
ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Том 112, 2025

ANNUAL OF SOFIA UNIVERSITY “ST. KLIMENT OHRIDSKI”

FACULTY OF MATHEMATICS AND INFORMATICS

Volume 112, 2025

ON THE CONNECTION BETWEEN FIXED POINT THEOREMS
ON METRIC SPACES WITH GRAPHS AND P SETS

VALENTIN GEORGIEV, ATANAS ILCHEV and BOYAN ZLATANOV

The Banach contraction principle is one of the most famous and applied results in
recent mathematical history. Due to its utility, plenty of generalizations have been
established. One of them considers a contraction principle on metric spaces with graphs,
while another confines the contraction principle to pairs of elements inside a P set,
a generalization of partial orders. In this work we examine the similarities of both
approaches, establishing the connection between theorems of metric spaces with graphs
and metric spaces with P sets and restating results from one approach to the other and
vice versa.
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1. Introduction

The Banach Contraction Principle [1] has long served as a cornerstone in fixed
point theory, guaranteeing the existence and uniqueness of fixed points for certain
classes of self-maps defined on complete metric spaces. Over time, considerable effort
has been invested in extending and generalizing this principle to encompass broader
settings. Two notable extensions focus on restricting the contraction condition to
certain elements of the metric space. One of these involves the study of mappings
defined on metric spaces endowed with a directed graph, where the notion of a 𝐺-
contraction is used to yield refined fixed point results. The other is concerned with
P sets, a binary relation structure allowing the contraction condition to be imposed
in a more flexible and generalized manner.

Studies of fixed points in graph-based frameworks demonstrate that adding a
directed graph 𝐺 to a metric space (𝑋, 𝜌) enriches the classical theory. This approach
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leads to fixed point theorems that unify and extend numerous known results obtained
for mappings defined on partially ordered sets, cone metric spaces, or ordered normed
spaces [7,9,11,14]. Such graph-based results have broadened the applicability of the
Banach Contraction Principle, enabling one to treat nonlinear integral equations,
coupled fixed points, and iterative approximation in function spaces within a unified
setting.

Simultaneously, the introduction of P sets has provided a versatile tool to han-
dle fixed point problems where the contraction condition may vary depending on
the points under consideration. These structures are inspired by results in partially
ordered metric spaces, first introduced in [17] and later popularized in [2, 15]. By
abstracting the partial order as a P set, researchers have proven natural formulation
of contractive iterates, generalizing classical assumptions and linking them to itera-
tive processes often seen in nonlinear analysis [3–5,12,13]. This setting encapsulates
a wide spectrum of known contraction-type maps, from single-valued mappings on
metric spaces to more sophisticated structures that underlie iterative approximation
schemes. A deep observation in [12] makes a connection between fixed points and
coupled fixed points, utilizing P sets.

Although these two directions (graph-based fixed point theory and P-based
approaches) originate from different motivations and employ distinct technical tools,
they share a profound conceptual similarity. Both paradigms embed the classical
contraction condition into a richer structural environment, capitalizing on additional
relational properties to produce more general fixed point results. The key question
this paper addresses is how these two seemingly different approaches relate to each
other. We aim to demonstrate that many results obtained in the context of 𝐺-
contractions have direct analogues within the P set framework, and vice versa.

By examining the conditions and conclusions of fixed point theorems in both
settings, we establish a correspondence between the assumptions on the graph 𝐺 and
those on the P sets. This correspondence allows us to transfer results, insights, and
techniques from one realm to the other, thereby yielding a unified perspective on
fixed point theory that transcends the particularities of the chosen framework. Such
a unification not only streamlines the existing theory but also opens new avenues
for research, enabling known fixed point principles to be translated and applied in
broader contexts.

In what follows, we present a reformulation of several theorems, translating from
𝐺-contractions to P sets and the other way around, highlighting their equivalences
in terms of existence, uniqueness, and ordered structural properties of fixed points.
The results herein show that the interplay between metric completeness, contractive
behavior, and additional relational structures, be it a directed graph or a binary
relation, gives rise to a more comprehensive and robust theory of fixed points.

2. Preliminaries

In what follows, we will use the notation N for the natural numbers (N =
1, 2, . . . ), Z for the integers, Q for the rational numbers, R for the reals, (𝑋, 𝜌) for
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a metric space with a metric 𝜌, 𝐺 for a graph a metric space is endowed with, 𝑓 for
a mapping from 𝑋 to 𝑋 when discussing metric spaces endowed with a graph, 𝑇
for a mapping from 𝑋 to 𝑋 when discussing metric spaces with a P set and 𝐹 for
mappings from 𝑋 ×𝑋 to 𝑋 for both metric spaces endowed with a graph and those
with a P set.

2.1. Metric spaces endowed with a graph

In this subsection we follow the exposition in [7].

Definition 2.1 ([12]). Let (𝑋, 𝜌) be a metric space. Two sequences 𝑥𝑛, 𝑦𝑛 ∈ 𝑋,
𝑛 ∈ N are said to be Cauchy equivalent if lim𝑛→∞ 𝜌(𝑥𝑛, 𝑦𝑛) = 0.

Whenever we discuss a metric space (𝑋, 𝜌) endowed with a graph, it will be
understood that 𝐺 is a weighted directed graph with a set of vertices 𝑉 (𝐺) = 𝑋
and an edge set 𝐸(𝐺) ⊆ 𝑋 ×𝑋, where the weights of the edges will be calculated
as the distance between their endpoints. We will also require some general notions
from graph theory.

By 𝐺−1 we will denote the conversion of 𝐺, i.e., 𝑉 (𝐺−1) = 𝑉 (𝐺) and

𝐸(𝐺−1) = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : (𝑦, 𝑥) ∈ 𝐸(𝐺)}.

