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TWO PROPERTIES OF THE PARTIAL THETA FUNCTION
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For the partial theta function 𝜃(𝑞, 𝑧) :=
∑︀∞

𝑗=0 𝑞
𝑗(𝑗+1)/2𝑧𝑗 , 𝑞, 𝑧 ∈ C, |𝑞| < 1, we prove

that its zero locus is connected. This set is smooth at every point (𝑞♭, 𝑧♭) such that
𝑧♭ is a simple or double zero of 𝜃(𝑞♭, .). For 𝑞 ∈ (0, 1), 𝑞 → 1− and 𝑎 ≥ 𝑒𝜋 , there are
𝑜(1/(1 − 𝑞)) and (ln(𝑎/𝑒𝜋))/(1 − 𝑞) + 𝑜(1/(1 − 𝑞)) real zeros of 𝜃(𝑞, .) in the intervals
[−𝑒𝜋 , 0) and [−𝑎,−𝑒−𝜋 ] respectively (and none in [0,∞)). For 𝑞 ∈ (−1, 0), 𝑞 → −1+

and 𝑎 ≥ 𝑒𝜋/2, there are 𝑜(1/(1+ 𝑞)) real zeros of 𝜃(𝑞, .) in the interval [−𝑒𝜋/2, 𝑒𝜋/2] and
(ln(𝑎/𝑒𝜋/2)/2)/(1 + 𝑞) + 𝑜(1/(1 + 𝑞)) in each of the intervals [−𝑎,−𝑒𝜋/2] and [𝑒𝜋/2, 𝑎].
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1. Introduction

1.1. Definition of the partial theta function

For 𝑞 ∈ D1, 𝑧 ∈ C, where D𝑟 stands for the open disk of radius 𝑟 centered at
0 ∈ C, one defines the partial theta function by the formula

𝜃(𝑞, 𝑧) :=

∞∑︁
𝑗=0

𝑞𝑗(𝑗+1)/2𝑧𝑗 . (1.1)

This terminology is explained by the resemblance of formula (1.1) with the one
defining the Jacobi theta function Θ(𝑞, 𝑧) :=

∑︀∞
𝑗=−∞ 𝑞𝑗

2

𝑧𝑗 ; the word “partial” refers
to the summation in the case of 𝜃 taking place only over the nonnegative values of 𝑗.
One has 𝜃(𝑞2, 𝑧/𝑞) =

∑︀∞
𝑗=0 𝑞

𝑗2𝑧𝑗 . We consider 𝑞 as a parameter and 𝑧 as a variable.
For each 𝑞 fixed, 𝜃(𝑞, .) is an entire function.
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The function 𝜃 has been studied as Ramanujan-type series in [21]. Its appli-
cations in statistical physics and combinatorics are explained in [20]. Other fields,
where 𝜃 is used, are the theory of (mock) modular forms (see [4]) and asymptotic
analysis (see [2]). Asymptotics, modularity and other properties of partial and false
theta functions are considered in [5] with regard to conformal field theory and rep-
resentation theory, and in [3] when asymptotic expansions of regularized characters
and quantum dimensions of the (1, 𝑝)-singlet algebra modules are studied.

A recent impetus for the interest in 𝜃 (in the case when the parameter 𝑞 is
real) was given by the theory of section-hyperbolic polynomials, i.e., real univariate
polynomials of degree ≥ 2 with all roots real negative and such that, when their
highest-degree monomial is deleted, this gives again a polynomial having only real
negative roots. The classical results of Hardy, Petrovitch and Hutchinson in this
direction (see [6,7,19]) have been continued in [8,17,18]. Various analytic properties
of 𝜃 are studied in [9–11,13–15]. See more about 𝜃 in [1].

1.2. The zero locus and the spectrum of the partial theta function

In the present paper we consider the zero locus of 𝜃, i.e., the set 𝑆 := {(𝑞, 𝑧) ∈
D1 × C, 𝜃(𝑞, 𝑧) = 0}. In Section 2 we prove the following theorem.

Theorem 1.1. In the space D1 × C, the zero locus 𝑆 is an irreducible hence
connected analytic curve. It is smooth at every point (𝑞♭, 𝑧♭) such that 𝑧♭ is a simple
or double zero of 𝜃(𝑞♭, .).

Remarks 1.2. (1) B. Z. Shapiro has introduced the notion of spectrum of 𝜃 as
the set of values of 𝑞 for which 𝜃(𝑞, .) has a multiple zero, see [17]. Suppose that 𝑞
is real, i.e., 𝑞 ∈ (−1, 0) ∪ (0, 1) (the case 𝑞 = 0 is of little interest since 𝜃(0, 𝑧) ≡ 1).
If 𝑞 ∈ (0, 1), then 𝜃(𝑞, .) has infinitely-many real zeros and they are all negative.
There are also infinitely-many spectral numbers 0 < 𝑞1 < 𝑞2 < · · · < 𝑞𝑘 < · · · < 1,
lim𝑘→∞ 𝑞𝑘 = 1−, see [9].

(2) For 𝑞 ∈ (0, 𝑞1) (where 𝑞1 = 0.3092 . . . ), all zeros of 𝜃(𝑞, .) are real, negative
and distinct: · · · < 𝜉2 < 𝜉1 < 0; one has 𝜃(𝑞, 𝑥) > 0 for 𝑥 ∈ (𝜉2𝑗+1, 𝜉2𝑗) and
𝜃(𝑞, 𝑥) < 0 for 𝑥 ∈ (𝜉2𝑗 , 𝜉2𝑗−1). For 𝑞 ∈ (𝑞𝑘, 𝑞𝑘+1) ⊂ (0, 1), 𝑘 ∈ N, 𝑞0 := 0,
the function 𝜃(𝑞, .) has exactly 𝑘 pairs of complex conjugate zeros (counted with
multiplicity). When 𝑞 ∈ (0, 1) increases and passes through the spectral value 𝑞𝑘,
the two zeros 𝜉2𝑘−1 and 𝜉2𝑘 coalesce and then form a complex conjugate pair, see [9].
The index 𝑗 of the zero 𝜉𝑗 is meaningful as long as 𝜉𝑗 is real, i.e., for 𝑞 ∈ (0, 𝑞[(𝑗+1)/2]],
where [.] stands for “the integer part of”.

(3) Asymptotic expansions of the numbers 𝑞𝑘 are obtained in [10] and [14]. The
formula of [14] reads:

𝑞𝑘 = 1− 𝜋/2𝑘 + (ln 𝑘)/8𝑘2 +𝑂(1/𝑘2), 𝑦𝑘 = −𝑒𝜋𝑒−(ln 𝑘)/4𝑘+𝑂(1/𝑘) (1.2)

where 𝑒𝜋 = 23.1407 . . . and 𝑦𝑘 < 0 is the double zero of 𝜃(𝑞𝑘, .). It is the rightmost
of its real zeros and 𝜃(𝑞𝑘, .) has a minimum at 𝑦𝑘.
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(4) For 𝑘 ∈ N*, one has 𝜃(𝑞,−𝑞−𝑘) ∈ (0, 𝑞𝑘), see [9, Proposition 9]. For 𝑞 > 0
small enough, one has sgn(𝜃(𝑞,−𝑞−𝑘−1/2)) = (−1)𝑘 and |𝜃(𝑞,−𝑞−𝑘−1/2)| > 1, see [9,
Proposition 12].

Remarks 1.3. (1) If 𝑞 ∈ (−1, 0) is sufficiently small, then 𝜃(𝑞, .) has infinitely-
many real negative and infinitely-many real positive zeros: · · · < 𝜉4 < 𝜉2 < 0 <
𝜉1 < 𝜉3 < · · · ; one has 𝜃(𝑞, 𝑥) < 0 for 𝑥 ∈ (𝜉4𝑗+4, 𝜉4𝑗+2) and 𝑥 ∈ (𝜉4𝑗+1, 𝜉4𝑗+3), and
𝜃(𝑞, 𝑥) > 0 for 𝑥 ∈ (𝜉4𝑗+2, 𝜉4𝑗), 𝑥 ∈ (𝜉4𝑗+3, 𝜉4𝑗+5) and 𝑥 ∈ (𝜉2, 𝜉1). For 𝑞 ∈ (−1, 0),
there are also infinitely-many spectral numbers, see [13]. We denote them by 𝑞𝑘,
where −1 < 𝑞𝑘 < 0.

