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TWO PROPERTIES OF THE PARTIAL THETA FUNCTION

VLADIMIR PETROV KOSTOV

For the partial theta function 6(q, z) := Z?io @UtD/253 4 2 € C, |q| < 1, we prove

that its zero locus is connected. This set is smooth at every point (qb,zb) such that
2" is a simple or double zero of 9((1"7 .). For ¢ € (0,1), ¢ =+ 1~ and a > €™, there are
o(1/(1 — q)) and (In(a/e™))/(1 — q) + o(1/(1 — q)) real zeros of 6(q,.) in the intervals
[-e™,0) and [—a, —e~ "] respectively (and none in [0,c0)). For ¢ € (—1,0), ¢ — —17F
and a > e™/2 there are o(1/(1+ q)) real zeros of (g, .) in the interval [—e™/2,e™/2] and
(In(a/e™/2)/2)/(1 + q) + o(1/(1 + q)) in each of the intervals [—a, —e™/2] and [e™/2, a].
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1. INTRODUCTION

1.1. DEFINITION OF THE PARTIAL THETA FUNCTION

For ¢ € Dy, z € C, where I,. stands for the open disk of radius r centered at
0 € C, one defines the partial theta function by the formula

0(q,z) :== qu(j+1)/2zj_ (1.1)
j=0

This terminology is explained by the resemblance of formula (1.1) with the one
: : : i2_j «@ fa1”
defining the Jacobi theta function ©(q, z) := Z;ifoo ¢’ z7; the word “partial” refers
to the summation in the case of 6 taking place only over the nonnegative values of j.

2 .
One has 0(¢%, z/q) = E;io ¢’ 2. We consider ¢ as a parameter and z as a variable.

For each ¢ fixed, 6(q, .) is an entire function.
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The function 6§ has been studied as Ramanujan-type series in [21]. Its appli-
cations in statistical physics and combinatorics are explained in [20]. Other fields,
where 6 is used, are the theory of (mock) modular forms (see [4]) and asymptotic
analysis (see [2]). Asymptotics, modularity and other properties of partial and false
theta functions are considered in [5] with regard to conformal field theory and rep-
resentation theory, and in [3] when asymptotic expansions of regularized characters
and quantum dimensions of the (1, p)-singlet algebra modules are studied.

A recent impetus for the interest in 6 (in the case when the parameter ¢ is
real) was given by the theory of section-hyperbolic polynomials, i.e., real univariate
polynomials of degree > 2 with all roots real negative and such that, when their
highest-degree monomial is deleted, this gives again a polynomial having only real
negative roots. The classical results of Hardy, Petrovitch and Hutchinson in this
direction (see [6,7,19]) have been continued in [3,17,18]. Various analytic properties
of 6 are studied in [9-11,13-15]. See more about ¢ in [1].

1.2. THE ZERO LOCUS AND THE SPECTRUM OF THE PARTIAL THETA FUNCTION

In the present paper we consider the zero locus of 8, i.e., the set S := {(¢,2) €
Dy x C, 0(q,z) = 0}. In Section 2 we prove the following theorem.

Theorem 1.1. In the space Dy x C, the zero locus S is an irreducible hence
connected analytic curve. It is smooth at every point (¢°, zb) such that 2° is a simple
or double zero of 0(¢’,.).

Remarks 1.2. (1) B. Z. Shapiro has introduced the notion of spectrum of 6 as
the set of values of ¢ for which 6(q,.) has a multiple zero, see [17]. Suppose that ¢
is real, i.e., ¢ € (—=1,0) U (0,1) (the case ¢ = 0 is of little interest since 6(0,z) = 1).
If ¢ € (0,1), then 6(q,.) has infinitely-many real zeros and they are all negative.
There are also infinitely-many spectral numbers 0 < §1 < Go < -+ < G < -+ < 1,
limg 00 G = 17, see [9].

(2) For q € (0,41) (where g1 = 0.3092...), all zeros of 6(q,.) are real, negative
and distinct: --- < & < & < 0; one has 6(¢,z) > 0 for z € (§2j+1,&2;) and
0(q,x) < 0 for x € (§25,825-1). For ¢ € (Gx,Gr+1) C (0,1), k € N, G := 0,
the function 6(g,.) has exactly k pairs of complex conjugate zeros (counted with
multiplicity). When ¢ € (0, 1) increases and passes through the spectral value gy,
the two zeros &ap,—1 and o, coalesce and then form a complex conjugate pair, see [9].
The index j of the zero §; is meaningful as long as &; is real, i.e., for ¢ € (0, gj¢j+1)/2)],
where [.] stands for “the integer part of”.

(3) Asymptotic expansions of the numbers g, are obtained in [10] and [141]. The
formula of [14] reads:

G =1—7/2k + (Ink)/8k*> + O(1/k?), G = —eTe MR)/4R+OQ/R) (1.2)

where e™ = 23.1407... and g < 0 is the double zero of 6(gx,.). It is the rightmost
of its real zeros and (g, .) has a minimum at gy.
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q*), see |9, Proposition 9]. For ¢ > 0

(4) For k € N*, one has (g, —¢~%) € (0,
)= (=1)* and |0(q, =g *"/?)| > 1, see [,

small enough, one has sgn(6(q, _q—k—l/Q)
Proposition 12].