Further, ̃︀𝐺 will be the undirected graph obtained from 𝐺, that is, 𝑉 ( ̃︀𝐺) = 𝑉 (𝐺)
and 𝐸( ̃︀𝐺) = 𝐸(𝐺) ∪ 𝐸(𝐺−1). A subgraph of 𝐺 is called a graph (𝑉 ′, 𝐸′) such that
𝑉 ′ ⊆ 𝑉 (𝐺), 𝐸′ ⊆ 𝐸(𝐺) and for each edge (𝑥, 𝑦) ∈ 𝐸′, it holds that 𝑥, 𝑦 ∈ 𝑉 ′.

If 𝑥 and 𝑦 are vertices of 𝐺, then a path of length 𝑛, 𝑛 ∈ N∪ {0} is a sequence
of vertices {𝑥𝑖}𝑛𝑖=0 such that

𝑥0 = 𝑥, 𝑥𝑛 = 𝑦, (𝑥𝑖−1, 𝑥𝑖) ∈ 𝐸(𝐺) for 𝑖 = 1, 2, . . . , 𝑛.

A graph is said to be connected if there is a path between any two vertices. Given
that ̃︀𝐺 is connected, 𝐺 is weakly connected. If the edge set 𝐸(𝐺) of a graph 𝐺 is
symmetric, then the component of 𝐺 containing a vertex 𝑥 is defined as the subgraph
𝐺𝑥 that includes all vertices and edges that lie on a path starting from 𝑥. By [𝑥]𝐺
we will denote the equivalence class induced by the relation 𝑅 defined on 𝑉 (𝐺) as

𝑦𝑅𝑧 if there is a path in 𝐺 from 𝑦 to 𝑧.

It follows that 𝑉 (𝐺𝑥) = [𝑥]𝐺. Let us also point out that ̃︀𝐺 clearly has a symmetric
edge set.

Definition 2.2 ([7]). Let (𝑋, 𝜌) be a metric space endowed with a graph 𝐺. We
say that a mapping 𝑓 : 𝑋 → 𝑋 is a Banach 𝐺-contraction or simply 𝐺-contraction
if 𝑓 preserves edges of 𝐺, i.e.,

for all 𝑥, 𝑦 ∈ 𝑋((𝑥, 𝑦) ∈ 𝐸(𝐺) ⇒ (𝑓𝑥, 𝑓𝑦) ∈ 𝐸(𝐺)),

and 𝑓 decreases weights of edges of 𝐺 in the following way: there exists 𝛼 ∈ (0, 1)
such that for all 𝑥, 𝑦 ∈ 𝑋

((𝑥, 𝑦) ∈ 𝐸(𝐺) ⇒ 𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝜌(𝑥, 𝑦)).
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Let us recollect that the self-map 𝑓 is said to be a Picard operator (PO) if for
every 𝑥 ∈ 𝑋, we have that lim𝑛→∞ 𝑓𝑛(𝑥) = 𝑥*, where 𝑥* ∈ 𝑋 is the unique fixed
point of the operator. A weaker notion is that of a weak Picard operator, that is,
for the mapping 𝑓 it holds that lim𝑛→∞ 𝑓𝑛(𝑥) is convergent for all 𝑥 ∈ 𝑋 to a fixed
point of 𝑓 that may not be unique.

For the following theorem to hold, the assumption that (𝑥, 𝑥) ∈ 𝐸(𝐺) for all
𝑥 ∈ 𝑋 is made.

Theorem 2.3 ([7]). Let (𝑋, 𝜌) be a complete metric space and 𝐺 be a directed
graph on 𝑋. Assume that (𝑋, 𝜌,𝐺) satisfies the following property :

For any sequence {𝑥𝑛}𝑛∈N ⊆ 𝑋, if lim
𝑛→∞

𝑥𝑛 = 𝑥 and (𝑥𝑛, 𝑥𝑛+1) ∈ 𝐸(𝐺) for all 𝑛,

then there exists a subsequence {𝑥𝑛𝑘
}𝑘∈N such that (𝑥𝑛𝑘

, 𝑥) ∈ 𝐸(𝐺) for all 𝑘.

Let 𝑓 : 𝑋 → 𝑋 be a 𝐺-contraction and define

𝑋𝑓 := {𝑥 ∈ 𝑋 : (𝑥, 𝑓(𝑥)) ∈ 𝐸(𝐺)}.

Then the following hold :

(1) card(Fix(𝑓)) = card
(︀
{[𝑥] ̃︀𝐺 : 𝑥 ∈ 𝑋𝑓}

)︀
.

(2) Fix(𝑓) ̸= ∅ ⇐⇒ 𝑋𝑓 ̸= ∅.

(3) 𝑓 has a unique fixed point if and only if there exists 𝑥0 ∈ 𝑋𝑓 such that
𝑋𝑓 ⊆ [𝑥0] ̃︀𝐺.

(4) For every 𝑥 ∈ 𝑋𝑓 , the restriction 𝑓 |[𝑥] ̃︀𝐺 is PO (Picard operator).

(5) If 𝑋𝑓 ̸= ∅ and 𝐺 is weakly connected, then 𝑓 is PO.

(6) If 𝑋 ′ =
⋃︀

𝑥∈𝑋𝑓
[𝑥] ̃︀𝐺, then 𝑓 |𝑋′ is WPO (Weak Picard operator).

(7) If 𝑓 ⊆ 𝐸(𝐺), then 𝑓 is WPO.

2.2. Metric spaces endowed with a P set

In order to state a part of the results, proven in the context of metric spaces
with a P set, the following definitions are oftentimes used, following the exposition
in [12,13].

