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We characterise the K-functional that was previously shown to describe the rate of
approximation of the Baskakov-Kantorovich operator in the Lp-spaces with the weight
(14 )7 with v < 0. The characterisation uses the Ditzian-Totik moduli of smoothness.
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1. INTRODUCTION AND MAIN RESULTS

Let f(x) be Lebesgue integrable on any finite closed subinterval of [0, c0) and
n € Ny, n > 2. We consider the Baskakov-Kantorovich operator defined by

Vo f(z) := Zvnk(ac) (n— 1)/%1 flu)du, x>0,
k=0

where L1
Un () 1= <n Jrk B >xk(1 )k
Let
w(z):=1+z)", ~eR, (1.1)
and

L,(w)[0,00) := {f € L1,10c(0,00): wf € L,[0,00)},

where 1 < p < c0. Here L 15.(0,00) stands for the space of all functions which are
Lebesgue integrable on any finite closed subinterval of (0,00). Let || - ||, denote the
standard norm in L,[0, c0). The norm in Ly, (w)[0, co) is defined by || f||w,p = [Jwf]|p-
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_ The K-functional that turns out to naturally describe the approximation rate
of V,, in L, (w)[0,00) is

f((fat)w,p = _inf {||w(f_g)||p+tHngHp}7
gEW,, (w)[0,00)

where Dg(z) := (¢*(x)g'(z)), ¢(z) := /z(1 + ) and the space W, (w)[0,o0) is
defined, in the case v < 0, by

Wy(w)[0,0¢) = {g € ACi,(0,50): 9, Dyg € Ly(w)[0,0), lim ¢*(@)g'(x) =0},

and, for v > 0, the functions in Wp(w)[o,oo) are, in addition, required to satisfy
the condition lim,_, p?(z)¢'(x) = 0. As usually, we denote by AC™ (0, 0), where
m € Ny, the space of all functions on (0,00), which possess absolute continuous
derivatives up to order m on any finite closed subinterval of (0, c0).

Gadjev [9] proved the direct estimate

Vif = fllp < eK(f,n M1y,

for all f € L,[0,00), 1 <p < o0, and n € Ny, n > 2. Here ¢ is a positive constant
whose value is independent of f and n.

That estimate was generalised in L,(w)[0,00), 1 < p < oo, for any v € R by
Parvanov [24]

||w(‘7nf = Nllp < CIN{(ﬁ n_l)w,pv f € Lp(w)[0,00), n>|y[+1. (1.2)

Gadjev [9] (for v = 0) and Gadjev and Uluchev [17] (for v < 0) proved a two-
term strong converse inequality when 1 < p < 0o, which shows that (1.2) cannot be
improved for these p and +. B

We will characterise the K-functional K(f,t)wp for v < 0 by the weighted
Ditzian-Totik modulus of continuity [4, (6.1.5) and (3.2.1)]

_ —
w%+x(f’ t)ﬂhp = OSI}ILE ”wAh(l-‘rx)f”Pa
<h<t

where x(z) := z and .
Arf(z) = f(z+7)— fl2),

and the weighted Ditzian-Totik modulus of smoothness of a second order w? (f, t)w p,
defined by [4, (6.1.5)]

W2 (frt)wp = sup [[wAF flp,
0<h<t

where
fle+7)=2f(x)+ flx—7), z—72>0,
0, otherwise.

A2 fa) o= {
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We will show that the following equivalence relation holds. Before that we need
to introduce a relation. We say that the real-valued functionals A(f,t) and B(f,t)
are equivalent and write A(f,t) ~ B(f,t) for f and ¢ in specified domains if and
only if there exists a positive constant ¢ such that ¢ !B(f,t) < A(f,t) < cB(f,t)
for all f and ¢ in the specified domains.

Theorem 1.1. Let 1 < p < 0o and w(z) be given by (1.1) with v < 0. Then
there exists tg > 0 such that

K (f,%)up ~ 03 (f, D + 0Ly (f
where f € L,(w)[0,00) and 0 <t < tg.

Remark 1.2. As we will show in the proof of the theorem, the inequality

I?(f, t2)w,p < C(w?p(f? t)w,p + ‘D%J,-X(f» tz)w,p)y

where f € L,(w)[0,00) and 0 < t < ¢, with some ¢, > 0, holds for p = 1 as well.
Then, in the case v < 0, the direct estimate (1.2) can be stated in the form

[w(Vaf = Dllp < (@l (0™ wp + 0L (fsn D)

for all f € L,(w)[0,00), 1 < p < o0, and n > ng with some constant ng > 2, which
is independent of f.