(2) For 𝑠 ≥ 1, one has −1 < 𝑞2𝑠+1 < 𝑞2𝑠−1 < 0, see [13, Lemma 4.11]. For
𝑘 sufficiently large, one has 𝑞𝑘+1 < 𝑞𝑘, see [13, Lemmas 4.10, 4.11 and 4.17]. The
inequality 𝑞𝑘+1 < 𝑞𝑘 being proved only for 𝑘 sufficiently large we admit the possibility
finitely-many equalities of the form 𝑞𝑖 = 𝑞𝑗 to hold true, where at least one of the
numbers 𝑖 and 𝑗 is even.

(3) When 𝑞 ∈ (−1, 0) decreases and passes through a spectral value 𝑞𝑘, then
for 𝑘 = 2𝑠− 1 (resp. 𝑘 = 2𝑠), 𝑠 ∈ N*, the zeros 𝜉4𝑠−2 and 𝜉4𝑠 (resp. 𝜉4𝑠−1 and 𝜉4𝑠+1)
coalesce. Thus for 𝑞 ∈ (𝑞𝑘+1, 𝑞𝑘) ⊂ (−1, 0) and 𝑘 sufficiently large, the function
𝜃(𝑞, .) has exactly 𝑘 pairs of complex conjugate zeros (counted with multiplicity).
The zero 𝜉1 remains real and simple for any 𝑞 ∈ (−1, 0).

(4) Asymptotic expansions of the numbers 𝑞𝑘 are found in [13]:

𝑞𝑘 = 1− (𝜋/8𝑘) + 𝑜(1/𝑘), |𝑦𝑘| = 𝑒𝜋/2 + 𝑜(1), (1.3)

where 𝑦𝑘 is the double zero of 𝜃(𝑞𝑘, .) and 𝑒𝜋/2 = 4.81477382 . . . . For 𝑘 odd (respec-
tively, 𝑘 even) 𝜃(𝑞𝑘, .) has a local minimum (respectively, maximum) at 𝑦𝑘, and 𝑦𝑘
is the rightmost of the real negative zeros of 𝜃(𝑞𝑘, .) (respectively, for 𝑘 sufficiently
large, 𝑦𝑘 is the second from the left of the real positive zeros of 𝜃(𝑞𝑘, .)).

Remarks 1.4. (1) All coefficients in the series (1.1) are real. Hence a priori
spectral numbers are either real or they form complex conjugate pairs. It is proved
in [15] that there exists at least one such pair which equals 0.4353184958 · · · ±
𝑖0.1230440086 . . . . Numerical results suggest that one should expect there to be
infinitely-many such pairs.

(2) In any set of the form D𝑟 ∖ {0}, 𝑟 ∈ (0, 1), the number of spectral values
of 𝜃 is finite (because the spectrum is locally a codimension 1 analytic subset in
D1 ∖ {0}). For any spectral number 𝑞, the function 𝜃(𝑞, .) has finitely-many multiple
zeros, see [11]. The number 𝑞1 = 0.3092 . . . is the only spectral number of 𝜃 in the
disk D0.31.

(3) For all spectral numbers 𝑞𝑗 ∈ (0, 1) and, for 𝑘 sufficiently large, for all
spectral numbers 𝑞𝑘 ∈ (−1, 0), it is true that the function 𝜃(𝑞𝑗 , .), resp. 𝜃(𝑞𝑘, .), has
exactly one double real zero while all its other real zeros are simple (see [9] and [13]).
It would be interesting to prove (or disprove) that for any spectral value (real or
complex) the partial theta function has just one double zero all its other zeros being
simple. If true, this would mean in particular (see Theorem 1.1) that 𝑆 is globally
smooth and connected. If false, it would be of interest to describe the eventual
singularities of 𝑆.
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1.3. The limit distribution of the real zeros

In the present subsection we consider the case 𝑞 ∈ R, i.e., 𝑞 ∈ (−1, 0) ∪ (0, 1).

Notation 1.5. For 𝑞 ∈ (−1, 0)∪ (0, 1), given a finite interval 𝐽 ⊂ R, we denote
by 𝑍𝐽(𝑞) the number of zeros of 𝜃(𝑞, .) (counted with multiplicity) belonging to 𝐽 .
For 𝑞 ∈ (0, 1) and 𝑎 ≥ 𝑒𝜋, we set ℓ𝑎(𝑞) := 𝑍[−𝑎,−𝑒𝜋 ](𝑞). For 𝑞 ∈ (−1, 0) and 𝑎 ≥ 𝑒𝜋/2,
we set 𝑛𝑎(𝑞) := 𝑍[−𝑎,−𝑒𝜋/2](𝑞) and 𝑝𝑎(𝑞) := 𝑍[𝑒𝜋/2,𝑎](𝑞).

Theorem 1.6. (1) For 𝑞 ∈ (0, 1), one has 𝑍[−𝑒𝜋,0)(𝑞) = 𝑜(1/(1− 𝑞)).

(2) The set of zeros of 𝜃(𝑞𝑘, .) (over all 𝑘 ∈ N*) is everywhere dense in (−∞,−𝑒𝜋].
One has lim𝑞→1− ℓ𝑎(𝑞)(1− 𝑞) = ln(𝑎/𝑒𝜋).

(3) For 𝑞 ∈ (−1, 0), one has 𝑍[−𝑒𝜋/2,0)(𝑞) = 𝑜(1/(1 + 𝑞)).

(4) The set of zeros of 𝜃(𝑞2𝑠−1, .) (over all 𝑠 ∈ N*) is everywhere dense in (−∞,−𝑒𝜋/2].
One has lim𝑞→−1+ 𝑛𝑎(𝑞)(1 + 𝑞) = ln(𝑎/𝑒𝜋/2)/2.

(5) For 𝑞 ∈ (−1, 0), one has 𝑍(0,𝑒𝜋/2](𝑞) = 𝑜(1/(1 + 𝑞)).

(6) The set of zeros of 𝜃(𝑞2𝑠, .) (over all 𝑠 ∈ N*) is everywhere dense in [𝑒𝜋/2,∞).
One has lim𝑞→−1+ 𝑝𝑎(𝑞)(1 + 𝑞) = ln(𝑎/𝑒𝜋/2)/2.

The theorem is proved in Section 3.

Remark 1.7. The quantity 1/𝑎 = lim𝜀→0+((ln((𝑎+ 𝜀)/𝑒𝜋)− ln(𝑎/𝑒𝜋)/𝜀) can
be interpreted as limit density of the real zeros of 𝜃(𝑞, .) as 𝑞 → 1− at the point
−𝑎 ≤ −𝑒𝜋. Similarly for the quantity 1/(2𝑎) at ±𝑎, 𝑎 ≥ 𝑒𝜋/2, as 𝑞 → −1+. For
the rest of the real line the limit density is 0. Indeed, for 𝑞 ∈ (0, 1), there are
no nonnegative zeros of 𝜃(𝑞, .); for 0 < 𝑎 < 𝑒𝜋, see part (1) of Theorem 1.6. For
𝑞 ∈ (−1, 0), see parts (3) and (5) of Theorem 1.6.

