that the real proof of the existence or non-existence of the meta-
continuum can be furnished only through measuring the first-order effect. We de-
liberately exclude from consideration any kind of non-optical experiment and leave
beyond our scope the optical experiments in dense matter (water filled columns,
etc). A situation in which the first-order effect is not canceled can be created if two
different sources of light are employed with sufficiently well synchronized frequen-
cies. Lasers with the required level of stabilization of the frequency are available
nowadays, but it goes beyond the frame of the present work to deal with the specific
problems of the hardware. It suffices only to mention that if the two sources are
synchronized up to 1079, the accuracy would be of order of 1% compared to the
magnitude of the sought effect which is at least of order of 107*.

interference zone

laser I [T ~ mirror I (semi-transparent)

mirror 11 1 laser II

Fig. 1. Principal scheme of the interferometry experiment

In Fig. 1 the scheme of a possible first-order experiment is presented. Consider
two “identical” (synchronized within 10~%) sources of monochromatic light, which
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move together in the same direction with the same velocity. The first of them emits
a plane wave propagating in the direction of motion and the second one — in the
opposite direction.

By means of one mirror and one semi-transparent mirror, the two plane waves
are made co-linear. The role of the mirrors is to change the direction of propagation
of each wave without destroying its plane nature. The beam of the second laser is
reflected by the mirror IT changing its direction on 90° and making it to pass through
a semi-transparent mirror whose reflecting surface serves to change the direction
of the beam of the first laser on 90°. Beyond the semi-transparent mirror the
two beams are parallel and can produce an easily detectable interference pattern.
A snapshot of the region of interference would reveal strips of different intensity,
gradually transforming into each other, so that the modulation frequency can be
estimated.

[t is interesting to note that Jaseda et al. [5, 6] already have used two lasers in
an interferometry experiment in order to verify quantitatively the FG-L contraction,
but in their experiments the lasers beams are parallel, while in the proposed here
experiment they are anti-parallel since now it is not the contraction that needs
verification, but the very existence of the first-order of Doppler effect.

Following [4], we outline here the derivation of the Doppler effect. The plane
harmonic waves propagating in a presumably quiescent medium are given by the
following formula:

Fi(z,t) = eilbraFort) g, 90 0 C (4.1)
c Wy
where w4 are the frequencies. The upper sign in the notations refers to the wave
propagating in the positive direction, while the lower sign — to the wave propagat-
ing in the negative direction. These waves have to satisfy the boundary condition
on the moving boundaries (the sources):

Fy(fuet, t) = e'wot, (4.2)

where v, is the velocity of the moving frame relatively to the metacontinuum. If
the sources were at rest, then they would have produced waves with wave number
ko = wp/c and wave length ko = k;'. The boundary condition (4.2) yields the
following relation for the parameters of the propagating wave:

ve -1 QJO ve -1 ve
= 1 —) , k :-—(1 —) , S (1 ——) 4.
W+ = Wy ( F - + p F - K+ = Ko F c ( 3)

After the reflection, the two waves are propagating as plane waves in the pos-
itive direction of z-axis (vertical in Fig. 1: Fy(z,t) = e*(k22=wt))  Then in the
interference region one has a wave which is the superposition of two of them for a
given moment of time (say, ¢t = 0):

Re |Fy(z,t) + F_(z,t)| = 2cos (&%j;z) cos (B—;—k:z), (4.4)
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which is a modulated wave with a wave number of the carrier j(ky + k-) =
ko + O(d*) and i(ky — k) = dko + O(d?) for the modulation. Respectively,
the expressions for wave lengths valid to the second order are kg and k., = Kod™!.
For d = 10~* and red-light lasers, the length of the wave is ko ~ 6.3 - 107% cm,
and then for the length of modulation wave one has «,, = 0.63cm and the strips
produced must be easily detectable on an optical table of standard dimensions.

5. CONCLUDING REMARKS

In the present paper we have shown how the Maxwell equations can be derived
from the linearized equations of an incompressible elastic continuum. Thus for the
electromagnetic phenomena, we have arrived at the notion of underlying continuous
medium, which we call metacontinuum. The approach of the present work admits
feasible generalization to include inertial effects in the metacontinuum. This may
explain the so-called Lorentz force as an effect of the advective nonlinearity of the
governing equations. Moreover, incorporating the advective part of the time deriva-
tive makes the proposed model Galilean invariant, i.e. a Galilean Electrodynamics
is developed.

The new concept provides a sound foundation for incorporating additional
information about the electromagnetic phenomena, opening the way for pertinent
generalizations. As a featuring example of such a generalization, the incorporation
of dispersion (high-grade elasticity) in the governing equations is considered. A
self-similar solution is found for the latter case in which the dispersion acts as to
increase the spatial scale (wave-length) of the solution with the cubic root of the
distance from the source of wave.

In the end, we describe the changes which are to be made in Michelson-Morley
experiment in order to be able to detect a first-order Doppler effect in an abso-
lute medium. We show that the first-order Doppler effect is not affected by the
FitzGerald-Lorentz contraction.
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