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1. Introduction and preliminaries

Opial’s inequality, introduced in 1960, has played a central role in the theory
of integral inequalities. The original result relates a function to its derivative in a
sharp inequality with significant applications in analysis. Following Opial’s work,
many authors provided new proofs, refinements, and discrete analogues.

In this section we recall some classical results related to Opial’s inequality,
which provide the background and motivation for the results established later in
this paper.

We begin with the original inequality due to Zdzis law Opial and then recall
some of its later versions.

Theorem 1.1 ([9]). If 𝑓 ∈ 𝐶1[0, ℎ] satisfies 𝑓(0) = 𝑓(ℎ) = 0 and 𝑓(𝑥) > 0 for
𝑥 ∈ (0, ℎ), then ∫︁ ℎ

0

|𝑓(𝑥)𝑓 ′(𝑥)| 𝑑𝑥 ≤ ℎ

4

∫︁ ℎ

0

[︀
𝑓 ′(𝑥)

]︀2
𝑑𝑥, (1.1)

where the constant factor ℎ/4 is best possible.
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This inequality has found much attention among many mathematicians, and
many different proofs, variants, extensions, and discrete analogues of Opial’s theorem
have been developed. We mention here only a few [2–4, 6, 8–10, 12]. For a detailed
bibliography on the topic we refer to [1, 11].

Soon after the publication of Opial’s paper, C. Olech [8], in a short note, showed
that the condition 𝑓(𝑥) > 0 is not necessary; however, without this assumption the
constant on the right-hand side of the inequality becomes double. The result reads
as follows.

Theorem 1.2 ([8]). If 𝑓 is absolutely continuous on [0, ℎ] with 𝑓(0) = 𝑓(ℎ) = 0,
then ∫︁ ℎ

0

|𝑓(𝑥)𝑓 ′(𝑥)| 𝑑𝑥 ≤ ℎ

2

∫︁ ℎ

0

[︀
𝑓 ′(𝑥)

]︀2
𝑑𝑥. (1.2)

The sign of equality holds if and only if 𝑓(𝑥) = 𝑐𝑥, where 𝑐 is a constant.

In 1965, C. Mallows [6], presented what is arguably the simplest and most
elegant proof of Opial’s inequality. Moreover, Mallows’ version of Opial inequality
does not require any condition on the function 𝑓 at the right end of the interval
[0, ℎ].

Theorem 1.3 ([6]). If 𝑓 is absolutely continuous on [0, ℎ] with 𝑓(0) = 0, then∫︁ ℎ

0

|𝑓(𝑥)𝑓 ′(𝑥)| 𝑑𝑥 ≤ ℎ

2

∫︁ ℎ

0

[︀
𝑓 ′(𝑥)

]︀2
𝑑𝑥.

The sign of equality holds if and only if 𝑓(𝑥) = 𝑐𝑥, where 𝑐 is a constant.

This is in fact the most well-known version of Opial inequality.
In 1962, Beesack [3], provided conditions under which a generalized weighted

version of Opial inequality(︂∫︁ 𝑏

𝑎

|𝑔(𝑥)|𝑞 |𝑔′(𝑥)|𝑠𝑣(𝑥) 𝑑𝑥

)︂ 1
𝑞+𝑠

≤ 𝑐

(︂∫︁ 𝑏

𝑎

⃒⃒
𝑔′(𝑥)

⃒⃒𝑝
𝑢(𝑥) 𝑑𝑥

)︂ 1
𝑝

holds for all 𝑔(𝑥), such that 𝑔(𝑎) = 0, 𝑝 > 𝑞 > 0, 0 < 𝑠 < 𝑝, and 𝑢(𝑥), 𝑣(𝑥) are
weight functions.

A key contribution was made by Sinnamon [12], who demonstrated that Hardy-
type inequalities naturally yield Opial-type inequalities. Moreover, Sinnamon pro-
posed a two-function generalization of Opial’s inequality, where the inequality is
formulated in terms of products of two functions and their derivatives. This result
complemented Pachpatte’s earlier contributions [10] and illustrated once again the
link between Hardy- and Opial-type inequalities.

In 1997, exploiting Sinnamon’s approach, Bloom [4] established some Opial-
type inequalities involving generalized Hardy operators.