2. Proof of Theorem 1.1

2.1. Smoothness

We prove the smoothness first. If 𝑧♭ is a simple zero of 𝜃(𝑞♭, .), then
(𝜕𝜃/𝜕𝑧)(𝑞♭, 𝑧♭)̸=0 hence

Grad(𝜃)(𝑞♭, 𝑧♭) ̸= 0 (2.1)

and 𝑆 is smooth at (𝑞♭, 𝑧♭). The function 𝜃 satisfies the following differential equation
(see (1.1)):

2𝑞(𝜕𝜃/𝜕𝑞) = 𝑧(𝜕2/𝜕𝑧2)(𝑧𝜃). (2.2)

The right-hand side equals 2𝑧(𝜕𝜃/𝜕𝑧)+𝑧2(𝜕2𝜃/𝜕𝑧2). If 𝑧♭ is a double zero of 𝜃(𝑞♭, .),
then

𝜃(𝑞♭, 𝑧♭) = (𝜕𝜃/𝜕𝑧)(𝑞♭, 𝑧♭) = 0 ̸= (𝜕2𝜃/𝜕𝑧2)(𝑞♭, 𝑧♭).
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One has neither 𝑞♭ = 0, because 𝜃(0, .) ≡ 1 ̸= 0, nor 𝑧♭ = 0, because 𝜃(𝑞, 0) ≡ 1.
Hence

(𝜕𝜃/𝜕𝑞)(𝑞♭, 𝑧♭) = ((𝑧♭)2/2𝑞♭)(𝜕2𝜃/𝜕𝑧2)(𝑞♭, 𝑧♭) ̸= 0.

Therefore one has (2.1), so 𝑆 is smooth at (𝑞♭, 𝑧♭).

2.2. Separation in modulus

For fixed 𝑞 ∈ D1 ∖ {0}, we denote by 𝒞𝑘, 𝑘 ∈ N*, the circumference in the
𝑧-space |𝑧| = |𝑞|−𝑘−1/2. When 𝑞 is close to 0, one can enumerate the zeros of 𝜃,
because there exists exactly one zero such that 𝜉𝑘 ∼ −𝑞−𝑘 (see [9, Proposition 10]).
For 0 < |𝑞| ≤ 𝑐0 := 0.2078750206 . . ., one has

|𝑞|−𝑘+1/2 < |𝜉𝑘| < |𝑞|−𝑘−1/2, (2.3)

see [15, Lemma 1]. In this sense we say that for 𝑞 ∈ D𝑐0 ∖ {0}, the zeros of 𝜃 are
separated in modulus (that is, their moduli are separated by the circumferences 𝒞𝑘).
We say that, for given 𝑞, strong separation of the zeros of 𝜃 takes place for 𝑘 ≥ 𝑘0,
if for any 𝑘 ≥ 𝑘0, there exists exactly one zero 𝜉𝑘 of 𝜃 satisfying conditions (2.3).

Set 𝛼0 :=
√
3/2𝜋 = 0.2756644477 . . . . The following result can be found in [15].

Theorem 2.1. For 𝑛 ≥ 5 and for |𝑞| ≤ 1 − 1/(𝛼0𝑛), strong separation of the
zeros of 𝜃 takes place for 𝑘 ≥ 𝑛.

Theorem 2.1 has several important corollaries:

i) For each path 𝛾 ⊂ D1∖{0} in the 𝑞-space which avoids the spectral numbers
of 𝜃, one can define by continuity the zeros of 𝜃 as functions of 𝑞 as 𝑞 varies
along 𝛾. One can find 𝑘 ∈ N such that 𝛾 ⊂ D1−1/(𝛼0𝑘). For 𝑛 ≥ 𝑘, the zero
𝜉𝑛 is an analytic function in 𝑞 ∈ D1−1/(𝛼0𝑘). Thus the indices of the zeros
𝜉𝑛 are meaningful for 𝑛 ≥ 𝑘 and 𝑞 ∈ D1−1/(𝛼0𝑘).

ii) Denote by Γ the spectrum of 𝜃. If 𝛾 ⊂ 𝐷 := D1−1/(𝛼0𝑘) ∖ {Γ ∪ {0}} is a
loop, then the zeros of 𝜃 lying inside 𝒞𝑘 might undergo a monodromy as 𝑞
varies along 𝛾, i.e., a permutation which depends on the class of homotopy
equivalence of 𝛾 in 𝐷. Therefore it might not be possible to correctly define
the indices of these zeros for 𝑞 ∈ 𝐷.

iii) For no 𝑞* ∈ D1 ∖ {0} does a zero of 𝜃 go to infinity as 𝑞 → 𝑞*. That is,
zeros are not born and do not disappear at infinity.

iv) For (0, 1) ∋ 𝑞 = 𝑞𝑗 ∈ Γ, the function 𝜃(𝑞, .) has one double zero and
infinitely-many simple zeros, see part (3) of Remarks 1.4 and part (3) of
Remarks 1.2. The double zero is a Morse critical point for 𝜃. Suppose that
𝛾 is a small loop in D1 ∖ {0} circumventing 𝑞𝑗 . Then the two zeros 𝜉2𝑗−1

and 𝜉2𝑗 of 𝜃(𝑞, .) which coalesce for 𝑞 = 𝑞𝑗 are exchanged as 𝑞 varies along
𝛾. For (−1, 0) ∋ 𝑞 = 𝑞𝑘 ∈ Γ, 𝑘 = 2𝑠 − 1 or 2𝑠, where 𝑠 ≥ 1 is sufficiently
large, the same remark applies to the zeros 𝜉4𝑠−2 and 𝜉4𝑠 or 𝜉4𝑠−1 and
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𝜉4𝑠+1, see part (3) of Remarks 1.3. For the remaining values of 𝑘, if, say, 𝑝
spectral values 𝑞𝑖 coincide, then the function 𝜃(𝑞𝑖, .) has 𝑝 double real zeros
(its other real zeros are simple) and the monodromy defined by the class
of homotopy equivalence of 𝛾 exchanges the zeros in 𝑝 non-intersecting
couples of zeros (which are close to the double zeros of 𝜃(𝑞𝑖, .)).

v) Theorem 2.1 implies that the monodromy around 0 ∈ D1 is trivial.

2.3. Connectedness of 𝑆

When 𝑞 ∈ D𝑐0 ∖ {0}, the zeros 𝜉𝑗 can be considered as analytic functions in 𝑞.
We discuss the possible monodromies which they can undergo when the parameter
𝑞 runs along certain loops in D1 ∖ {0}. First of all we recall that for 𝑞 ∈ (0, 𝑞𝑗),
the zeros 0 > 𝜉2𝑗−1 > 𝜉2𝑗 > 𝜉2𝑗+1 > · · · are simple, real negative and continuously
depending on 𝑞, see part (2) of Remarks 1.2; for 𝑞 = 𝑞𝑗 , the zeros 𝜉2𝑗−1 and 𝜉2𝑗
coalesce.

Suppose that 𝑎 ∈ (0, 𝑐0) and that 𝒞♯ ⊂ D1 ∖ {0} is a small circumference of
radius 𝜀 centered at the spectral number 𝑞𝑗 , see parts (1) and (2) of Remarks 1.2;
no spectral number other than 𝑞𝑗 belongs to the circumference 𝒞♯ or to its interior.
Define 𝛾𝑗 ⊂ D1 ∖ {0} as the path consisting of the segment 𝜎+ := [𝑎, 𝑞𝑗 − 𝜀] ⊂ R,
the circumference 𝒞♯ (which is run, say, counterclockwise) and the segment 𝜎− :=
[𝑞𝑗 − 𝜀, 𝑎]. Hence if one considers the analytic continuation of the function 𝜉2𝑗−1

(resp. 𝜉2𝑗) along the loop 𝛾𝑗 , the result will be the function 𝜉2𝑗 (resp. 𝜉2𝑗−1), see iv)
in Subsection 2.2. We denote this symbolically by 𝛾𝑗 : 𝜉2𝑗−1 ↔ 𝜉2𝑗 . If we need to
indicate only the image of 𝜉2𝑗−1 we might write 𝛾𝑗 : 𝜉2𝑗−1 ↦→ 𝜉2𝑗 .