Remarks 1.3. (1) If ¢ € (—1,0) is sufficiently small, then (g, .) has infinitely-
many real negative and infinitely-many real positive zeros: -+ < &4 < & < 0 <
& <& < ---;onehas 0(q,x) <0 for o € (£4544,8542) and & € (£4541,&45+43), and
0(q,x) > 0 for z € (§4j12,845), T € (§4j+3,8a5+5) and = € (&2,&1). For g € (—1,0),
there are also infinitely-many spectral numbers, see [13]. We denote them by gy,
where —1 < @ < 0.

(2) For s > 1, one has —1 < gas41 < Gas—1 < 0, see [13, Lemma 4.11]. For
k sufficiently large, one has qrx+1 < Gk, see [13, Lemmas 4.10, 4.11 and 4.17]. The
inequality Gx11 < G being proved only for k sufficiently large we admit the possibility
finitely-many equalities of the form ¢; = ¢; to hold true, where at least one of the
numbers ¢ and j is even.

(3) When ¢g € (—1,0) decreases and passes through a spectral value g, then
for k =2s—1 (resp. k = 2s), s € N*, the zeros £45_2 and £45 (resp. {45—1 and Eg541)
coalesce. Thus for ¢ € (gx+1,qx) C (—1,0) and k sufficiently large, the function
0(q,.) has exactly k pairs of complex conjugate zeros (counted with multiplicity).
The zero & remains real and simple for any ¢ € (—1,0).

(4) Asymptotic expansions of the numbers g are found in [13]:

G =1 — (w/8k) + o(1/k), |gk| = €™* +o(1), (1.3)

where 7, is the double zero of 6(qy,.) and e™/? = 4.81477382. ... For k odd (respec-
tively, k even) 6(qg,.) has a local minimum (respectively, maximum) at g, and g
is the rightmost of the real negative zeros of 6(gx,.) (respectively, for k sufficiently
large, i is the second from the left of the real positive zeros of 6(gx,-)).

Remarks 1.4. (1) All coefficients in the series (1.1) are real. Hence a priori
spectral numbers are either real or they form complex conjugate pairs. It is proved
in [15] that there exists at least one such pair which equals 0.4353184958--- +
10.1230440086 . ... Numerical results suggest that one should expect there to be
infinitely-many such pairs.

(2) In any set of the form D, \ {0}, » € (0,1), the number of spectral values
of 0 is finite (because the spectrum is locally a codimension 1 analytic subset in
D4 \ {0}). For any spectral number ¢, the function 6(g, .) has finitely-many multiple
zeros, see [11]. The number ¢; = 0.3092... is the only spectral number of € in the
disk Do‘gl.

(3) For all spectral numbers ¢; € (0,1) and, for k sufficiently large, for all
spectral numbers g, € (—1,0), it is true that the function 6(g;,.), resp. 6(gx, .), has
exactly one double real zero while all its other real zeros are simple (see [9] and [13]).
It would be interesting to prove (or disprove) that for any spectral value (real or
complex) the partial theta function has just one double zero all its other zeros being
simple. If true, this would mean in particular (see Theorem 1.1) that S is globally
smooth and connected. If false, it would be of interest to describe the eventual
singularities of S.
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1.3. THE LIMIT DISTRIBUTION OF THE REAL ZEROS

In the present subsection we consider the case ¢ € R, i.e., ¢ € (=1,0) U (0, 1).

Notation 1.5. For ¢ € (—1,0)U(0, 1), given a finite interval J C R, we denote
by Z;(q) the number of zeros of 6(g,.) (counted with multiplicity) belonging to .J.
For g € (0,1) and a > €™, we set £,(q) := Z|_4,—e)(q). For g € (—=1,0) and a > em/2,
we set nq(q) 1= Z[_q,—¢r/2)(q) and pa(q) == Zjen/2 4)(q)-

Theorem 1.6. (1) For q € (0,1), one has Z|_c~ )(q) = o(1/(1 — q)).

(2) The set of zeros of 0(qx,.) (over all k € N*) is everywhere dense in (—oo, —e™].
One has lim,_,1- £,(q)(1 — q) = In(a/e™).

(3) For q € (—1,0), one has Zj_.x/2 5)(q) = o(1/(1 + q)).

(4) The set of zeros of 0(Gas—_1,.) (over all s € N*) is everywhere dense in (—oo, —e™/?].
One has lim, , 1+ nq(q)(1 + q) = In(a/e™/?) /2.

(5) For g € (—1,0), one has Zg c=/2)(q) = o(1/(1 + q)).

(6) The set of zeros of 0(Gas,.) (over all s € N*) is everywhere dense in [e™/?,00).
One has lim,_, 1+ pa(q)(1 + q) = In(a/e™/?)/2.

The theorem is proved in Section 3.