Research on Opial-type inequalities continues to develop rapidly, with ongoing
work on refinements, generalizations, and discrete analogues, as well as important
recent applications to fractional calculus [1].
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The above short historical overview outlines some of the main steps in the
evolution of Opial-type inequalities, without attempting to be complete. Given the
extensive literature on the subject, we restrict ourselves to citing mainly works that
are directly relevant to our approach.

In the next section we turn to recent advances in weighted Hardy inequalities.

2. Recent results on weighted Hardy inequalities

Recent work by Nikolov and Uluchev [7] studies a weighted Hardy-type inequal-
ity in the particular finite-dimensional space

ℋ𝑛,𝛼 :=

{︂
𝑓 :

∫︁ 𝑥

0

𝑓(𝑡) 𝑑𝑡 = 𝑥−𝛼/2𝑒−𝑥/2 𝑝(𝑥), 𝑝 ∈ 𝒫𝑛, 𝑝(0) = 0

}︂
, 𝛼 < 1,

where 𝒫𝑛 is the set of algebraic polynomials of degree at most 𝑛 with real coefficients.
More precisely, the authors examine the sharp constant 𝐶𝑛,𝛼 in a Hardy inequality
with weight 𝑤(𝑥) = 𝑥𝛼:∫︁ ∞

0

(︂
1

𝑥

∫︁ 𝑥

0

𝑓(𝑡) 𝑑𝑡

)︂2
𝑥𝛼 𝑑𝑥 ≤ 𝐶𝑛,𝛼

∫︁ ∞

0

𝑓2(𝑥)𝑥𝛼 𝑑𝑥, 𝑓 ∈ ℋ𝑛,𝛼. (2.1)

Lower and upper bounds for 𝐶𝑛,𝛼 of correct order in space dimension 𝑛 are proved.
The particular case 𝛼 = 0 was considered by Dimitrov, Gadjev, Nikolov and Uluchev
in [5].

The following two-sided estimate for the sharp constant 𝐶𝑛,𝛼, 𝑛 ≥ 3 of (2.1)
was proved in [7, Theorem 1.1]:

𝐶𝑛,𝛼 <
(︁ 2

1 − 𝛼

)︁2(︃
1 − 4

√
6

(1 − 𝛼)2
(︀

log⌊𝑛+1
2 ⌋ + 4

)︀2
+ 4

√
6

)︃
=: 𝐶𝑛,𝛼, (2.2)

𝐶𝑛,𝛼 >
(︁ 2

1 − 𝛼

)︁2(︃
1 − 16

(1 − 𝛼)2
(︀

log⌊𝑛+1
2 ⌋ + 8

3

)︀2
+ 16

)︃
.

While the estimates in [5] for the lower and the upper bound of 𝐶𝑛,0 are of different
order, in [7] the asymptotic rate of the lower estimate and the upper estimate is the
same as 𝑛 → ∞ for any 𝛼 < 1, namely 𝑂((log 𝑛)−2).

3. A weighted Opial-type inequality

We now describe the framework in which a weighted Opial-type inequality will
be derived. We begin with introducing some notations.

In what follows, ‖ · ‖2,𝛼 denotes the weighted 𝐿2[0,∞)-norm with weight 𝑥𝛼,

‖𝑓‖2,𝛼 :=

(︂∫︁ ∞

0

𝑓2(𝑥)𝑥𝛼 𝑑𝑥

)︂1/2
.
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We will consider the class

𝒢𝑛,𝛼 :=
{︀
𝑔 : 𝑔(𝑥) = 𝑥−𝛼/2𝑒−𝑥/2 𝑝(𝑥), 𝑝 ∈ 𝒫𝑛, 𝑝(0) = 0

}︀
, 𝛼 < 1,

and the class used in [7]

ℋ𝑛,𝛼 =

{︂
𝑓 :

∫︁ 𝑥

0

𝑓(𝑡) 𝑑𝑡 ∈ 𝒢𝑛,𝛼

}︂
.

Introducing the classes 𝒢𝑛,𝛼 and ℋ𝑛,𝛼 allows us to translate the results on weighted
Hardy-type estimates from [7] into Opial-type inequalities. The link between the
two classes will be essential in the subsequent derivation.

Proposition 3.1. If 𝑔(𝑥) ∈ 𝒢𝑛,𝛼, then 𝑔′(𝑥) ∈ ℋ𝑛,𝛼.