Definition 2.4 ([13]). Let 𝑋 be a non-empty set, P ⊆ 𝑋×𝑋 and 𝑇 : 𝑋 → 𝑋 be
a map. We say that P is 𝑇 -closed if whenever (𝑥, 𝑦) ∈ P, it follows that (𝑇𝑥, 𝑇𝑦) ∈ P.

Next, we will present some examples of 𝑇 -closed P sets.

Example 2.5 ([12]). Let (𝑋, 𝜌,≼) be a partially ordered metric space. Let the
mapping 𝑇 : 𝑋 → 𝑋 be an increasing function, i.e., 𝑇𝑥 ≼ 𝑇𝑦, provided that 𝑥 ≼ 𝑦.
Then the set P = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑥 ≼ 𝑦} is 𝑇 -closed.
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Example 2.6 ([12]). Let (𝑋, 𝜌,≼) be a partially ordered metric space. For the
mapping 𝑇 : 𝑋 → 𝑋 let 𝑇𝑥 be comparable with 𝑇𝑦, i.e., 𝑇𝑥 ≍ 𝑇𝑦. Then the set
P = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑥 ≍ 𝑦} is 𝑇 -closed.

Example 2.7. Let us consider R with the usual metric. For 𝑇𝑥 = 𝑥2, we have
that the set P = {(𝑥, 𝑦) ∈ R× R : 𝑥, 𝑦 ∈ Q} is 𝑇 -closed.

Definition 2.8. ([13]) Let (𝑋, 𝜌) be a metric space and P ⊆ 𝑋×𝑋. The triple
(𝑋, 𝜌,P) is said to be:

(a) i-P-regular if for any sequence {𝑥𝑛}𝑛∈N converging to 𝑥, such that for all 𝑛
(𝑥𝑛, 𝑥𝑛+1) ∈ P, there holds (𝑥𝑛, 𝑥) ∈ P for all 𝑛.

(b) d-P-regular if for any sequence {𝑥𝑛}𝑛∈N converging to 𝑥, such that for all
𝑛 (𝑥𝑛+1, 𝑥𝑛) ∈ P, there holds (𝑥, 𝑥𝑛) ∈ P for all 𝑛.

Definition 2.9 ([10]). Let 𝑋 and 𝑌 be topological spaces. The graph of a
map 𝑇 : 𝑋 → 𝑌 is the set {(𝑥, 𝑦) ∈ 𝑋×𝑌 : 𝑦 = 𝑇 (𝑥)}. It is said that 𝑇 has a closed
graph if its graph is a closed subset of 𝑋 × 𝑌 endowed with the product topology.

We will also use the following notation – 𝑇 ⊂ P if from 𝑥 ∈ 𝑋 it follows that
(𝑥, 𝑇𝑥) ∈ P.

Definition 2.10. ([5]) We say P has the transitive property on a set 𝑋 if for
any 𝑥, 𝑦, 𝑧 ∈ 𝑋, whenever (𝑥, 𝑦) ∈ P and (𝑦, 𝑧) ∈ P, it follows that (𝑥, 𝑧) ∈ P.

The next theorem is a generalization of the results for mappings with a con-
tractive iterate at a point, first considered in [16] and later developed in [5, 6, 8].

Theorem 2.11 ([5]). Let (𝑋, 𝜌) be a complete metric space, P ⊂ 𝑋 × 𝑋,
𝑇 : 𝑋 → 𝑋 be a map and there hold

(i) P is 𝑇 -closed and has the transitive property;

(ii) 𝑇 either has a closed graph or the triple (𝑋, 𝜌,P) is i-P-regular;

(iii) there exists 𝑥0 ∈ 𝑋 such that (𝑥0, 𝑇𝑥0) ∈ P;

(iv) there exists 𝛼 ∈ [0, 1) so that for any 𝑥 ∈ 𝑋 there is 𝑛(𝑥) ∈ N, such that
for all (𝑥, 𝑦) ∈ P it holds that

𝜌(𝑇𝑛(𝑥)(𝑥), 𝑇𝑛(𝑥)(𝑦)) ≤ 𝛼𝜌(𝑥, 𝑦).

Then

(a) Fix(𝑓) ̸= ∅ and for any arbitrarily chosen 𝑥0 ∈ 𝑋, such that (𝑥0, 𝑇𝑥0) ∈ P
the iterated sequence 𝑥𝑛 = 𝑇𝑛𝑥0 converges to an element 𝑥* ∈ Fix(𝑇 );

(b) For any 𝑥 ∈ 𝑋 and 𝑥0 so that (𝑥0, 𝑇𝑥0) ∈ P, satisfying (𝑥0, 𝑥) ∈ P or
(𝑥, 𝑥0) ∈ P, the sequences 𝑥𝑛 = 𝑇𝑛(𝑥0) and 𝑢𝑛 = 𝑇𝑛(𝑥) are Cauchy equiv-
alent and hence 𝑢𝑛 converges to 𝑥* ∈ Fix(𝑓), where 𝑥* = lim𝑛→∞ 𝑇𝑛𝑥0;
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(c) If 𝑦* ∈ Fix(𝑇 ) and either (𝑥0, 𝑦
*) ∈ P or (𝑦*, 𝑥0) ∈ P or there is 𝑧 ∈ 𝑋 so

that either (𝑥0, 𝑧), (𝑦
*, 𝑧) ∈ P or (𝑧, 𝑥0), (𝑧, 𝑦

*) ∈ P, then 𝑦* = 𝑥*;

(d) If in addition we suppose that for every 𝑥, 𝑦 ∈ 𝑋 such that neither (𝑥, 𝑦) ∈ P
nor (𝑦, 𝑥) ∈ P there is 𝑧 ∈ 𝑋 so that (𝑥, 𝑧), (𝑦, 𝑧) ∈ P or (𝑧, 𝑥), (𝑧, 𝑦) ∈ P,
then Fix(𝑇 ) = {𝑥*}.