Remark 1.7. The quantity 1/a = lim. g+ ((In((a +€)/e™) — In(a/e™)/e) can
be interpreted as limit density of the real zeros of 6(q,.) as ¢ — 17 at the point
—a < —e™. Similarly for the quantity 1/(2a) at +a, a > ¢™/?, as ¢ — —1*. For
the rest of the real line the limit density is 0. Indeed, for ¢ € (0,1), there are
no nonnegative zeros of (q,.); for 0 < a < e™, see part (1) of Theorem 1.6. For
q € (—1,0), see parts (3) and (5) of Theorem 1.6.

2. PROOF OF THEOREM 1.1

2.1. SMOOTHNESS

We prove the smoothness first. If z” is a simple zero of 6(¢’,.), then
(00/02)(¢’, 2°)#0 hence
Grad(0)(¢*,2°) #0 (2.1)

and S is smooth at (¢”, 2”). The function 6 satisfies the following differential equation
(see (1.1)):

2¢(00/0q) = 2(0*/92?)(20). (2.2)
The right-hand side equals 22(90/9z) +22(9%0/922). If 2 is a double zero of §(¢’, .),

then
0(¢, ) = (00/02)(a", 2") = 0 # (%0/02)(d", ).
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One has neither ¢° = 0, because #(0,.) = 1 # 0, nor 2° = 0, because 6(q,0) = 1.
Hence

(00/09)(¢",2°) = (") /20°)(8%0/92")(",2") # 0.
Therefore one has (2.1), so S is smooth at (¢°, 2°).

2.2. SEPARATION IN MODULUS

For fixed ¢ € D \ {0}, we denote by Ci, k € N*, the circumference in the
z-space |z| = |g|*~'/2. When ¢ is close to 0, one can enumerate the zeros of 6,
because there exists exactly one zero such that &, ~ —g~* (see |9, Proposition 10]).
For 0 < |gq] < ¢p := 0.2078750206 . . ., one has

g 7FHY2 < g | < g 7R3, (2.3)

see [15, Lemma 1]|. In this sense we say that for ¢ € D, \ {0}, the zeros of 6 are
separated in modulus (that is, their moduli are separated by the circumferences Cy,).
We say that, for given g, strong separation of the zeros of 6 takes place for k > kg,
if for any k > ko, there exists exactly one zero & of 0 satisfying conditions (2.3).
Set ag := \/§/27r = 0.2756644477 . ... The following result can be found in [15].

Theorem 2.1. Forn > 5 and for |q| <1 —1/(agn), strong separation of the
zeros of 0 takes place for k > n.

Theorem 2.1 has several important corollaries:

i) For each path v C D1\{0} in the g-space which avoids the spectral numbers
of 8, one can define by continuity the zeros of € as functions of g as g varies
along 7. One can find k € N such that v CD;_1/(qor)- For n > k, the zero
&n is an analytic function in ¢ € Dy_1/(qok)- Thus the indices of the zeros
§n are meaningful for n > k and ¢ € Dy_1/(q0k)-

ii) Denote by I' the spectrum of 6. If v C D := Di_y/(aex) \ {T U {0}} is a
loop, then the zeros of § lying inside Cy might undergo a monodromy as q
varies along +, i.e., a permutation which depends on the class of homotopy
equivalence of v in D. Therefore it might not be possible to correctly define
the indices of these zeros for ¢ € D.

iii) For no ¢, € Dy \ {0} does a zero of 6 go to infinity as ¢ — g.. That is,
zeros are not born and do not disappear at infinity.

iv) For (0,1) > ¢ = §; € T, the function 6(g,.) has one double zero and
infinitely-many simple zeros, see part (3) of Remarks 1.4 and part (3) of
Remarks 1.2. The double zero is a Morse critical point for 8. Suppose that
v is a small loop in D; \ {0} circumventing G;. Then the two zeros £2;_1
and &»; of 6(q,.) which coalesce for ¢ = §; are exchanged as ¢ varies along
~v. For (-1,0)2q=qr €T, k =25 — 1 or 2s, where s > 1 is sufliciently
large, the same remark applies to the zeros £45_o and &4s or €451 and
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&45+1, see part (3) of Remarks 1.3. For the remaining values of k, if, say, p
spectral values g; coincide, then the function 6(g;, .) has p double real zeros
(its other real zeros are simple) and the monodromy defined by the class
of homotopy equivalence of v exchanges the zeros in p non-intersecting
couples of zeros (which are close to the double zeros of 6(g;, .)).

v) Theorem 2.1 implies that the monodromy around 0 € Dy is trivial.

2.3. CONNECTEDNESS OF S

When ¢ € D, \ {0}, the zeros {; can be considered as analytic functions in g¢.
We discuss the possible monodromies which they can undergo when the parameter
g runs along certain loops in D \ {0}. First of all we recall that for ¢ € (0, g;),
the zeros 0 > &a5_1 > £o; > &2541 > -+ - are simple, real negative and continuously
depending on ¢, see part (2) of Remarks 1.2; for ¢ = §;, the zeros &1 and &y;
coalesce.