Proof. Indeed, any function 𝑔(𝑥) ∈ 𝒢𝑛,𝛼 has the form 𝑥−𝛼/2𝑒−𝑥/2 𝑝(𝑥), 𝑝 ∈ 𝒫𝑛 and
𝑔(0) = 0. Then

𝑔(𝑥) = 𝑔(𝑥) − 𝑔(0) =

∫︁ 𝑥

0

𝑔′(𝑡) 𝑑𝑡

is of the form 𝑥−𝛼/2𝑒−𝑥/2 𝑝(𝑥), where 𝑝 ∈ 𝒫𝑛, i.e., 𝑔′ ∈ ℋ𝑛,𝛼.

Theorem 3.2. Let 𝑔(𝑥) ∈ 𝒢𝑛,𝛼, 𝑞, 𝑠 ≥ 0, 𝑞 + 𝑠 = 2 and 𝛼 < 1. Then the
following weighted Opial-type inequality holds true∫︁ ∞

0

|𝑔(𝑥)|𝑞 |𝑔′(𝑥)|𝑠 𝑥𝛼−𝑞 𝑑𝑥 ≤ (𝐶𝑛,𝛼)𝑞/2
∫︁ ∞

0

[︀
𝑔′(𝑥)

]︀2
𝑥𝛼 𝑑𝑥.

Proof. Since 𝑔 ∈ 𝒢𝑛,𝛼, we have that 𝑔′(𝑥) ∈ ℋ𝑛,𝛼. Then using (2.1) for 𝑔′(𝑥) ∈ ℋ𝑛,𝛼,
we get that the following inequality holds true(︂∫︁ ∞

0

(︂
1

𝑥

∫︁ 𝑥

0

𝑔′(𝑡) 𝑑𝑡

)︂2
𝑥𝛼 𝑑𝑥

)︂1/2
≤ (𝐶𝑛,𝛼)1/2

(︂∫︁ ∞

0

[︀
𝑔′(𝑥)

]︀2
𝑥𝛼 𝑑𝑥

)︂1/2
.

Or, in other words, we get

‖𝑔‖2,𝛼−2 ≤ (𝐶𝑛,𝛼)1/2 ‖𝑔′‖2,𝛼. (3.1)

Denote

𝐼 :=

∫︁ ∞

0

|𝑔(𝑥)|𝑞|𝑔′(𝑥)|𝑠𝑥𝛼−𝑞 𝑑𝑥 =

∫︁ ∞

0

(︀
|𝑔(𝑥)|2𝑥𝛼−2

)︀𝑞/2(︀|𝑔′(𝑥)|2𝑥𝛼
)︀𝑠/2

𝑑𝑥.

Applying Hölder’s inequality and (3.1), we obtain

𝐼 ≤
(︂∫︁ ∞

0

|𝑔(𝑥)|2𝑥𝛼−2 𝑑𝑥

)︂𝑞/2(︂∫︁ ∞

0

|𝑔′(𝑥)|2𝑥𝛼 𝑑𝑥

)︂𝑠/2
≤
⃦⃦
𝑔
⃦⃦𝑞
2,𝛼−2

⃦⃦
𝑔′
⃦⃦𝑠
2,𝛼

≤ (𝐶𝑛,𝛼)𝑞/2
⃦⃦
𝑔′
⃦⃦𝑞
2,𝛼

⃦⃦
𝑔′
⃦⃦𝑠
2,𝛼

= (𝐶𝑛,𝛼)𝑞/2 ‖𝑔′‖22,𝛼,

which concludes the proof.
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To obtain an explicit, though non-sharp, version of the inequality in Theo-
rem 3.2, we replace the sharp constant 𝐶𝑛,𝛼 by its computable upper bound 𝐶𝑛,𝛼

from [7, Theorem 1.1], which yields the following result.

Corollary 3.3. Let 𝑔 ∈ 𝒢𝑛,𝛼 with 𝛼 < 1, and let 𝑞, 𝑠 ≥ 0 satisfy 𝑞+ 𝑠 = 2. For
𝑛 ≥ 3, ∫︁ ∞

0

|𝑔(𝑥)|𝑞 |𝑔′(𝑥)|𝑠 𝑥𝛼−𝑞 𝑑𝑥 ≤
(︀
𝐶𝑛,𝛼

)︀𝑞/2 ∫︁ ∞

0

|𝑔′(𝑥)|2 𝑥𝛼 𝑑𝑥, (3.2)

where 𝐶𝑛,𝛼, given in (2.2) is an explicit upper bound for the sharp Hardy constant
𝐶𝑛,𝛼.