Proposition 2.12 ([5]). Given the conditions of Theorem 2.11, we have that
any two sequences {𝑇𝑛𝑢0}∞𝑛=0 and {𝑇𝑛𝑣0}∞𝑛=0 are Cauchy equivalent, given that
(𝑢0, 𝑣0) ∈ P or (𝑣0, 𝑢0) ∈ P.

3. Main result

3.1. From graphs to P sets

Let us point out that since the proof of Theorem 2.3 depends on 𝑉 (𝐺) = 𝑋
and for all 𝑥 ∈ 𝑋 to hold that (𝑥, 𝑥) ∈ 𝐸(𝐺), to restate the result in terms of P sets,
we would require that for every P set of this subsection it holds that if 𝑥 ∈ 𝑋, then
(𝑥, 𝑥) ∈ P.

Lemma 3.1. Let (𝑋, 𝜌) be a metric space and 𝑓 : 𝑋 → 𝑋 be a self-map.
Then there exists a directed graph 𝐺 with 𝐸(𝐺) ⊆ 𝑋 ×𝑋 such that 𝑓 is a Banach
𝐺-contraction if and only if there exists P ⊆ 𝑋 × 𝑋 such that P is 𝑓 -closed and
𝛼 ∈ (0, 1) such that

𝜌(𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝜌(𝑥, 𝑦)

for all (𝑥, 𝑦) ∈ P.

Proof. Let 𝐺 be such a directed graph with 𝐸(𝐺) ⊆ 𝑋 ×𝑋 such that 𝑓 is a Banach
𝐺-contraction. Let P = 𝐸(𝐺). Then

(𝑥, 𝑦) ∈ P ⇒ (𝑓𝑥, 𝑓𝑦) ∈ P,

or P is 𝑓 -closed. Also, from 𝑓 being a 𝐺-contraction, we get that there exists
𝛼 ∈ (0, 1) such that

𝜌(𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝜌(𝑥, 𝑦)

for all (𝑥, 𝑦) ∈ P.
Now let there exist P ⊆ 𝑋×𝑋 such that P is 𝑓 -closed and there exists 𝛼 ∈ (0, 1)

so that 𝜌(𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝜌(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ P. Let us construct a graph 𝐺 such that
(𝑥, 𝑦) ∈ 𝐸(𝐺) if and only if (𝑥, 𝑦) ∈ P. Then clearly 𝑓 is a 𝐺-contraction.

We introduce the following notation:

P−1 = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : (𝑦, 𝑥) ∈ P},̃︀P = P ∪ P−1,̃︀P(𝑥) := {𝑦 ∈ 𝑋 : there exists 𝑧𝑖 ∈ 𝑋 such that (𝑥, 𝑧1), (𝑧𝑗 , 𝑧𝑗+1), (𝑧𝑛, 𝑦) ∈ P̃,
𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛− 1, 𝑛 ∈ N}.



Ann. Sofia Univ., Fac. Math. and Inf., 112, 2025, 31–44 37

It is clear that these sets are analogues of the converse, the undirected graph
and 𝑉 (𝐺𝑥) notions in graphs.

Lemma 3.2. Let (𝑋, 𝜌) be a metric space, 𝐺 be a directed graph with 𝐸(𝐺) ⊆
𝑋 ×𝑋 and P = 𝐸(𝐺). Then [𝑥] ̃︀𝐺 = ̃︀P(𝑥).
Proof. Let us point out that 𝐸( ̃︀𝐺) = ̃︀P. Then 𝑦 ∈ 𝑋 being in [𝑥] ̃︀𝐺 means that there
exists a path in ̃︀𝐺 from 𝑥 to 𝑦, or there exists 𝑧𝑖 ∈ 𝑋 such that (𝑥, 𝑧1), (𝑧𝑗 , 𝑧𝑗+1),
(𝑧𝑛, 𝑦) ∈ 𝐸( ̃︀𝐺), 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛 − 1, 𝑛 ∈ N. This is equivalent to
the existence of 𝑧𝑖 ∈ 𝑋 such that (𝑥, 𝑧1), (𝑧𝑗 , 𝑧𝑗+1), (𝑧𝑛, 𝑦) ∈ P̃, 𝑖 = 1, 2, . . . , 𝑛,
𝑗 = 1, 2, . . . , 𝑛− 1, 𝑛 ∈ N, which means that 𝑦 ∈ ̃︀P(𝑥). Therefore, [𝑥] ̃︀𝐺 = ̃︀P(𝑥).

Let us first state Theorem 2.3 in terms of P sets.

Theorem 3.3. Let (𝑋, 𝜌) be a complete metric space, P ⊆ 𝑋 × 𝑋 and the
triple (𝑋, 𝜌,P) have the following property :

For any sequence {𝑥𝑛}𝑛∈N ⊆ 𝑋, if lim
𝑛→∞

𝑥𝑛 = 𝑥 and (𝑥𝑛, 𝑥𝑛+1) ∈ P for all

𝑛, then there exists a subsequence {𝑥𝑛𝑘
}𝑘∈N such that (𝑥𝑛𝑘

, 𝑥) ∈ P for all 𝑘.
(3.1)

Let 𝑓 : 𝑋 → 𝑋, P be 𝑓 -closed, 𝑊 = {𝑥 ∈ 𝑋 : (𝑥, 𝑓𝑥) ∈ P} and there exist 𝛼 ∈ (0, 1)

such that
𝜌(𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝜌(𝑥, 𝑦)

for all (𝑥, 𝑦) ∈ P. Then:

1. card(Fix(𝑓)) = card
(︁{︁̃︀P(𝑥) : 𝑥 ∈ 𝑊

}︁)︁
.