Remark 2.2. For 𝑗 > 1, the two segments 𝜎± of the path 𝛾𝑗 pass through
the spectral numbers 𝑞1, . . . , 𝑞𝑗−1. If one insists the path 𝛾𝑗 to bypass all spectral
numbers 𝑞𝑗 , then one should modify 𝛾𝑗 . Namely, parts of the two segments 𝜎± which
are segments of the form 𝜎𝑠 := [𝑞𝑠 − 𝜀′, 𝑞𝑠 + 𝜀′], 0 < 𝜀′ ≪ 𝜀, 1 ≤ 𝑠 ≤ 𝑗− 1, should be
replaced by small half-circumferences with diameters 𝜎𝑠 which bypass the spectral
numbers 𝑞𝑠 from above or below.

Suppose that 𝑞 ∈ (−1, 0). We will make use of Remarks 1.3. We construct
a path 𝛿𝑗 consisting of a segment 𝜏− := [−𝑎, 𝑞𝑗 + 𝜀] ⊂ R, −𝑐0 < −𝑎 < 0 (𝑐0 is
defined at the beginning of Subsection 2.2), a circumference 𝒞△ ⊂ D1 ∖{0} of radius
𝜀 centered at 𝑞𝑗 (and run, say, counterclockwise) and the segment 𝜏+ := [𝑞𝑗 + 𝜀,−𝑎].
If 𝑞𝑗1 ̸= 𝑞𝑗 , then the spectral number 𝑞𝑗1 does not belong to 𝒞△ or to its interior.

Suppose that 𝑗 = 2𝑠−1 (resp. 𝑗 = 2𝑠). If one considers the analytic continuation
of the functions 𝜉4𝑠−2 and 𝜉4𝑠 (resp. of 𝜉4𝑠−1 and 𝜉4𝑠+1) along the loop 𝛿𝑗 , the result
will be that the functions 𝜉4𝑠−2 and 𝜉4𝑠 (resp. 𝜉4𝑠−1 and 𝜉4𝑠+1) exchange their values,
see iv) in Subsection 2.2. We denote this symbolically by 𝛿2𝑠−1 : 𝜉4𝑠−2 ↔ 𝜉4𝑠 or
𝛿2𝑠 : 𝜉4𝑠−1 ↔ 𝜉4𝑠+1.

Remark 2.3. Similarly to what was done with the path 𝛾𝑗 , see Remark 2.2,
one can modify the path 𝛿𝑗 so that it should pass through no spectral value of 𝜃. We
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do not claim, however, that an equality of the form 𝑞𝑗1 = 𝑞𝑗2 , 𝑗1 ̸= 𝑗2, does not take
place (this is not proved in [13]; see part (2) of Remarks 1.3). Nevertheless, even if
such an equality holds true, then it does not affect our reasoning, because when 𝑞
runs along 𝒞△ close to the coinciding spectral numbers 𝑞𝑗1 and 𝑞𝑗2 , the exchange of
zeros 𝜉𝑖 which occurs concerns two couples of zeros with no zero in common.

By combining the monodromies defined by the paths 𝛾𝑗 and 𝛿𝑗 one can obtain
any monodromy 𝜉𝑘 ↦→ 𝜉𝑚. Indeed, denote by 𝜂+ a half-circumference centered
at 0, of radius 𝑎, belonging to the upper half-plane (hence the segment [−𝑎, 𝑎]
is its diameter) and run counterclockwise, by 𝜂− the same half-circumference run
clockwise, by 𝛾𝑗𝛾ℓ the concatenation of the paths 𝛾𝑗 and 𝛾ℓ (defined for one and the
same value of 𝑎, 𝛾𝑗 is followed by 𝛾ℓ) and similarly for the loops (all with base point
𝑎) 𝛾𝑗𝜂+𝛿𝑠𝜂−, 𝜂+𝛿𝑠𝜂−𝛾𝑗 , etc. Thus for 𝑠 ≥ 1, one obtains the monodromies

𝛾2𝑠−1 : 𝜉4𝑠−3 ↔ 𝜉4𝑠−2,

𝛾2𝑠 : 𝜉4𝑠−1 ↔ 𝜉4𝑠,

𝛿2𝑠−1 : 𝜉4𝑠−2 ↔ 𝜉4𝑠,

𝛿2𝑠 : 𝜉4𝑠−1 ↔ 𝜉4𝑠+1,

𝛾2𝑠−1𝜂+𝛿2𝑠−1𝜂− : 𝜉4𝑠−3 ↦→ 𝜉4𝑠,

𝜂+𝛿2𝑠−1𝜂−𝛾2𝑠−1 : 𝜉4𝑠 ↦→ 𝜉4𝑠−3,

𝛾2𝑠−1𝜂+𝛿2𝑠−1𝜂−𝛾2𝑠 : 𝜉4𝑠−3 ↦→ 𝜉4𝑠−1,

𝛾2𝑠−1𝜂+𝛿2𝑠−1𝜂−𝛾2𝑠𝜂+𝛿2𝑠𝜂− : 𝜉4𝑠−3 ↦→ 𝜉4𝑠+1, etc.

This means that, for suitably chosen loops, the root 𝜉4𝑠−3 can be mapped by the
corresponding monodromies into any of the roots 𝜉4𝑠−2, 𝜉4𝑠−1, 𝜉4𝑠 or 𝜉4𝑠+1. After
this one can repeat the reasoning with 𝜉4𝑠+1 = 𝜉4(𝑠+1)−3 (i.e., one can shift the value
of 𝑠 by 1) and so on.

Thus the subset 𝑆0 of 𝑆 on which all zeros of 𝜃 are simple is connected. The
set 𝑆 ∖ 𝑆0 belongs to the topological closure of 𝑆 (because the zeros of 𝜃 depend
continuously on 𝑞), so 𝑆 is connected. The theorem is proved.

3. Proof of Theorem 1.6

Part (1). In the proof of parts (1) and (2) of the theorem, when considering the
values of 𝑞 from an interval of the form (𝑞𝑘, 𝑞𝑘+1), we take into account the first of
formulae (1.2), so as 𝑞 tends to 1− (hence 𝑘 tends to ∞) one has 1 − 𝑞 = 𝑂(1/𝑘).
We prove first the following lemma.

Lemma 3.1.

(1) For every 𝑟 ∈ (0, 1), there exists 𝐾𝑟 ∈ N such that for every 𝑞 ∈ (0, 𝑟], one
has 𝑍[−𝑒𝜋,0)(𝑞) ≤ 𝐾𝑟.

(2) When the zeros 𝜉2𝑠−1 and 𝜉2𝑠 are real (see part (2) of Remarks 1.2), they
belong to the interval (−𝑞−2𝑠,−𝑞−2𝑠+1).
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(3) For 𝑞 ∈ [𝑞𝑘, 𝑞𝑘+1), one has 𝑍[−𝑒𝜋,0)(𝑞) = 𝑜(𝑘).

Proof. Part (1). It follows from part (4) of Remarks 1.2 that for 𝑞 > 0 small
enough, all zeros 𝜉𝑗 of 𝜃(𝑞, .) are real and the zeros 𝜉2𝑠−1 and 𝜉2𝑠 belong to the
interval (−𝑞−2𝑠,−𝑞−2𝑠+1), so they are smaller than −𝑟−2𝑠+1. And in the same way,
for any 𝑞 ∈ (0, 1), the zeros 𝜉2𝑠−1 and 𝜉2𝑠, when they are real, belong to the interval
(−𝑞−2𝑠,−𝑞−2𝑠+1) (which proves part (2)).

When 𝑞 increases and becomes equal to 𝑞𝑠, the zeros 𝜉2𝑠−1 and 𝜉2𝑠 coalesce.
For 𝑞 > 𝑞𝑠, they form a complex conjugate pair, see part (2) of Remarks 1.2. For
𝑞 ∈ (0, 𝑟] and 2𝑠− 1 > 𝜋/ ln(1/𝑟), i.e., 𝑞−2𝑠+1 ≥ 𝑟−2𝑠+1 > 𝑒𝜋 hence −𝑞−2𝑠+1 < −𝑒𝜋,
the zero 𝜉𝑗 , 𝑗 ≥ 2𝑠−1, is either smaller than −𝑒𝜋 or it has given birth (together with
𝜉𝑗−1 or 𝜉𝑗+1 depending on the parity of 𝑗) to a complex conjugate pair. Therefore
𝑍[−𝑒𝜋,0)(𝑞) ≤ [𝜋/ ln(1/𝑟)] + 1 and one can set 𝐾𝑟 := [𝜋/ ln(1/𝑟)] + 1.