Moreover, the constant satisfies the asymptotic relation

(︀
𝐶𝑛,𝛼

)︀𝑞/2
=

(︂
2

1 − 𝛼

)︂𝑞 (︁
1 + 𝑂

(︀
(log 𝑛)−2

)︀)︁
, 𝑛 → ∞,

so that
(︀
𝐶𝑛,𝛼

)︀𝑞/2 preserves the asymptotic rate of convergence of (𝐶𝑛,𝛼)𝑞/2.

Remark 3.4. The inequality (3.2) is non-sharp, since 𝐶𝑛,𝛼 < 𝐶𝑛,𝛼, and equal-
ity can occur only in the trivial case 𝑔 ≡ 0.

4. An Opial-type inequality for two functions

Having derived the weighted Opial-type inequality for a single function, we next
obtain the corresponding result for two functions.

Theorem 4.1. Let 𝑔(𝑥) ∈ 𝒢𝑛,𝛼, ℎ(𝑥) ∈ 𝒢𝑚,𝛽, 𝑚,𝑛 ∈ N, 𝛼, 𝛽 < 1, 𝑞 + 𝑠 = 2,
𝑞 = 𝑞1 + 𝑞2, 𝑠 = 𝑠1 + 𝑠2 and

𝑣(𝑥) := 𝑥(𝛼−2)𝑞1/2 𝑥𝛼𝑠1/2 𝑥(𝛽−2)𝑞2/2 𝑥𝛽𝑠2/2 = 𝑥
𝛼(𝑞1+𝑠1)+𝛽(𝑞2+𝑠2)

2 −𝑞.

Then∫︁ ∞

0

|𝑔(𝑥)|𝑞1 |𝑔′(𝑥)|𝑠1 |ℎ(𝑥)|𝑞2 |ℎ′(𝑥)|𝑠2 𝑣(𝑥) 𝑑𝑥

≤
(︀
𝐶𝑛,𝛼

)︀𝑞1/2 (︀
𝐶𝑚,𝛽)𝑞2/2

⃦⃦
𝑔′
⃦⃦𝑞1+𝑠1

2,𝛼

⃦⃦
ℎ′⃦⃦𝑞2+𝑠2

2,𝛽
.

Proof. Denote

𝐽 :=

∫︁ ∞

0

|𝑔(𝑥)|𝑞1 |𝑔′(𝑥)|𝑠1 |ℎ(𝑥)|𝑞2 |ℎ′(𝑥)|𝑠2 𝑣(𝑥) 𝑑𝑥. (4.1)

Since 𝑔′(𝑥) ∈ ℋ𝑛,𝛼 and ℎ′(𝑥) ∈ ℋ𝑚,𝛽 , then from (3.1) it follows that

‖𝑔‖2,𝛼−2 ≤
(︀
𝐶𝑛,𝛼

)︀1/2 ‖𝑔′‖2,𝛼, ‖ℎ‖2,𝛽−2 ≤
(︀
𝐶𝑚,𝛽

)︀1/2 ‖ℎ′‖2,𝛽 .
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Since 𝑞1
2 + 𝑞2

2 + 𝑠1
2 + 𝑠2

2 = 𝑞+𝑠
2 = 1, the Hölder inequality applied to (4.1) yields

𝐽 ≤
(︂∫︁ ∞

0

|𝑔(𝑥)|𝑞1
2
𝑞1 𝑥

𝛼−2
2 𝑞1

2
𝑞1 𝑑𝑥

)︂𝑞1/2(︂∫︁ ∞

0

|𝑔′(𝑥)|2 𝑥𝛼 𝑑𝑥

)︂𝑠1/2

×
(︂∫︁ ∞

0

|ℎ(𝑥)|𝑞2
2
𝑞2 𝑥

𝛽−2
2 𝑞2

2
𝑞2 𝑑𝑥

)︂𝑞2/2(︂∫︁ ∞

0

|ℎ′(𝑥)|2𝑥𝛽 𝑑𝑥

)︂𝑠2/2

=
(︀
‖𝑔‖2,𝛼−2

)︀𝑞1 ⃦⃦
𝑔′
⃦⃦𝑠1
2,𝛼

(︀
‖ℎ‖2,𝛽−2

)︀𝑞2 ⃦⃦
ℎ′⃦⃦𝑠2

2,𝛽

≤
(︀
𝐶𝑛,𝛼

)︀𝑞1/2 ⃦⃦
𝑔′
⃦⃦𝑞1+𝑠1

2,𝛼

(︀
𝐶𝑚,𝛽)𝑞2/2

⃦⃦
ℎ′⃦⃦𝑞2+𝑠2

2,𝛽
.