Suppose that a € (0,co) and that C* C Dy \ {0} is a small circumference of
radius ¢ centered at the spectral number §;, see parts (1) and (2) of Remarks 1.2;
no spectral number other than ¢; belongs to the circumference C* or to its interior.
Define v; C Dy \ {0} as the path consisting of the segment o := [a,§; —¢] C R,
the circumference C* (which is run, say, counterclockwise) and the segment o_ :=
[G; — €,a]. Hence if one considers the analytic continuation of the function £2;_1
(resp. &2;) along the loop 7;, the result will be the function £y; (resp. £2,-1), see iv)
in Subsection 2.2. We denote this symbolically by v, : {&2;-1 ¢+ &25. If we need to
indicate only the image of £»;_1 we might write 7, : ;1 — &2;5.

Remark 2.2. For j > 1, the two segments o+ of the path 7; pass through
the spectral numbers §Gi,...,g;—1. If one insists the path ~; to bypass all spectral
numbers ¢;, then one should modify 7;. Namely, parts of the two segments o+ which
are segments of the form os :=[§s —¢’,¢s +¢'], 0 <&’ < e, 1 < s <j—1, should be
replaced by small half-circumferences with diameters o, which bypass the spectral
numbers ¢s from above or below.

Suppose that ¢ € (—1,0). We will make use of Remarks 1.3. We construct

a path J, consisting of a segment 7_ := [—a,g; +¢] C R, —cp < —a < 0 (¢ is
defined at the beginning of Subsection 2.2), a circumference C© C Dy \ {0} of radius
¢ centered at ¢; (and run, say, counterclockwise) and the segment 7 = [g; +¢, —a].

If g;, # Gj, then the spectral number ¢;, does not belong to C? or to its interior.

Suppose that j = 2s—1 (resp. j = 2s). If one considers the analytic continuation
of the functions 452 and &4 (resp. of &45—1 and &4541) along the loop d;, the result
will be that the functions €452 and &5 (resp. 451 and E4541) exchange their values,
see iv) in Subsection 2.2. We denote this symbolically by dos_1 : £45—2 > &4s OT
525 : 54571 AN £4s+1-

Remark 2.3. Similarly to what was done with the path v;, see Remark 2.2,
one can modify the path J; so that it should pass through no spectral value of §. We
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do not claim, however, that an equality of the form ¢;, = gj,, j1 # j2, does not take
place (this is not proved in [13]; see part (2) of Remarks 1.3). Nevertheless, even if
such an equality holds true, then it does not affect our reasoning, because when ¢
runs along C* close to the coinciding spectral numbers dj, and gj,, the exchange of
zeros &; which occurs concerns two couples of zeros with no zero in common.

By combining the monodromies defined by the paths 7; and J; one can obtain
any monodromy &, +— &,,. Indeed, denote by n; a half-circumference centered
at 0, of radius a, belonging to the upper half-plane (hence the segment [—a,a]
is its diameter) and run counterclockwise, by n_ the same half-circumference run
clockwise, by ;¢ the concatenation of the paths v; and 7, (defined for one and the
same value of a, ; is followed by ~,) and similarly for the loops (all with base point
a) Yjn+0sn—, N+-0sm—7;, etc. Thus for s > 1, one obtains the monodromies

Y2s—1 : Eas—3 <> {452,
Yos : §as—1 ¢ &as,
0251 : as—2 > &4,
025 €as—1 < asy1,
Yos—1M4+025— 11— : {453 > 4,
N402s—1M—"Y2s—1 : a5 +> §45-3,
V2s—1M4+025—1M—"Y2s : {453 > Eas—1,
V2s—174025— 10— V25N 0251 : §as—3 > Eusy1, ete.
This means that, for suitably chosen loops, the root £45_3 can be mapped by the
corresponding monodromies into any of the roots £45_2, 451, €45 O E4511. After
this one can repeat the reasoning with &4541 = &4(s41)—3 (i.e., one can shift the value
of s by 1) and so on.
Thus the subset S° of S on which all zeros of # are simple is connected. The

set S\ SY belongs to the topological closure of S (because the zeros of 6 depend
continuously on ¢), so S is connected. The theorem is proved.

3. PROOF OF THEOREM 1.6

Part (1). In the proof of parts (1) and (2) of the theorem, when considering the
values of ¢ from an interval of the form (g, gx+1), we take into account the first of
formulae (1.2), so as ¢ tends to 1~ (hence k tends to co) one has 1 — ¢ = O(1/k).
We prove first the following lemma.

Lemma 3.1.
(1) For every r € (0,1), there exists K, € N such that for every q € (0,r], one
has Z[—GW,O) (q) < K.

(2) When the zeros £a5—1 and &as are real (see part (2) of Remarks 1.2), they
belong to the interval (—q=2%, —q=2511).
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(3) For q € Gk, Gk+1), one has Z|_cx 0)(q) = o(k).