Part (3). Suppose first that 𝑞 = 𝑞𝑘. The interval 𝐼 := [−𝑒𝜋, 𝑦𝑘] contains all real
zeros of 𝜃(𝑞𝑘, .) belonging to the interval 𝐽 := [−𝑒𝜋, 0). The rightmost of these zeros
which is in 𝐼 is the double zero 𝑦𝑘 which is the result of the confluence of 𝜉2𝑘−1 and
𝜉2𝑘, see parts (2) and (3) of Remarks 1.2. Denote by 𝑠0 the smallest of the numbers
𝑠 for which −(𝑞𝑘)

−2𝑠+1 < −𝑒𝜋. Hence there are not more than

𝑡0 := 2(𝑠0 − 1)− 2(𝑘 − 1) + 1 = 2(𝑠0 − 𝑘) + 1

real zeros of 𝜃(𝑞𝑘, .) in 𝐼 (counted with multiplicity), see the proof of part (1) of the
present lemma. One has 𝑞𝑘 = 1− 𝜋/2𝑘 + 𝑜(1/𝑘), see (1.2). Therefore

−(𝑞𝑘)
−2𝑠0+1 < −𝑒𝜋 ⇔ (−2𝑠0+1) ln(𝑞𝑘) > 𝜋 ⇔ 2𝑠0−1 > 𝜋/(ln(1/𝑞𝑘)) = 2𝑘+𝑜(𝑘).

On the other hand, it follows from the definition of 𝑠0 that 2𝑠0−3 ≤ 𝜋/(ln(1/𝑞𝑘)) =
2𝑘 + 𝑜(𝑘). Thus 𝑠0 = 𝑘 + 𝑜(𝑘) and 𝑡0 = 𝑜(𝑘). Suppose now that 𝑞 ∈ (𝑞𝑘, 𝑞𝑘+1).
Hence when one counts the real zeros of 𝜃(𝑞, .) in 𝐽 , one should take into account
that:

1) The double root 𝑦𝑘 gives birth to a complex conjugate pair of zeros, i.e., two
real zeros are lost; for 𝑞 ∈ (𝑞𝑘, 𝑞𝑘+1), these are the only real zeros that are
lost, see part (2) of Remarks 1.2;

2) Denote by 𝑠*(𝑞) the smallest of the numbers 𝑠 for which one has −𝑞−2𝑠+1 <
−𝑒𝜋 (hence 𝑠*(𝑞𝑘) = 𝑠0). For fixed 𝑠, the number −𝑞−2𝑠+1 increases with 𝑞,
so 𝑠*(𝑞) also increases, i.e., new real zeros might enter the interval 𝐽 from
the left.

Thus for 𝑞 ∈ (𝑞𝑘, 𝑞𝑘+1), one has 𝑍𝐽(𝑞) ≤ 𝑡1 + 2, where 𝑡1 is the quantity 𝑡0
defined for 𝑘 + 1 instead of 𝑘, hence 𝑍𝐽(𝑞) = 𝑜(𝑘). Indeed, the numbers −𝑞−2𝑠+1

increase with 𝑞. We cannot claim that if for 𝑠 = 𝑠*(𝑞)− 1, one has −𝑞−2𝑠+1 ≥ −𝑒𝜋,
then the zeros 𝜉2𝑠−1 and 𝜉2𝑠 are larger or smaller than −𝑒𝜋; this is why 2 is added
to 𝑡1.

The proof of part (1) of Theorem 1.6 results from part (3) of Lemma 3.1.
Indeed, one has 𝑘 = 𝑂(1/(1− 𝑞𝑘)), see (1.2).
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Part (2). The function 𝜃 satisfies the following functional equation

𝜃(𝑞, 𝑥) = 1 + 𝑞𝑥𝜃(𝑞, 𝑞𝑥). (3.1)

For 𝑞 = 𝑞𝑘 ∈ Γ, we denote by · · · < 𝑥2 < 𝑥1 < 𝑥0 < 0 the numbers 𝑥0 = 𝑦𝑘,
𝑥𝑠 = 𝑥𝑠−1/𝑞𝑘, 𝑠 ∈ N (i.e., 𝑥𝑠 = 𝑦𝑘/(𝑞𝑘)

𝑠). Hence 𝜃(𝑞𝑘, 𝑥0) = 0, 𝜃(𝑞𝑘, 𝑥1) = 1 +
𝑥0𝜃(𝑞𝑘, 𝑥0) = 1 (see (3.1)), and for 𝑠 > 1,

(i) if 𝜃(𝑞𝑘, 𝑥𝑠) < 0, then 𝜃(𝑞𝑘, 𝑥𝑠+1) = 1 + 𝑥𝑠𝜃(𝑞𝑘, 𝑥𝑠) > 1;

(ii) if 𝜃(𝑞𝑘, 𝑥𝑠) ≥ 1 (this is the case for 𝑠 = 1), then for 𝑘 sufficiently large,
one has 𝑥𝑠 < −𝑒𝜋/2 (see (1.2)), 𝑞𝑘 ∈ (0.3, 1) (see parts (1) and (2) of
Remarks 1.2) hence 𝑞𝑘𝑥𝑠 < −0.3× 𝑒𝜋/2 < −3 and

𝜃(𝑞𝑘, 𝑥𝑠+1) = 1 + 𝑞𝑘𝑥𝑠𝜃(𝑞𝑘, 𝑥𝑠) < 1− 3 = −2 < 0.

Thus for 𝑘 sufficiently large, we have 𝜃(𝑞𝑘, 𝑥𝑠) < 0 for 𝑠 ≥ 2 even and 𝜃(𝑞𝑘, 𝑥𝑠) >
0 for 𝑠 ≥ 3 odd. Hence each interval (𝑥𝑠+1, 𝑥𝑠) contains a zero of 𝜃. For a fixed
interval [−𝑎,−𝑒𝜋], consider the intervals (𝑥𝑠+1, 𝑥𝑠) which are its subintervals. As
𝑘 → ∞ (hence 𝑞𝑘 → 1−) the lengths of these intervals tend uniformly to 0. Indeed,
the largest of them is the last one and its length is ≤ (𝑎−𝑎𝑞) = (1−𝑞)𝑎. Therefore for
any 𝑎 > 𝑒𝜋, the set of zeros of 𝜃(𝑞𝑘, .) (over all 𝑘 sufficiently large) is everywhere dense
in the interval [−𝑎,−𝑒𝜋]. This proves the first claim of part (2) of the theorem. To
prove the second one we first consider the case 𝑞 = 𝑞𝑘 ∈ Γ. We define the quantities
𝑢0, 𝑢1 ∈ N by the conditions

|𝑦𝑘|/𝑞𝑢0 = |𝑥𝑢0 | ≤ 𝑒𝜋 < |𝑥𝑢0+1| = |𝑦𝑘|/𝑞𝑢0+1,

and
|𝑦𝑘|/𝑞𝑢1 = |𝑥𝑢1

| ≤ 𝑎 < |𝑥𝑢1+1| = |𝑦𝑘|/𝑞𝑢1+1.

Hence (remember that ln 𝑞 < 0)

(𝑢0 + 1) ln 𝑞 < ln(|𝑦𝑘|/𝑒𝜋) ≤ 𝑢0 ln 𝑞 and (𝑢1 + 1) ln 𝑞 < ln(|𝑦𝑘|/𝑎) ≤ 𝑢1 ln 𝑞

which, taking into account that as 𝑞 → 1−, implies ln 𝑞 = ln(1+ (𝑞− 1)) = (𝑞− 1)+
𝑜(𝑞 − 1), one has

𝑢0(𝑞 − 1) = ln(|𝑦𝑘|/𝑒𝜋) + 𝑜(𝑞 − 1) and 𝑢1(𝑞 − 1) = ln(|𝑦𝑘|/𝑎) + 𝑜(𝑞 − 1).