2. Fix(𝑓) ̸= ∅ ⇐⇒ 𝑊 ̸= ∅.

3. 𝑓 has a unique fixed point if and only if there exists 𝑥0 ∈ 𝑊 such that
𝑊 ⊆ ̃︀P(𝑥0).

4. For every 𝑥 ∈ 𝑊 , the restriction 𝑓 |̃︀P(𝑥) is PO.

5. If 𝑊 ̸= ∅ and there exists 𝑥 ∈ 𝑋 such that 𝑋 ⊆ ̃︀P(𝑥), then 𝑓 is PO.

6. If 𝑋 ′ =
⋃︀

𝑥∈𝑊
̃︀P(𝑥), then 𝑓 |𝑋′ is WPO.

7. If 𝑓 ⊆ P, then 𝑓 is WPO.

In order to present a proof, we will use the following proposition.

Proposition 3.4. Theorem 2.3 holds if and only if Theorem 3.3 holds.
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Proof. From Lemmas 3.1 and 3.2, we see that the statements of both theorems are
equivalent. The only thing we need to show is that 𝐺 being weakly connected is
equivalent to 𝑋 ⊆ ̃︀P(𝑥) for some 𝑥 ∈ 𝑋. Indeed, let 𝐺 be weakly connected, i.e.,
for all 𝑥, 𝑦 ∈ 𝑋 there exists 𝑧𝑖 ∈ 𝑋 such that (𝑥, 𝑧1), (𝑧𝑗 , 𝑧𝑗+1), (𝑧𝑛, 𝑦) ∈ 𝐸( ̃︀𝐺),
𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛 − 1, 𝑛 ∈ N. But that is equivalent to the statement
that for all 𝑥, 𝑦 ∈ 𝑋 there exists 𝑧𝑖 ∈ 𝑋 such that (𝑥, 𝑧1), (𝑧𝑗 , 𝑧𝑗+1), (𝑧𝑛, 𝑦) ∈ ̃︀P,
𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛 − 1, 𝑛 ∈ N. This is true if and only if from 𝑦 ∈ 𝑋 it
follows that 𝑦 ∈ ̃︀P(𝑥), or 𝑋 ⊆ ̃︀P(𝑥). Thus, the proposition is proven.

As a consequence of Proposition 3.4 and Theorem 2.3 having been proven, it
follows that Theorem 3.3 holds as well.

Example 3.5. Let us consider R with the usual metric 𝜌(𝑥, 𝑦) = |𝑥− 𝑦|. Let
E = {𝑥 ∈ R : |𝑥| = 2𝑛, 𝑛 ∈ Z} ∪ {0} and let us have the map

𝑇𝑥 =

{︃
𝑥
2 , 𝑥 ∈ E,
3𝑥+

√
3, 𝑥 /∈ E

.

Let P = {(𝑥, 𝑦) ∈ R × R : 𝑥, 𝑦 ∈ E or 𝑥 = 𝑦}. Then clearly condition (3.1) holds,
P is 𝑇 -closed and the contractive condition is fulfilled with 𝛼 = 1

2 . Therefore, we
can apply Theorem 3.3. Clearly, ̃︀P = P. If 𝑥 ∈ E, then ̃︀P(𝑥) = E, whereas if
𝑥 /∈ E, then ̃︀P(𝑥) = {𝑥}. Let us consider 𝑊 . If 𝑥 ∈ E, it holds that 𝑇𝑥 ∈ E and
(𝑥, 𝑇𝑥) ∈ P. If however, 𝑥 /∈ E, then we have that

(︁
−

√
3
2 , 𝑇

(︁
−

√
3
2

)︁)︁
∈ P. Therefore,

𝑊 = E ∪
{︁
−

√
3
2

}︁
.

From conclusions (1) and (2), we know that card(Fix(𝑓)) = 2. Conclusions (3),
(5) and (7) do not hold, whereas (4) and (6) do hold. If 𝑥 ∈ E, then lim𝑛→∞ 𝑇𝑛𝑥 = 0

and if 𝑥 = −
√
3
2 , then 𝑇𝑛

(︁
−

√
3
2

)︁
= −

√
3
2 .

If we would prefer to express this example utilizing a graph, we could construct
a graph 𝐺 such that 𝑉 (𝐺) = R and 𝐸(𝐺) = P. Then the results from Theorem 2.3
can be applied. Due to Proposition 3.4, we will arrive at the same conclusions as we
did using Theorem 3.3.

3.2. From P sets to graphs

Definition 3.6. We say that a mapping 𝑓 : 𝑋 → 𝑋 is 𝐺-contraction with a
contractive iterate at a point if 𝑓 preserves edges of 𝐺, i.e,

for all 𝑥, 𝑦 ∈ 𝑋((𝑥, 𝑦) ∈ 𝐸(𝐺) ⇒ (𝑓𝑥, 𝑓𝑦) ∈ 𝐸(𝐺)),

and 𝑓 decreases weights of edges of 𝐺 in the following way: there exists 𝛼 ∈ [0, 1)

so that for any 𝑥 ∈ 𝑋 there is 𝑛(𝑥) ∈ N, such that for all (𝑥, 𝑦) ∈ 𝐸(𝐺) it holds

𝜌(𝑓𝑛(𝑥)(𝑥), 𝑓𝑛(𝑥)(𝑦)) ≤ 𝛼𝜌(𝑥, 𝑦).
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This definition is a clear analogue of Definition 2.2.
In order to produce a simpler proof of the graph version of 2.11, we will first

generalize the result by replacing the i-P-regularity with a weaker assumption via
the next Lemma.