Proof. Part (1). It follows from part (4) of Remarks 1.2 that for ¢ > 0 small
enough, all zeros &; of 6(q,.) are real and the zeros £25_1 and &, belong to the
interval (—q=2%, —q~2°*1), so they are smaller than —r~2571. And in the same way,
for any ¢q € (0,1), the zeros 351 and £a5, when they are real, belong to the interval
(—q~2%%, —q~25*1) (which proves part (2)).

When ¢ increases and becomes equal to s, the zeros £5_1 and &35 coalesce.
For ¢ > §s, they form a complex conjugate pair, see part (2) of Remarks 1.2. For
q € (0,r] and 2s —1 > 7/In(1/r), i.e., ¢~ 251 > r=25FL > ™ hence —q~ 21 < —e™,
the zero ;, j > 2s—1, is either smaller than —e™ or it has given birth (together with
&j—1 or &1 depending on the parity of j) to a complex conjugate pair. Therefore
Z_er 0)(q) < [m/In(1/r)] + 1 and one can set K, := [r/In(1/7)] + 1.

Part (3). Suppose first that ¢ = §,. The interval I := [—e™, §;] contains all real
zeros of 6(gg, .) belonging to the interval J := [—e™,0). The rightmost of these zeros
which is in I is the double zero g5 which is the result of the confluence of £;_1 and
ok, see parts (2) and (3) of Remarks 1.2. Denote by sg the smallest of the numbers
s for which —(g,) ™27 < —e™. Hence there are not more than

to312(5071)72(]{3*1)‘1*1:2(807]{3)4’1

real zeros of 0(gg,.) in I (counted with multiplicity), see the proof of part (1) of the
present lemma. One has ¢, =1 — 7/2k + o(1/k), see (1.2). Therefore

—(Gp) 720 < —e™ & (=250+1)In(Gr) > 7 & 250—1 > 7/(In(1/G)) = 2k+o(k).

On the other hand, it follows from the definition of sq that 2so—3 < w/(In(1/gx)) =
2k + o(k). Thus sp = k + o(k) and ¢ty = o(k). Suppose now that ¢ € (Gx, qr+1)-
Hence when one counts the real zeros of 6(g,.) in J, one should take into account
that:

1) The double root gy, gives birth to a complex conjugate pair of zeros, i.e., two
real zeros are lost; for ¢ € (G, Gr+1), these are the only real zeros that are
lost, see part (2) of Remarks 1.2;

2) Denote by s.(q) the smallest of the numbers s for which one has —¢=2¢! <
—e™ (hence s, () = sg). For fixed s, the number —q¢~2**! increases with g,
50 s4(q) also increases, i.e., new real zeros might enter the interval J from
the left.

Thus for ¢ € (Gk,Gk+1), one has Z;(q) < t1 + 2, where ¢; is the quantity tg
defined for k + 1 instead of k, hence Z;(q) = o(k). Indeed, the numbers —g—25+1
increase with q. We cannot claim that if for s = s,(q) — 1, one has —q=25*1 > —e™,
then the zeros €951 and &»5 are larger or smaller than —e™; this is why 2 is added

to tl. O

The proof of part (1) of Theorem 1.6 results from part (3) of Lemma 3.1.
Indeed, one has k = O(1/(1 — §x)), see (1.2). O
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Part (2). The function 6 satisfies the following functional equation
0(g,x) =1+ qx6(q, qx). (3.1)

For ¢ = g, € T', we denote by -+ < x5 < 1 < zg < 0 the numbers zy = ¥,
Ts = Ts—1/qk, s € N (ie., s = G /(qx)®). Hence 0(Gg,x0) = 0, 0(qx,z1) = 1+
200(Gk, xo) =1 (see (3.1)), and for s > 1,

(i) if O(Gx,zs) < 0, then 6(Gr, xsy1) = 1+ 2:0(Gr, xs) > 1;

(ii) if O(gk,xs) > 1 (this is the case for s = 1), then for k sufficiently large,
one has z, < —e™/2 (see (1.2)), Gp € (0.3,1) (see parts (1) and (2) of
Remarks 1.2) hence gz, < —0.3 X €™/2 < —3 and

9<(j}g,xs+1) =1+ cjkaG((jk,xs) <1-3=-2<0.

Thus for k sufficiently large, we have (g, zs) < 0 for s > 2 even and 0(gi, ) >
0 for s > 3 odd. Hence each interval (xs11,%s) contains a zero of 6. For a fixed
interval [—a, —e™], consider the intervals (zs41,%s) which are its subintervals. As
k — oo (hence G — 17) the lengths of these intervals tend uniformly to 0. Indeed,
the largest of them is the last one and its length is < (a—aq) = (1—¢)a. Therefore for
any a > e”, the set of zeros of 6(gx, .) (over all k sufficiently large) is everywhere dense
in the interval [—a, —e™]. This proves the first claim of part (2) of the theorem. To
prove the second one we first consider the case ¢ = ¢ € I'. We define the quantities
ug, u1 € N by the conditions

1961/0" = || < €7 < |wugr] = |Gl/q"*,

and

Ul

0kl/0" = |2 | < @ < |2 ga] = [Gxl /g

Hence (remember that Ing < 0)
(up +1)Ing < In(|gx|/e™) <wuplng and (w1 +1)Ing < In(|gx|/a) <wuilng

which, taking into account that as ¢ — 17, implies Ing =In(14+(¢—1)) = (¢— 1)+
o(q¢ — 1), one has

uo(q —1) = In(|g|/e") +o(g = 1) and wi(g —1) = In([gk[/a) + o(q = 1).
It is clear that £,(q) = u; — ug + O(1). Thus
Ca(q)(1 = q) = (ur —uo)(1 = ¢) + O(1)(1 — ¢) = In(a/e™) + O(1 - q).