It is clear that ℓ𝑎(𝑞) = 𝑢1 − 𝑢0 +𝑂(1). Thus

ℓ𝑎(𝑞)(1− 𝑞) = (𝑢1 − 𝑢0)(1− 𝑞) +𝑂(1)(1− 𝑞) = ln(𝑎/𝑒𝜋) +𝑂(1− 𝑞).

Now suppose that 𝑞 ∈ (𝑞𝑘, 𝑞𝑘+1). Our reasoning is similar to the one in the proof of
Lemma 3.1. The double zero 𝑦𝑘 gives birth to a complex conjugate pair, so two real
zeros are lost. If for 𝑞 = 𝑞* ∈ (𝑞𝑘, 𝑞𝑘+1), the interval (−𝑞−2𝑠

* ,−𝑞−2𝑠+1
* ) is a subset of

the interval [−𝑎, 0), then the same is true for 𝑞 = 𝑞𝑘+1. Thus

ℓ𝑎(𝑞*) ≤ 𝑍[−𝑎,0)(𝑞𝑘+1) + 2. (3.2)
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One adds 2 in order to take into account the two zeros of 𝜃(𝑞𝑘+1, .) of the not more
than one interval (−𝑞−2𝑠

* ,−𝑞−2𝑠+1
* ) which belongs partially, but not completely, to

[−𝑎, 0). The number 2 of lost zeros and the number 2 in (3.2) are 𝑜(1/(1 − 𝑞*)).
According to part (1) of the theorem

𝑍[−𝑎,0)(𝑞𝑘+1) = ℓ𝑎(𝑞𝑘+1) + 𝑜(1/(1− 𝑞*)),

and for 𝑞 = 𝑞𝑘+1, it was shown that (1 − 𝑞𝑘+1)ℓ𝑎(𝑞𝑘+1) = ln(𝑎/𝑒𝜋) + 𝑜(1), so
ℓ𝑎(𝑞*) = ℓ𝑎(𝑞𝑘+1) + 𝑜(1/(1− 𝑞*)) and (1− 𝑞*)ℓ𝑎(𝑞*) = ln(𝑎/𝑒𝜋) + 𝑜(1) which proves
part (2) of the theorem.

Part (3). We need the following lemma.

Lemma 3.2. Suppose that 𝑞 ∈ (−1, 0) and set 𝜌 := |𝑞|. Then:

(1) For 𝜌 > 0 small enough, one has

𝜉4𝑠 ∈ (−𝜌−4𝑠−1,−𝜌−4𝑠+1), 𝜉4𝑠+2 ∈ (−𝜌−4𝑠−3,−𝜌−4𝑠−1),

𝜉4𝑠−1 ∈ (𝜌−4𝑠+2, 𝜌−4𝑠), and 𝜉4𝑠+1 ∈ (𝜌−4𝑠, 𝜌−4𝑠−2).
(3.3)

Moreover, the mentioned zeros 𝜉𝑗 are the only zeros of 𝜃(𝑞, .) in the indicated
intervals.

(2) For 𝜌 ∈ (0, 1), one has 𝜃(𝑞,−𝑞−2𝑘) = 𝜃(𝑞,−𝜌−2𝑘) ∈ (0, 𝜌2𝑘 + 𝜌4𝑘+1).

(3) For 𝑞 ∈ [𝑞2𝑠−1, 0), the zeros 𝜉4𝑠−2 and 𝜉4𝑠 belong to the interval 𝐼∙ :=
(−𝜌−4𝑠,−𝜌−4𝑠+2).

Proof. Part (1). We consider the following four series:

𝜃◇ := 𝜃(−𝜌,−𝜌−4𝑠+1) =

∞∑︁
𝑗=0

𝑑𝑗 , 𝑑𝑗 := (−1)𝑗(𝑗+3)/2𝜌−(4𝑠−1)𝑗+𝑗(𝑗+1)/2,

𝜃∇ := 𝜃(−𝜌,−𝜌−4𝑠−1) =

∞∑︁
𝑗=0

ℎ𝑗 , ℎ𝑗 := (−1)𝑗(𝑗+3)/2𝜌−(4𝑠+1)𝑗+𝑗(𝑗+1)/2,

𝜃♡ := 𝜃(−𝜌, 𝜌−4𝑠) =

∞∑︁
𝑗=0

𝑟𝑗 , 𝑟𝑗 := (−1)𝑗(𝑗+1)/2𝜌−4𝑠𝑗+𝑗(𝑗+1)/2, and

𝜃⋆ := 𝜃(−𝜌, 𝜌−4𝑠+2) =

∞∑︁
𝑗=0

𝜆𝑗 , 𝜆𝑗 := (−1)𝑗(𝑗+1)/2𝜌−(4𝑠−2)𝑗+𝑗(𝑗+1)/2.

For the first series, its terms of largest modulus are 𝑑4𝑠−1 and 𝑑4𝑠−2; one has 𝑑4𝑠−1 =
𝑑4𝑠−2 = −𝜌−8𝑠2+6𝑠−1. The moduli of the terms decrease rapidly as 𝑗 > 4𝑠 − 1
increases or as 𝑗 < 4𝑠 − 2 decreases. In this series the sign (−1)𝑗(𝑗+3)/2 is positive
for 𝑗 = 4𝜈 and 𝑗 = 4𝜈 + 1 and negative for 𝑗 = 4𝜈 + 2 and 𝑗 = 4𝜈 + 3. Hence for
𝜌 small enough, the sign of 𝜃◇ is the same as the one of 𝑑4𝑠−1 + 𝑑4𝑠−2, i.e., one has
𝜃◇ < 0.
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For the other three series the largest modulus terms are respectively ℎ4𝑠 =

ℎ4𝑠+1 = 𝜌−8𝑠2−2𝑠 > 0, 𝑟4𝑠−1 = 𝑟4𝑠 = 𝜌−8𝑠2+2𝑠 > 0 and 𝜆4𝑠−3 = 𝜆4𝑠−2 =

−𝜌−8𝑠2+10𝑠−3 < 0, so in the same way 𝜃∇ > 0, 𝜃♡ > 0 and 𝜃⋆ < 0. Hence
there is at least one zero of 𝜃 in the interval (−𝜌−4𝑠−1,−𝜌−4𝑠+1). In fact, there is
exactly one zero, and this is 𝜉4𝑠. Indeed, for 𝜌 small enough this is true, because
one has 𝜉𝑚 ∼ −𝑞−𝑚, see [12] (the zeros 𝜉4𝑠−1 and 𝜉4𝑠+1 are positive, so only 𝜉4𝑠
belongs to (−𝜌−4𝑠−1,−𝜌−4𝑠+1)). For any 𝜌 ∈ (0, 1), this follows from the fact that
as 𝜌 increases, new complex conjugate pairs are born, but the inverse does not take
place, see part (2) of Remarks 1.2. In the same way one proves the rest of part (1)
of the lemma.

Part (2). One checks directly that

𝜃(𝑞,−𝜌−2𝑘) =

∞∑︁
𝑗=0

𝑞𝑗(𝑗+1)/2(−𝜌−2𝑘)𝑗 =

∞∑︁
𝑗=0

(−1)𝑗(𝑗+3)/2𝜌−2𝑘𝑗+𝑗(𝑗+1)/2

=

∞∑︁
𝑗=4𝑘

(−1)𝑗(𝑗+3)/2𝜌−2𝑘𝑗+𝑗(𝑗+1)/2.

The last of these equalities follows from the fact that the first 4𝑘 terms of the series
cancel (the first with the (4𝑘)th, the second with the (4𝑘 − 1)st, etc.). The signs of
the terms of the last of these series are +,+,−,−,+,+,−,−, · · · and the exponents
−2𝑘𝑗 + 𝑗(𝑗 + 1)/2 are increasing for 𝑗 ≥ 4𝑘. Hence the series is the sum of two
Leibniz series with positive first terms, so its sum is positive and not larger than
the sum of the first terms of these two series. The latter sum is 𝜌2𝑘 + 𝜌4𝑘+1 which
proves part (2).