In the particular case 𝛼 = 𝛽, we have 𝑣(𝑥) = 𝑥𝛼−𝑞 and the weighted Opial’s-
type inequality has a much simpler form.

Corollary 4.2. Let 𝑔(𝑥) ∈ 𝒢𝑛,𝛼, ℎ(𝑥) ∈ 𝒢𝑚,𝛼, 𝑚,𝑛 ∈ N, 𝛼 < 1, 𝑞 + 𝑠 = 2,
𝑞 = 𝑞1 + 𝑞2, 𝑠 = 𝑠1 + 𝑠2. Then the following weighted Opial’s type inequality holds
true∫︁ ∞

0

|𝑔(𝑥)|𝑞1 |𝑔′(𝑥)|𝑠1 |ℎ(𝑥)|𝑞2 |ℎ′(𝑥)|𝑠2 𝑥𝛼−𝑞 𝑑𝑥

≤
(︀
𝐶𝑛,𝛼

)︀𝑞1/2 (︀
𝐶𝑚,𝛼)𝑞2/2

⃦⃦
𝑔′
⃦⃦𝑞1+𝑠1

2,𝛼

⃦⃦
ℎ′⃦⃦𝑞2+𝑠2

2,𝛼
.

To obtain an explicit, though non-sharp, form of the inequality in Theorem 4.1,
we replace the sharp constants 𝐶𝑛,𝛼 and 𝐶𝑚,𝛽 by their computable upper bounds
𝐶𝑛,𝛼 and 𝐶𝑚,𝛽 given in (2.2), which leads to the following result.

Corollary 4.3. Let 𝑔(𝑥) ∈ 𝐺𝑛,𝛼 and ℎ(𝑥) ∈ 𝐺𝑚,𝛽 with 𝛼, 𝛽 < 1 and 𝑚,𝑛 ∈ N.
Let 𝑞 + 𝑠 = 2, 𝑞 = 𝑞1 + 𝑞2, 𝑠 = 𝑠1 + 𝑠2, and define

𝑣(𝑥) = 𝑥
𝛼(𝑞1+𝑠1)+𝛽(𝑞2+𝑠2)

2 −𝑞.

Then, for 𝑛,𝑚 ≥ 3,∫︁ ∞

0

|𝑔(𝑥)|𝑞1 |𝑔′(𝑥)|𝑠1 |ℎ(𝑥)|𝑞2 |ℎ′(𝑥)|𝑠2𝑣(𝑥) 𝑑𝑥

≤
(︀
𝐶𝑛,𝛼

)︀𝑞1/2 (︀
𝐶𝑚,𝛽

)︀𝑞2/2 ‖𝑔′‖ 𝑞1+𝑠1
2

2,𝛼 ‖ℎ′‖
𝑞2+𝑠2

2

2,𝛽 . (4.2)

Moreover, the constant satisfies the asymptotic relation(︀
𝐶𝑛,𝛼

)︀𝑞1/2(︀
𝐶𝑚,𝛽

)︀𝑞2/2
=

(︂
2

1 − 𝛼

)︂𝑞1 (︂ 2

1 − 𝛽

)︂𝑞2 (︁
1 + 𝑂

(︀
(log 𝑛)−2 + (log𝑚)−2

)︀)︁
,

𝑛,𝑚 → ∞, so that the explicit bound preserves the asymptotic rate of convergence
of 𝐶𝑞1/2

𝑛,𝛼 𝐶
𝑞2/2
𝑚,𝛽 , 𝑛,𝑚 → ∞.

Remark 4.4. The inequality in Corollary 4.2 is non-sharp, since 𝐶𝑛,𝛼 < 𝐶𝑛,𝛼

and 𝐶𝑚,𝛽 < 𝐶𝑚,𝛽 , and equality can occur only in the trivial case 𝑔 ≡ ℎ ≡ 0.

The presented results demonstrate how recent advances in weighted Hardy in-
equalities can be employed to establish new weighted Opial-type inequalities with
explicit constant estimates and clear asymptotic behavior.
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