Now suppose that ¢ € (Gk, @k+1). Our reasoning is similar to the one in the proof of
Lemma 3.1. The double zero ;. gives birth to a complex conjugate pair, so two real
zeros are lost. If for ¢ = ¢, € (Gk, Grs1), the interval (—q; 2%, —g2°1) is a subset of
the interval [—a,0), then the same is true for ¢ = gx41. Thus

Ca(qs) < Z1—a,0)(Grs1) + 2. (3.2)
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One adds 2 in order to take into account the two zeros of 0(Gx+1,.) of the not more
than one interval (—q; 2%, —¢;2**1) which belongs partially, but not completely, to
[—a,0). The number 2 of lost zeros and the number 2 in (3.2) are o(1/(1 — ¢x)).
According to part (1) of the theorem

Z1—a,0)(Gk+1) = La(Grs1) +o(1/(1 — qu)),

and for ¢ = Gr41, it was shown that (1 — Gg41)0a(qr+1) = In(a/e™) + o(1), so
La(qs) = La(Gr1) +0(1/(1 — q+)) and (1 — g« )la(g«) = In(a/e™) + o(1) which proves
part (2) of the theorem. O

Part (3). We need the following lemma.
Lemma 3.2. Suppose that ¢ € (—1,0) and set p := |q|. Then:

(1) For p > 0 small enough, one has

543 € (_p748717 _p748+1)a £4s+2 € (—974573, _P74571),

3.3
€4s—1 € (p—4s+2,p—4s)7 and 545-&-1 € (p_457p_4s_2)' ( )

Moreover, the mentioned zeros &; are the only zeros of 6(q, .) in the indicated
intervals.

(2) For p € (0,1), one has 0(q, —q~2F) = 0(q, —p~2%) € (0, p?* + p*F+1).

(3) For q € [G2s—1,0), the zeros {45—2 and &4 belong to the interval I® :=
(_p—4s _p—4s+2).

Proof. Part (1). We consider the following four series:

oo
0° = 0(—p,—p P =D dj,  dj = (F1)IUFD2pm (T DIHIUFIE,

j=0
o Ly . Ly

OV = 0(—p,—p™ 1) =D by, hy = (=1)/0FEpmEeADIHGED,
7=0

07 = 0(p g =3y = (LU ang

=0
0% = 0(—p, p2t2) = Z/\j7 A= (,1)j(j+1)/2p*(45*2)j+j(j+1)/2'
=0

For the first series, its terms of largest modulus are d4s_1 and dgs_o; one has d4s_1 =
dis_o = —p_852+63_1. The moduli of the terms decrease rapidly as j > 4s — 1
increases or as j < 4s — 2 decreases. In this series the sign (—1)3'(343)/2 is positive
for j = 4v and j = 4v + 1 and negative for j = 4v + 2 and j = 4v + 3. Hence for
p small enough, the sign of #° is the same as the one of d4s_1 + d4s_2, i.e., one has

0° < 0.
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For the other three series the largest modulus terms are respectively hys =
hasis = p 8572 > 0, ryey = ras = p 82 > 0 and Mgy g = Mo =
—10’852“05*3 < 0, so in the same way ¥ > 0, ¥ > 0 and 6* < 0. Hence
there is at least one zero of § in the interval (—p~ %=1, —p=4+1), In fact, there is
exactly one zero, and this is £,. Indeed, for p small enough this is true, because
one has &, ~ —¢g™™, see [12] (the zeros £45_1 and £4511 are positive, so only E44
belongs to (—p~ 4571, —p=4s+1)). For any p € (0, 1), this follows from the fact that
as p increases, new complex conjugate pairs are born, but the inverse does not take
place, see part (2) of Remarks 1.2. In the same way one proves the rest of part (1)
of the lemma.

Part (2). One checks directly that

f(q, _p—%) _ Zq3(3+1)/2 —2k Z J(J+3 /2 —2kJ+J(J+1)/2
j=0 j=0

(_1)j(j+3)/2p—2kj+j(j+1)/2.

o

Il
LS

j=4k

The last of these equalities follows from the fact that the first 4%k terms of the series
cancel (the first with the (4k)th, the second with the (4k — 1)st, etc.). The signs of
the terms of the last of these series are +, 4+, —, —, +, 4+, —, —, - - - and the exponents
—2kj + j(j + 1)/2 are increasing for 7 > 4k. Hence the series is the sum of two
Leibniz series with positive first terms, so its sum is positive and not larger than
the sum of the first terms of these two series. The latter sum is p?* 4 p***1 which
proves part (2).