Part (3). For 𝜌 sufficiently small, the zeros 𝜉4𝑠−2 and 𝜉4𝑠 belong to 𝐼∙. Indeed,
by part (2) of the present lemma, at the endpoints of 𝐼∙ the function 𝜃(𝑞, .) is positive
while it is negative at −𝜌−4𝑠+1 (we showed already that 𝜃◇ < 0). As 𝜃(𝑞, .) is positive
at the endpoints for any 𝑞 ∈ (−1, 0), the zeros 𝜉4𝑠−2 and 𝜉4𝑠 belong to 𝐼∙ exactly for
𝑞 ∈ [𝑞2𝑠−1, 0), see part (3) of Remarks 1.3. This proves part (3) of Lemma 3.2.

Suppose first that 𝑞 = 𝑞2𝜈−1, 𝜈 ∈ N. The rightmost of the negative zeros of
𝜃(𝑞2𝜈−1, .) is the double zero 𝑦2𝜈−1 = 𝜉4𝜈−2 = 𝜉4𝜈 , see part (3) of Remarks 1.3.
Denote by 𝑠† = 𝑠†(𝑞2𝑠−1) the largest of the numbers 𝑠 ∈ N for which one has
−(𝑞2𝜈−1)

−4𝑠 ≥ −𝑒𝜋/2. Hence the zero 𝜉4𝑠† is in the interval [−𝑒𝜋/2, 0) and the zero
𝜉4(𝑠†+1) is to its left, i.e., outside it. Thus the number 𝑁̃(𝑞2𝜈−1) := 𝑍[−𝑒𝜋/2,0)(𝑞2𝜈−1)

(the zeros in [−𝑒𝜋/2, 0) have only even indices 𝑖, see Remarks 1.3) is

𝑁̃(𝑞2𝜈−1) = (4𝑠† − 4𝜈 + 2)/2 + 𝑢 = 2(𝑠† − 𝜈) + 1 + 𝑢,

where 𝑢 ≤ 1 (the presence of the number 𝑢 reflects the fact that we do not say
whether the zero 𝜉4𝑠†+2 belongs or not to the interval [−𝑒𝜋/2, 0)). The conditions

−(𝑞2𝜈−1)
−4(𝑠†+1) < −𝑒𝜋/2 ≤ −(𝑞2𝜈−1)

−4(𝑠†)
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are equivalent to −4(𝑠† + 1) ln |𝑞2𝜈−1| > 𝜋/2 ≥ −4𝑠† ln |𝑞2𝜈−1| or to⎧⎪⎨⎪⎩
4(𝑠† + 1) > (𝜋/2)/(ln(1/|𝑞2𝜈−1|)) = (𝜋/2)/(ln(1 + 𝜋/(8(2𝜈 − 1)) + 𝑜(1/𝜈)))

= 4𝜈 +𝑂(1),

4𝑠† ≤ (𝜋/2)/(ln(1/|𝑞2𝜈−1|)),

see the first of formulae (1.3). Thus

𝑠† = 𝜈 +𝑂(1) and 𝑁̃(𝑞2𝜈−1) = 𝑂(1). (3.4)

One can also write 𝑁̃(𝑞2𝜈−1) = 𝑜(𝜈) = 𝑜(1/(1 + 𝑞2𝜈−1)). Hence 𝑁̃(𝑞2𝜈+1) = 𝑜(𝜈).
Now suppose that 𝑞 ∈ (𝑞2𝜈+1, 𝑞2𝜈−1). When counting the zeros 𝜉𝑖 in the interval

[−𝑒𝜋/2, 0) one takes into account that the double zero 𝜉4𝜈−2 = 𝜉4𝜈 is lost (it gives
birth to a complex conjugate pair). The numbers −𝜌−4𝑠 (which are left endpoints
of intervals 𝐼∙) increase, so new zeros 𝜉𝑖 might enter the interval [−𝑒𝜋/2, 0) from
the left. The number of such intervals 𝐼∙ which belong entirely to [−𝑒𝜋/2, 0) is not
greater than their number for 𝑞 = 𝑞2𝜈+1. There is at most one interval 𝐼∙ which
belongs only partially to [−𝑒𝜋/2, 0), so ignoring it means not counting at most 2
zeros 𝜉𝑖 ∈ [−𝑒𝜋/2, 0). Therefore 𝑁̃(𝑞) = 𝑁̃(𝑞2𝜈+1) + 𝑂(1) = 𝑜(𝜈) = 𝑜(1/(1 + 𝑞)).
Part (3) of Theorem 1.6 is proved.

Part (4). Consider an interval of the form [−𝑎,−𝑒𝜋/2] and its subinterval (−𝑎*,−𝑎△),
𝑒𝜋/2 < 𝑎△ < 𝑎* < 𝑎. For 𝜈 ∈ N sufficiently large, the double zero 𝑦2𝜈−1 = 𝜉4𝜈−2 =
𝜉4𝜈 of 𝜃(𝑞2𝜈−1, .) is to the right of −𝑎△ (see the second of formulae (1.3)) and there
exists an interval of the form 𝐼∙ (see Lemma 3.2) such that 𝐼∙ ⊂ (−𝑎*,−𝑎△). In-
deed, the length of 𝐼∙ equals 𝜌−4𝑠(1 − 𝜌2). For each 𝑠 sufficiently large, one can
choose 𝜌 ∈ (0, 1) such that

−𝜌−4𝑠 ∈ (−𝑎*, (−𝑎* − 𝑎△)/2). (3.5)

If one chooses a larger 𝑠, then one can achieve condition 3.5 by choosing 𝜌 closer
to 1. This means that, as 𝜌−4𝑠 remains bounded, the length of 𝐼∙ tends to 0 and
one can attain both conditions (3.5) and −𝜌−4𝑠+2 ∈ (−𝑎*,−𝑎△). Thus 𝜉4𝑠−2, 𝜉4𝑠 ∈
(−𝑎*,−𝑎△), see part (3) of Lemma 3.2. This proves the first claim of part (4) of
Theorem 1.6.

To prove the second claim, for 𝑞* ∈ (−1, 0), we denote by 𝑠♯(𝑞*) the value of 𝑠 ∈
N corresponding to the leftmost of the numbers −(𝑞*)−4𝑠 belonging to the interval
[−𝑎, 0). In the proof of part (4) of Theorem 1.6 we set 𝜌 := |𝑞*|, so −(𝑞*)−4𝑠 =
−𝜌−4𝑠. Hence

lim
𝜌→1−

(−𝜌−4𝑠♯(𝑞*)) = −𝑎, −𝜌−4𝑠♯(𝑞*) > −𝑎 and − 𝜌−4(𝑠♯(𝑞*)+1) < −𝑎.

From the latter two inequalities, having in mind that ln(1/𝜌) = (1 − 𝜌) + 𝑜(1 − 𝜌),
one gets

𝑠♯(𝑞*) ∼ (ln 𝑎)/(4(1− 𝜌)). (3.6)

Now we partition the zeros of 𝜃(𝑞*, .) with negative real parts in several sets (we
remind that there are no zeros of 𝜃(𝑞*, .) on the imaginary axis for any 𝑞* ∈ (−1, 0),
see [16]):
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1) The set 𝑆∞ of zeros 𝜉𝑗 belonging to the intervals 𝐼∙ with 𝑠 ≥ 𝑠♯(𝑞*) + 2.
These zeros (when considered as depending continuously on 𝑞 ∈ [𝑞*, 0)) are
real and do not belong to the interval [−𝑎, 0) for any 𝑞 ∈ [𝑞*, 0).

2) The set 𝑆0 of the two zeros of the interval 𝐼∙ with 𝑠 = 𝑠♯(𝑞*) + 1.