Relations like the one in Theorem 1.1 are not new. The first one of this type
known to the author was proved by Gonska and Zhou [18, Theorem 1.2 and Re-
mark 1.3| (see also [1, Theorem B]) for the approximation by the Kantorovich op-
erator in L,[0,1]. It is for 1 < p < oo, too. Later on, the author established a
similar characterisation of the rate of the weighted simultaneous approximation by
the Bernstein and Kantorovich operators and their iterated Boolean sums [6]. About
the case p = 1, Ivanov [22] introduced a different kind of a modulus of smoothness
to characterise the K-functional associated to the Kantorovich and Durrmeyer op-
erator.

A very closely related result like the one in Theorem 1.1 in the unweighted case
was established in [10]. In the case p = oo, the characterisation in Theorem 1.1 was
essentially established in [7].

Let us recall that the weighted approximation by the Baskakov operator and
the Meyer-Konig and Zeller operator are closely related [25] (see also [8] and [12,
Section 2]). This relation might turn useful to transfer results about the rate of
approximation by the Baskakov-Kantorovich operator to the Kantorovich form of the
Meyer-Konig and Zeller operator. Direct estimates about the latter were established
in [11,13]. Also, it seems quite reasonable to expect that a similar characterisation
of the rate of approximation can be established for the operators considered in [15,

,21] as well. In this regard, the K-functional used in [14], where such operators
were considered, is equivalent to the one characterised in [5, Theorem 5.1] with
r = 2. Finally, such an approach should be effective to characterise the K-functionals
associated to the approximation rate of combinations of exponential-type operators
of the type introduced in [2,23] and [4, Section 9.2]. Approximation results about
such operators were established, e.g., in [26-28] (see also [19]).
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2. PRELIMINARIES

We will relate the K -functional K (f,t)w,p to two simpler ones. They are defined
by

K2 o(f,t)wp = f {[w(f = g)llp + tllwep?g"||,:
g € AClloc(Ov 00)7 g, @29// € Lp(w)[()? OO)}
and
K114 (fy )wp 1= inf {w(f = g)llp + tllw(l +x)g' ||, :
g € AC1.(0,0), g, (1 + X)g/ € Ly(w)]0, OO)}

To recall, we have set x(x) := x.
By [4, Theorem 6.1.1], there exists to > 0 such that for all f € L,(w)(0, c0)
and ¢ € (0,to] there hold

K2,<p(f7 t2)w,p Nw?p(fv t)w,p (21)
and
Kl,l-i—x(fa t)w,p ~ @%er(f, t)w,p- (2-2)

We will also make use of the K-functional

Ko o(f,)p. 0,17 :=inf {|[f = gllp.j0,1 + t16*0" p.0.1)
EAClloc(O’l) g, ¢2 " [07 1]}7

where || - ||p,; stands for the standard L,-norm on the interval J and ¢(z) :=
V(1 —z). Similarly, we have (see [1, Theorem 2.1.1]) that there exists to > 0
such that for all f € L,[0,1] and ¢ € (0, o] there holds

K2,¢(f7 ) [0,1] ~ w¢(fa )p [0,1]- (2-3)
Here wi f,t)p,j0,1) is the Ditzian-Totik modulus of smoothness of order 2, defined
in [1, (2.1.2)] by i

Wi (f,t)pj0.0) = sup [[A7 4 fllp.j0.1),
0<h<t
where
A2 f(x) i flx+7)=2f(x)+ f(x—7), zL+7€]0,1],
T 0, otherwise.

The last two K-functionals which will play an auxiliary role in the proof of the
main result are given by

Koo (f: )y pi1/a,00) = E {IIXT(F = 9)llp,1/a,00) + EIXTT29" |11 /4,000
g € ACL,.(1/4,00), 9. x°¢" € Lp(x")[1/4,00)}
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and

K1y (f )y p1 /,00) 2= I {IIX7(F = 9)lIpu11/a.00) + HIXTH G .11 /4,00) -
g € ACjoc(1/4,00), g, xg" € Lp(x")[1/4,00)}. (2.4)

The first K-functional is related to the weighted Ditzian-Totik modulus of smooth-
ness of second order, defined by [4, (6.1.5)]

W (f )y pi1/a,00) = S IXTAR fllp 174,005
0<h<t

and the second K-functional to the weighted Ditzian-Totik modulus of continuity,
defined by [4, (6.1.5)]