Lemma 3.7 ([7]). Let (𝑋, 𝑑) be a complete metric space, 𝐺 be a graph with a
vertex set 𝑉 (𝐺) and an edge set 𝐸(𝐺). Let 𝐸(𝐺) be transitive. Then for the triple
(𝑋, 𝑑,𝐺) the following properties are equivalent :

1. for any sequence {𝑥𝑛}𝑛∈N ⊆ 𝑋, if lim𝑛→∞ 𝑥𝑛 = 𝑥 and (𝑥𝑛, 𝑥𝑛+1) ∈ 𝐸(𝐺)
for all 𝑛, then there exists a subsequence {𝑥𝑛𝑘

}𝑘∈N so that (𝑥𝑛𝑘
, 𝑥) ∈ 𝐸(𝐺)

for all 𝑘;

2. the i-𝐸(𝐺)-regular property.

In view of this, we can restate Theorem 2.11 in the following way.

Theorem 3.8. Let (𝑋, 𝜌) be a complete metric space, P ⊂ 𝑋 ×𝑋, 𝑇 : 𝑋 → 𝑋
be a map and there hold

(i) P is 𝑇 -closed and has the transitive property ;

(ii) 𝑇 either has a closed graph or the triple (𝑋, 𝜌,P) has the following prop-
erty :

For any sequence {𝑥𝑛}𝑛∈N ⊆ 𝑋, if lim𝑛→∞ 𝑥𝑛 = 𝑥 and (𝑥𝑛, 𝑥𝑛+1) ∈ 𝐸(𝐺)
for all 𝑛, then there exists a subsequence {𝑥𝑛𝑘

}𝑘∈N such that (𝑥𝑛𝑘
, 𝑥) ∈

𝐸(𝐺) for all 𝑘;

(iii) there exists 𝑥0 ∈ 𝑋 such that (𝑥0, 𝑇𝑥0) ∈ P;

(iv) there exists 𝛼 ∈ [0, 1) so that for any 𝑥 ∈ 𝑋 there is 𝑛(𝑥) ∈ N, such that
for all (𝑥, 𝑦) ∈ P it holds that

𝜌(𝑇𝑛(𝑥)(𝑥), 𝑇𝑛(𝑥)(𝑦)) ≤ 𝛼𝜌(𝑥, 𝑦).

Then

(a) Fix(𝑓) ̸= ∅ and for any arbitrary chosen 𝑥0 ∈ 𝑋, such that (𝑥0, 𝑇𝑥0) ∈ P
the iterated sequence 𝑥𝑛 = 𝑇𝑛𝑥0 converges to an element 𝑥* ∈ Fix(𝑇 );

(b) For any 𝑥 ∈ 𝑋 and 𝑥0 so that (𝑥0, 𝑇𝑥0) ∈ P, satisfying (𝑥0, 𝑥) ∈ P or
(𝑥, 𝑥0) ∈ P, the sequences 𝑥𝑛 = 𝑇𝑛(𝑥0) and 𝑢𝑛 = 𝑇𝑛(𝑥) are Cauchy equiv-
alent and hence 𝑢𝑛 converges to 𝑥* ∈ Fix(𝑓), where 𝑥* = lim𝑛→∞ 𝑇𝑛𝑥0;

(c) If 𝑦* ∈ Fix(𝑇 ) and either (𝑥0, 𝑦
*) ∈ P or (𝑦*, 𝑥0) ∈ P or there is 𝑧 ∈ 𝑋 so

that either (𝑥0, 𝑧), (𝑦
*, 𝑧) ∈ P or (𝑧, 𝑥0), (𝑧, 𝑦

*) ∈ P, then 𝑦* = 𝑥*;

(d) If in addition we suppose that for every 𝑥, 𝑦 ∈ 𝑋 such that neither (𝑥, 𝑦) ∈ P
nor (𝑦, 𝑥) ∈ P there is 𝑧 ∈ 𝑋 so that (𝑥, 𝑧), (𝑦, 𝑧) ∈ P or (𝑧, 𝑥), (𝑧, 𝑦) ∈ P,
then Fix(𝑇 ) = {𝑥*}.
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Before we move on to the proof, let us prove the following lemmas.

Lemma 3.9. The conditions of Theorem 2.11 and Theorem 3.8 are equivalent.

Proof. Let us construct a graph 𝐺 such that 𝑉 (𝐺) = 𝑋 and 𝐸(𝐺) = P. Then,
from P having the transitive property, it is clear that 𝐸(𝐺) also has the transitive
property. Therefore, the result quickly follows from Lemma 3.7.

Lemma 3.10. Given the conditions of Theorem 3.8, we have that any two
sequences {𝑇𝑛𝑢0}∞𝑛=0 and {𝑇𝑛𝑣0}∞𝑛=0 are Cauchy equivalent, given that (𝑢0, 𝑣0) ∈ P
or (𝑣0, 𝑢0) ∈ P.

Proof. This is a simple consequence of Lemma 3.9.

Now we will prove Theorem 3.8.

Proof. The conditions of Theorems 2.11 and 3.8 are the same by Lemma 3.9.

Lemma 3.11. Let (𝑋, 𝑑) be a metric space and 𝑓 : 𝑋 → 𝑋 be a self-map. Then
there exists a directed graph 𝐺 with 𝐸(𝐺) ⊆ 𝑋 ×𝑋 such that 𝑓 is a 𝐺-contraction
with a contractive iterate at a point if and only if there exists P ⊆ 𝑋 ×𝑋 such that
P is 𝑓 -closed and there exists 𝛼 ∈ [0, 1) so that for any 𝑥 ∈ 𝑋 there is 𝑛(𝑥) ∈ N,
such that for all (𝑥, 𝑦) ∈ P it holds that

𝜌(𝑇𝑛(𝑥)(𝑥), 𝑇𝑛(𝑥)(𝑦)) ≤ 𝛼𝜌(𝑥, 𝑦).