3) The set 𝑆𝑅 of the other real negative zeros of 𝜃(𝑞*, .). We subdivide this set
into 𝑆𝑅([−𝑎,−𝑒𝜋/2]) and 𝑆𝑅((−𝑒𝜋/2, 0)) of zeros belonging to the respective
intervals.

4) The set 𝑆𝐼 of the complex conjugate pairs of zeros of 𝜃(𝑞*, .) which have
negative real parts. For 𝑞* ∈ (𝑞2𝜈+1, 𝑞2𝜈−1), their number is 𝜈. For 𝑞* < 0
close to zero, the zeros of the set 𝑆𝐼 are real and belong to intervals 𝐼∙, and
as 𝑞* decreases, they form complex conjugate pairs, see Remarks 1.3.

By abuse of notation we denote by the same symbols sets (e.g. 𝑆𝐼 , 𝑆𝑅, etc.) and
the number of zeros of 𝜃 which they contain. We remind that the numbers 𝑛𝑎(𝑞

*)
and 𝑠†(𝑞*) are defined in Notation 1.5 and in the proof of part (3) of the present
theorem respectively; the number 𝑠†(𝑞*) satisfies the first of conditions (3.4). Hence
for 𝑞* ∈ (𝑞2𝜈+1, 𝑞2𝜈−1), one has

𝑛𝑎(𝑞
*) = 𝑆𝑅([−𝑎,−𝑒𝜋/2]) +𝐴, (3.7)

where 𝐴 = 0, 1 or 2 is the number of zeros of the set 𝑆0 which belong to the interval
[−𝑎,−𝑒𝜋/2]. On the other hand,

𝑆𝑅([−𝑎,−𝑒𝜋/2]) = 2𝑠♯(𝑞*)− 𝑆𝑅((−𝑒𝜋/2, 0))− 𝑆𝐼 . (3.8)

Recall that 𝑆𝐼 = 2𝜈. By the first of equations (3.4) one has 𝜈 = 𝑠†(𝑞*) + 𝑂(1),
and by part (3) of the present theorem one has 𝑆𝑅((−𝑒𝜋/2, 0)) = 𝑜(𝜈). That’s why
equations (3.7) and (3.8) imply

𝑛𝑎(𝑞
*) = 2𝑠♯(𝑞*)− 2𝑠†(𝑞*) + 𝑜(𝜈). (3.9)

The factor 2 corresponds to the fact that there are two zeros 𝜉𝑖 in the interval 𝐼∙.
One can apply formula (3.6) with 𝑎 = 𝑒𝜋/2 to obtain 𝑠†(𝑞*) ∼ ln(𝑒𝜋/2)/(4(1 − 𝜌))
and from (3.9) one concludes that 𝑛𝑎(𝑞

*) = (ln(𝑎/𝑒𝜋/2))/(2(1 − 𝜌)) + 𝑜(1/(1 − 𝜌))
from which part (4) of the theorem follows.

Parts (5) and (6). We begin by proving the first claim of part (6); in this part of
the proof we write 𝑞 instead of 𝑞2𝑠. For any 𝜀 > 0, there exists 𝑠∇ ∈ N such that
for 𝑠 ≥ 𝑠∇, one has 𝑦2𝑠 ∈ (𝑒𝜋/2 − 𝜀, 𝑒𝜋/2 + 𝜀), see formulae (1.3). We assume that
𝜀 < 1/2, so 𝑦2𝑠 > 3. For 𝑠 ≥ 𝑠∇, we set 𝑥𝑗 := 𝑦2𝑠/𝑞

𝑗 , 𝑗 ∈ N. One has 𝜃(𝑞, 𝑥0) = 0,
𝑥2𝑚 > 0, 𝑥2𝑚+1 < 0 and |𝑥𝑗 | > 3. Therefore

𝜃(𝑞, 𝑥1) = 1 + 𝑥0𝜃(𝑞, 𝑥0) = 1 > 0,

𝜃(𝑞, 𝑥2) = 1 + 𝑥1𝜃(𝑞, 𝑥1) = 1 + 𝑥1(1 + 𝑥0𝜃(𝑞, 𝑥0)) < 1− 3 = −2 < 0,

𝜃(𝑞, 𝑥3) = 1 + 𝑥2𝜃(𝑞, 𝑥2) < −2 < 0 and
𝜃(𝑞, 𝑥4) = 1 + 𝑥3𝜃(𝑞, 𝑥3) > 2 > 0.
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In the same way one shows that 𝜃(𝑞, 𝑥4𝑚+2) < −2 < 0 and 𝜃(𝑞, 𝑥4𝑚+4) > 2 > 0.
Hence at least one zero of 𝜃(𝑞, .) belongs to the interval (𝑥4𝑚+2, 𝑥4𝑚+4). The longest
of these intervals for which 𝑥4𝑚+2 ∈ [𝑒𝜋/2 + 𝜀, 𝑎] is the last one, i.e., the one with
largest value of 𝑚. Its length is ≤ 𝑎((1/𝑞2) − 1) which quantity tends to 0 as
𝑞 → −1+ (i.e., as 𝑠 → ∞). Hence the zeros of 𝜃(𝑞, .) are everywhere dense in the
interval [𝑒𝜋/2+𝜀, 𝑎], and as 𝜀 > 0 is arbitrary, they are everywhere dense in [𝑒𝜋/2, 𝑎].
This proves the first claim of part (6).

To prove part (5) we observe that for 𝑥 ∈ (𝜉4𝑠+4, 𝜉4𝑠+2), one has 𝜃(𝑞, 𝑥) ≤ 0
and according to (3.1), 𝜃(𝑞, 𝑞𝑥) = 𝜃(𝑞, 𝑥)/(𝑞𝑥)−1/(𝑞𝑥) < 0 (because 𝑞𝑥 > 0). Hence
(𝑞𝜉4𝑠+2, 𝑞𝜉4𝑠+4) ⊂ (𝜉4𝑠+1, 𝜉4𝑠+3), see [13, Fig. 3] (in [13] the latter inclusion is proved
only for 𝑞 ∈ [−0.108, 0); for any 𝑞 ∈ (−1, 0), provided that the zeros 𝜉4𝑠+1, 𝜉4𝑠+2,
𝜉4𝑠+3 and 𝜉4𝑠+4 are real, it follows by continuity). Thus

𝑍(0,𝑒𝜋/2](𝑞) = 𝑍[−𝑒𝜋/2/|𝑞|,0)(𝑞) +𝐵 = 𝑍[−𝑒𝜋/2,0)(𝑞) + 𝑍[−𝑒𝜋/2/|𝑞|,−𝑒𝜋/2)(𝑞) +𝐵,

where 𝐵 = −1, 0 or 1 indicates that the count might not concern the leftmost
zero in [−𝑒𝜋/2/|𝑞|, 0) and/or the rightmost zero in (0, 𝑒𝜋/2]. By parts (3) and (4) of
the present theorem each of the summands 𝑍[−𝑒𝜋/2,0)(𝑞) and 𝑍[−𝑒𝜋/2/|𝑞|,−𝑒𝜋/2)(𝑞) is
𝑜(1/(1 + 𝑞)) which proves part (5). In the same way one proves the second claim of
part (6) as well:

𝑍[𝑒𝜋/2,𝑎](𝑞) = 𝑍[−𝑎/|𝑞|,−𝑒𝜋/2/|𝑞|](𝑞)+𝐵 = 𝑍[−𝑎/|𝑞|,−𝑒𝜋/2](𝑞)−𝑍(−𝑒𝜋/2/|𝑞|,−𝑒𝜋/2](𝑞)+𝐵,

where 𝑍(−𝑒𝜋/2/|𝑞|,−𝑒𝜋/2](𝑞) = 𝑜(1/(1 + 𝑞)) and

𝑍[−𝑎/|𝑞|,−𝑒𝜋/2](𝑞) = (ln((𝑎/|𝑞|)/𝑒𝜋/2)/2)/(1+𝑞) = (ln(𝑎/𝑒𝜋/2)/2)/(1+𝑞)+𝑜(1/(1+𝑞)).

The theorem is proved.
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