Part (3). For p sufficiently small, the zeros €45_2 and &45 belong to I®. Indeed,
by part (2) of the present lemma, at the endpoints of I*® the function 6(q, .) is positive
while it is negative at —p~45T! (we showed already that §° < 0). As 6(q,.) is positive
at the endpoints for any g € (—1,0), the zeros £45_2 and &4, belong to I* exactly for
q € [G2s—1,0), see part (3) of Remarks 1.3. This proves part (3) of Lemma 3.2. O

Suppose first that ¢ = ¢2,—1, ¥ € N. The rightmost of the negative zeros of
0(q2v—1,.) is the double zero ga,—1 = &4p—2 = &1, see part (3) of Remarks 1.3.
Denote by s = s7(gas_1) the largest of the numbers s € N for which one has
—(Gay—1)"* > —€™/2. Hence the zero &+ is in the interval [—e™/2,0) and the zero
a(st41) is to its left, i.e., outside it. Thus the number N(Gy—1) := Z)_exr2,0y(G2v—1)
(the zeros in [—e™/2,0) have only even indices 4, see Remarks 1.3) is

N(Q%—l) = (43Jr —4v+2)/24u= Q(ST —v)+1+u,

where u < 1 (the presence of the number u reflects the fact that we do not say
whether the zero &4+, 5 belongs or not to the interval [—e™/2,0)). The conditions

— — ST ‘n' S
—(Gav—1) AT /2 —(Gov—1)" 4(s")
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are equivalent to —4(s" + 1)In|Go,_1| > 7/2 > —4s" In |G, 1] or to

4sT+ 1) > (7/2)/(I0(1/|g2v 1) = (7/2)/(In(1 + 7/ (8(2 = 1)) + 0(1/v)))
=4v+0(1),

4s' < (7/2)/((1/|G2s-11)),
see the first of formulae (1.3). Thus
st =v4+0(1) and N(Go,_1) = O(1). (3.4)

One can also write N(Ga,—1) = 0o(v) = 0(1/(1 4 Gay—1)). Hence N(Gay11) = o(v).
Now suppose that ¢ € (g2y+1,Gor—1). When counting the zeros &; in the interval
[—e™/2,0) one takes into account that the double zero &y, o = &4, is lost (it gives
birth to a complex conjugate pair). The numbers —p~** (which are left endpoints
of intervals I*) increase, so new zeros ¢; might enter the interval [—e™/2,0) from
the left. The number of such intervals I* which belong entirely to [—e™2,0) is not
greater than their number for ¢ = G2,41. There is at most one interval I*® which
belongs only partially to [—e™2,0), so ignoring it means not counting at most 2
zeros & € [—e™/?,0). Therefore N(q) = N(Gay11) + O(1) = o(v) = o(1/(1 + q)).
Part (3) of Theorem 1.6 is proved. O

Part (4). Consider an interval of the form [—a, —e™/?] and its subinterval (—a*, —a®),
e™/? < a® <a* <a. ForveN sufficiently large, the double zero o, 1 = €42 =
€4, of 0(G2,_1,.) is to the right of —a” (see the second of formulae (1.3)) and there
exists an interval of the form I® (see Lemma 3.2) such that I®* C (—a*, —a®). In-
deed, the length of I*® equals p~%*(1 — p?). For each s sufficiently large, one can

choose p € (0,1) such that
1 (—at, (—a — a®)/2). (3.5)

If one chooses a larger s, then one can achieve condition 3.5 by choosing p closer
to 1. This means that, as p~** remains bounded, the length of I*® tends to 0 and
one can attain both conditions (3.5) and —p~4t2 € (—a*, —a®). Thus 452, &4s €
(—a*,—a®), see part (3) of Lemma 3.2. This proves the first claim of part (4) of
Theorem 1.6.

To prove the second claim, for ¢* € (—1,0), we denote by s*(¢*) the value of s €
N corresponding to the leftmost of the numbers —(g*)~** belonging to the interval
[~a,0). In the proof of part (4) of Theorem 1.6 we set p := |¢*|, so —(g*)~**
—p~4s. Hence

lim (—p @) = —q, —p @) 5> ¢ and  —p @D < g
p—1—
From the latter two inequalities, having in mind that In(1/p) = (1 — p) + o(1 — p),
one gets
s*(¢") ~ (Ina)/(4(1 = p)). (3.6)
Now we partition the zeros of 6(g*,.) with negative real parts in several sets (we
remind that there are no zeros of 6(¢*,.) on the imaginary axis for any ¢* € (—1,0),

see [106]):
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1) The set Sy of zeros &; belonging to the intervals I® with s > s*(¢*) + 2.
These zeros (when considered as depending continuously on ¢ € [¢*,0)) are
real and do not belong to the interval [—a,0) for any ¢ € [¢*,0).

2) The set Sy of the two zeros of the interval I*® with s = s(¢*) + 1.