Proof. The proof is analogous to the proof of Lemma 3.1.

We will now restate Theorem 3.8 in the context of a metric space with a graph.
Let us note that in the following result, we do not require that (𝑥, 𝑥) ∈ 𝐸(𝐺) for
any 𝑥 ∈ 𝑋.

Theorem 3.12. Let (𝑋, 𝜌) be a complete metric space and 𝐺 be a directed
graph on 𝑋 with edge set 𝐸(𝐺) and 𝑇 : 𝑋 → 𝑋 be a 𝐺 contraction with a contractive
iterate at a point. Let 𝑊 = {𝑥 ∈ 𝑋 : (𝑥, 𝑇𝑥) ∈ 𝐸(𝐺)} and assume that

(I) 𝐸(𝐺) has the transitive property;

(II) 𝑇 has a closed graph or (𝑋, 𝜌,𝐸(𝐺)) satisfies the following property :

For any sequence {𝑥𝑛}𝑛∈N ⊆ 𝑋, if lim𝑛→∞ 𝑥𝑛 = 𝑥 and
(𝑥𝑛, 𝑥𝑛+1) ∈ 𝐸(𝐺) for all 𝑛, then there exists a subse-
quence {𝑥𝑛𝑘

}𝑘∈N such that (𝑥𝑛𝑘
, 𝑥) ∈ 𝐸(𝐺) for all 𝑘;

(III) 𝑊 ̸= ∅.

Then

(A) Fix(𝑓) ̸= ∅. If 𝑋 ′ =
⋃︀

𝑥∈𝑊 [𝑥] ̃︀𝐺, then the restriction 𝑇 |𝑋′ is a WPO ;

(B) For any 𝑥 ∈ 𝑊 , 𝑇 |[𝑥] ̃︀𝐺 is a PO ;
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(C) If 𝐺 is weakly connected, then 𝑇 is a PO.

Proposition 3.13. Theorem 3.8 holds if and only if Theorem 3.12 holds.

Proof. Without loss of generality, let 𝐸(𝐺) = P. From Lemmas 3.11 and 3.9, we see
that the statements I and II of Theorem 3.12 are equivalent to conditions i, ii and iv
of Theorem 3.8. Condition III is clearly equivalent to condition iii of Theorem 3.8.

By definition, 𝑥 ∈ 𝑋 ′ if and only if (𝑥, 𝑇𝑥) ∈ 𝐸(𝐺) = P. Thus, for any 𝑥 ∈ 𝑋
such that (𝑥, 𝑇𝑥) ∈ P the sequence 𝑇𝑛𝑥 converges to an element 𝑥* ∈ Fix(𝑇 ) if and
only if 𝑇 |𝑋′ is a WPO. Thus Theorem 3.8 a is equivalent to Theorem 3.12 A.

There exists an 𝑥 ∈ 𝑋 such that (𝑥0, 𝑥) ∈ P or (𝑥, 𝑥0) ∈ P, which is equivalent
to 𝑥 ∈ ̃︀P(𝑥0). Therefore by Lemma 3.2, (𝑥0, 𝑇𝑥0) ∈ P and 𝑥 ∈ ̃︀P(𝑥0), the sequences
𝑥𝑛 = 𝑇𝑛(𝑥0) and 𝑢𝑛 = 𝑇𝑛(𝑥) are Cauchy equivalent if and only if for any 𝑥 ∈ 𝑉 ,
𝑇[𝑥] ̃︀𝐺 is a PO. Thus Theorem 3.8 b and c are equivalent to Theorem 3.12 B.

Let us examine the last condition. The graph 𝐺 being weakly connected means
that for all 𝑥, 𝑦 ∈ 𝑋 there exist 𝑧𝑖 ∈ 𝑋 such that (𝑥, 𝑧1), (𝑧𝑗 , 𝑧𝑗+1), (𝑧𝑛, 𝑦) ∈ 𝐸( ̃︀𝐺),
𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛−1, 𝑛 ∈ N. This is equivalent to the existence of 𝑧 ∈ 𝑋
such that (𝑥, 𝑧), (𝑧, 𝑦) ∈ 𝐸( ̃︀𝐺). Since 𝐸( ̃︀𝐺) = ̃︀P, the previous statement is true if
and only if for all 𝑥, 𝑦 ∈ 𝑋 there exists 𝑧 ∈ 𝑋 such that (𝑥, 𝑧), (𝑧, 𝑦) ∈ ̃︀P, which is
equivalent to (𝑥, 𝑧), (𝑧, 𝑦) ∈ P, (𝑧, 𝑥), (𝑧, 𝑦) ∈ P, (𝑥, 𝑧), (𝑦, 𝑧) ∈ P or (𝑧, 𝑥), (𝑦, 𝑧) ∈ P.
If (𝑥, 𝑧), (𝑧, 𝑦) ∈ P, then (𝑥, 𝑦) ∈ P. If (𝑧, 𝑥), (𝑦, 𝑧) ∈ P, then (𝑦, 𝑥) ∈ P. Thus
Theorem 3.8 b and d are equivalent to Theorem 3.12 C.

The proposition is proven.

As a consequence of Proposition 3.13 and Theorem 3.8 having been proven, it
follows that Theorem 3.12 holds as well.