3) The set Sk of the other real negative zeros of 6(¢*,.). We subdivide this set
into Sg([—a, —e™/?]) and Sg((—e™2,0)) of zeros belonging to the respective
intervals.

4) The set Sy of the complex conjugate pairs of zeros of 6(g*,.) which have
negative real parts. For ¢* € (2,41, G2v—1), their number is v. For ¢* < 0
close to zero, the zeros of the set Sy are real and belong to intervals I°®, and
as ¢* decreases, they form complex conjugate pairs, see Remarks 1.3.

By abuse of notation we denote by the same symbols sets (e.g. Sy, Sg, etc.) and
the number of zeros of 6 which they contain. We remind that the numbers n,(¢*)
and s'(¢*) are defined in Notation 1.5 and in the proof of part (3) of the present
theorem respectively; the number s'(¢*) satisfies the first of conditions (3.4). Hence
for ¢* € (Gav+1,G2v—1), one has

na(q*) = SR([_G7 _eW/Q]) + A, (3'7)

where A = 0, 1 or 2 is the number of zeros of the set Sy which belong to the interval
[~a, —e™/?]. On the other hand,

Sr([—a,—e™?]) = 25*(¢") — Sr((—€™/%,0)) — 5. (3.8)

Recall that S; = 2v. By the first of equations (3.4) one has v = s'(¢*) + O(1),
and by part (3) of the present theorem one has Sg((—e™?,0)) = o(v). That’s why
equations (3.7) and (3.8) imply

na(q*) = 25" (¢*) — 25" (¢") + o(v). (3.9)

The factor 2 corresponds to the fact that there are two zeros &; in the interval I°.
One can apply formula (3.6) with a = €™/2 to obtain sf(¢*) ~ In(e™?)/(4(1 — p))
and from (3.9) one concludes that n4(¢*) = (In(a/e™?))/(2(1 — p)) + o(1/(1 — p))
from which part (4) of the theorem follows. O

Parts (5) and (6). We begin by proving the first claim of part (6); in this part of
the proof we write ¢ instead of gos. For any ¢ > 0, there exists s¥ € N such that
for s > sV, one has as € (e™/? — ¢, €™/? + ¢), see formulae (1.3). We assume that
£ < 1/2,50 §jzs > 3. For s > sV, we set 2; := as/¢’, j € N. One has (¢, z) = 0,
Zom > 0, Tami1 < 0 and |z;| > 3. Therefore

0(q,z1) = 1+ 206(q,20) =1 >0,

0(q,x2) =1+ 210(q, 1) =1+ 21 (1 + 200(q, 70)) <1 —3=—-2 <0,
0(q,x3) =1+ 220(q, 22) < —2 <0 and

0(q,z4) =1+ x30(q,23) >2>0
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In the same way one shows that 0(q, z4my2) < —2 < 0 and (¢, Tgm4a) > 2 > 0.
Hence at least one zero of (g, .) belongs to the interval (24,42, Z4m+4). The longest
of these intervals for which x4y,10 € [e’r/2 + €, a] is the last one, i.e., the one with
largest value of m. Its length is < a((1/¢?) — 1) which quantity tends to 0 as
q — —17 (i.e., as s — 00). Hence the zeros of 6(q,.) are everywhere dense in the
interval [e™/? 4 ¢, a], and as € > 0 is arbitrary, they are everywhere dense in [e™/2, a).
This proves the first claim of part (6).

To prove part (5) we observe that for x € (§4s44,&4s+2), one has 6(g,z) < 0
and according to (3.1), 8(q, qz) = 6(q,z)/(qz) —1/(qx) < 0 (because gz > 0). Hence
(¢€4s5+2, G€4s+4) C (E4s+1,Eas+3), see [13, Fig. 3| (in [13] the latter inclusion is proved
only for ¢ € [—0.108,0); for any ¢ € (—1,0), provided that the zeros 4511, as+2,
Eas+3 and E4414 are real, it follows by continuity). Thus

Z0,e7/2)(9) = Zj—en/27191,0)(@) + B = Z_ex/2,0)(@) + Z—enr2)1q),—enr2)(9) + B

where B = —1, 0 or 1 indicates that the count might not concern the leftmost
zero in [—e™2/|q|,0) and/or the rightmost zero in (0, e™/2]. By parts (3) and (4) of
the present theorem each of the summands Z|_ ~/2 o)(q) and Z[_.=/2 4| —en/2)(q) is
0(1/(1+ ¢)) which proves part (5). In the same way one proves the second claim of
part (6) as well:

Ziens2,0)(@) = Zi—aflg,—em/21q) (@) + B = Z_a)1q),—en/2)(@) = Z(—enr2/1q),—enr2) (@) + B,

where Z(,eﬂ/z/‘q",ew/z] (q) = 0(1/(1 + Q)) and

Z—ajjql—em21(0) = (W((a/|q])/€7/?)/2) /(1+q) = (Wn(a/e™?)/2) [ (1+q)+o(1/(1+q)).

The theorem is proved. O
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