3.3. Coupled fixed points

We will conclude by establishing a similar connection between metric spaces en-
dowed with a graph and metric spaces with P sets by considering a result concerning
coupled fixed points. Let us recall that for a mapping 𝐹 : 𝑋 × 𝑋 → 𝑋 a coupled
fixed point (𝑥, 𝑦) ∈ 𝑋×𝑋 is called a point such that (𝐹 (𝑥, 𝑦), 𝐹 (𝑦, 𝑥)) = (𝑥, 𝑦). The
analogues to P sets in this context are often called M sets.

Definition 3.14 ([12]). Let (𝑋, 𝑑) be a metric space and 𝐹 : 𝑋×𝑋 → 𝑋 be an
operator. A nonempty subset M of 𝑋4 is said to be 𝐹 -closed if for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋
the following implication holds:

(𝑥, 𝑦, 𝑢, 𝑣) ∈ M ⇒ (𝐹 (𝑥, 𝑦), 𝐹 (𝑦, 𝑥), 𝐹 (𝑢, 𝑣), 𝐹 (𝑣, 𝑢)) ∈ M.

Theorem 3.15 ([12]). Let (𝑋, 𝑑) be a complete metric space, M ⊆ 𝑋4 and
𝐹 : 𝑋 ×𝑋 → 𝑋 be an operator with a closed graph. Suppose:

1. M is 𝐹 -closed ;

2. there exists (𝑥0, 𝑦0) ∈ 𝑋 ×𝑋 such that (𝑥0, 𝑦0, 𝐹 (𝑥0, 𝑦0), 𝐹 (𝑦0, 𝑥0)) ∈ M;
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3. there is 𝑘 ∈ [0, 1] such that if (𝑥, 𝑦) ∈ 𝑋×𝑋 and (𝑥, 𝑦, 𝐹 (𝑥, 𝑦), 𝐹 (𝑦, 𝑥)) ∈ M,
then

𝑑
(︀
𝐹 (𝑥, 𝑦), 𝐹 2(𝑥, 𝑦)

)︀
+𝑑

(︀
𝐹 (𝑦, 𝑥), 𝐹 2(𝑦, 𝑥)

)︀
≤𝑘 (𝑑 (𝑥, 𝐹 (𝑥, 𝑦))+𝑑 (𝑦, 𝐹 (𝑦, 𝑥))).

Then 𝐹 has at least one coupled fixed point (𝑥*, 𝑦*) ∈ 𝑋 × 𝑋 and the sequences
(𝐹𝑛(𝑥0, 𝑦0))𝑛∈N and (𝐹𝑛(𝑦0, 𝑥0))𝑛∈N converge to 𝑥* and 𝑦* respectively.

For the restatement of this result, we will require the following definition.

Definition 3.16. Let (𝑋, 𝑑) be a metric space and 𝐺 be a directed graph on
𝑋 ×𝑋 with edge set 𝐸(𝐺). We say that a mapping 𝐹 : 𝑋 ×𝑋 → 𝑋 is a coupled
𝐺-contraction if 𝐹 preserves edges of 𝐺, i.e.,

for all 𝑥, 𝑦 ∈ 𝑋(((𝑥, 𝑦), (𝑢, 𝑣)) ∈ 𝐸(𝐺) it follows that
((𝐹 (𝑥, 𝑦), 𝐹 (𝑦, 𝑥)) , (𝐹 (𝑢, 𝑣), 𝐹 (𝑣, 𝑢))) ∈ 𝐸(𝐺)),

(3.2)

and 𝐹 decreases weights of edges of 𝐺 in the following way: there exists 𝑘 ∈ [0, 1)
so that for any (𝑥, 𝑦) ∈ 𝑋 such that

((𝑥, 𝑦), (𝐹 (𝑥, 𝑦), 𝐹 (𝑦, 𝑥))) ∈ 𝐸(𝐺),

it is true that

𝑑
(︀
𝐹 (𝑥, 𝑦), 𝐹 2(𝑥, 𝑦)

)︀
+𝑑

(︀
𝐹 (𝑦, 𝑥), 𝐹 2(𝑦, 𝑥)

)︀
≤ 𝑘 (𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥))) . (3.3)

The equivalent theorem in the context of metric spaces with a graph is:

Theorem 3.17. Let (𝑋, 𝑑) be a complete metric space, 𝐺 be a directed graph
on 𝑋 ×𝑋 with edge set 𝐸(𝐺) and 𝐹 : 𝑋 ×𝑋 → 𝑋 be a coupled 𝐺 contraction with
a closed graph. Let

𝑊 = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : ((𝑥, 𝑦), (𝐹 (𝑥, 𝑦), 𝐹 (𝑦, 𝑥))) ∈ 𝐸(𝐺)}

and assume that 𝑊 ̸= ∅. Then 𝐹 has at least one coupled fixed point (𝑥*, 𝑦*) and the
sequences (𝐹𝑛(𝑥0, 𝑦0))𝑛∈N and (𝐹𝑛(𝑦0, 𝑥0))𝑛∈N converge to 𝑥* and 𝑦* respectively.

Proposition 3.18. Theorem 3.15 holds if and only if Theorem 3.17 holds.

Proof. The operator 𝐹 being a coupled 𝐺 contraction from Theorem 3.17 is equiv-
alent to conditions (1) and (3) of Theorem 3.15. Furthermore, 𝑊 ̸= ∅ from The-
orem 3.17 is equivalent to (2) of Theorem 3.15. Both theorems require that 𝐹 has
a closed graph. The conditions of Theorem 3.15 and Theorem 3.17 are equivalent.
Therefore, Theorem 3.15 holds if and only if Theorem 3.17 holds.

Since Theorem 3.15 is proven, by Proposition 3.18 we can conclude that Theo-
rem 3.17 holds as well.
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