_ —
@y () p1/0,00) = SUD (X7 By fllp (174,005
0<h<t

where

AQ

T

fz) = {f(HT) —2f(@) + flx—7), r—7=>1/4,

0, otherwise,

and N

Arf(z) = flz+7) - f(z)
We have, by [4, Theorem 6.1.1], that there exists ty > 0 such that for all f €
L,(w)(0,00) and ¢ € (0, to] there hold

Koy (F82) 3 1 /a.00) ~ Wy (f5 )7 p.[1/4,00) (2.5)

and
K1y (Fs )y p 11/4,00) ~ Oy (s D)3 p.[1/4,00)- (2.6)

In all the above instances, the modulus of continuity is defined by the for-
ward finite difference rather than by the symmetric one as it was done in the cited
definitions in [4]. We do that for technical convenience only. We still have (2.2)
and (2.6) for the forward finite difference modulus of continuity. That was shown
in [4, Theorem 3.2.1] for the case v = 0, but the proof can be readily extended to
any real 7. _

In order to estimate the K-functional K(f,t), , from below by means of the
K-functionals Ko ,(f,t)w,p and K1 14y (f,t)wp, hence, in view of (2.1) and (2.2), by
wi(f, t)w,p and w}ﬂ(f, t)w,p, we will use the embedding inequalities below. They are
known (see [17, Lemma 4]), we include their short proof for the reader’s convenience.

Proposition 2.1. Let 1 < p < oo and w(zx) be given by (1.1) with v < 0. Let
g € Wp(w)[0,00). Then

p ~
w1+ x)g'll, < ] |wDg]|, (2.7)
and 5 .
p el ~
lwe®"llp < = l[wDg]l,. (2.8)
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For p = oo, the expressions p/(p—1) and (3p—1)/(p — 1) are to be interpreted
as their limit at infinity.

Proof. Since |w(z)?(z)g" (x)| < 2|w(z)(1 + x)g'(x)| + |w(x)l3g(x)|, it is enough to
show (2.7).
Welet ¢ =+ 0+ 0 in

/ Dy(u) du = G (x)g/(x) — ¢2(2)g' (), >0,
to arrive at

z(l+ )¢ (z) = /03c Dg(u)du, x> 0. (2.9)

We applied the Dominated Convergence Theorem and lim. .oy ©?(c)g’(¢) = 0.
Regarding the former, we have ﬁg € L1[0,z] for any z > 0 by virtue of Holder’s
inequality.

Next, (2.9) yields

[w()(1+ 2)g' ()| < / (@ D) du, @ > 0; (2.10)

hence, for 1 < p < oo,

(/OOO gl d”““) e (/0ij (slc /0 jw(u)Dg(u)| du)p d:c) "

Now, by virtue of Hardy’s inequality (see [20, p. 245])

(G e du)pdw)l/p < LS IE,

with F(u) = w(u)Dg(u), we arrive at (2.7) for 1 < p < cc.
In the case p = oo, we readily derive from (2.10) the inequality

lw(L + %) lls < |JwDg]| ..

Thus (2.7) is established. O
3. PROOF OF THEOREM 1.1

We denote by ¢ and tg positive constants, whose value is independent of the
functions involved, the function variable and ¢t. Their value can vary at each occur-
rence.

First, we will show that there exist a positive constant ¢ty such that for all
f € Ly(w)[0,00) and t € (0, o], there holds

WE(fot)wp + O (Fo )y < K (fo ) p- (3.1)
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Let g € Wp(w)[o, o0). By Proposition 2.1, there hold

[w@+x)g'll, < ellwDg]l,

and R
lwp?y” ||, < cllwDgllp.

Consequently, (1 + x)g’, 9%¢"” € L,(w)[0,0),
K11y (f, Dwp < lw(f = 9)llp + tllw(@ + )9 llp < c(llw(f — 9)llp + tllwDgllp)

and
Koo (fit)wp < lw(f — 9)llp + tlwe?g” [, < c(lw(f = g)llp + tlwDgll,).

Next, we take the infimum on g € Wp(w)[O, o0) to arrive at

K1,1+X(f7 t)w,p < Cg(fv t)w,zn t>0,

and B
KQ,LP(f? t)w,p < CK(f7 t)w,pa t>0.

Now, (2.1) and (2.2) imply
@%+X (f7 t2)w,p S Cf?(fa t2)w,pa

and B
w?@(f? t)w,p < CK(f7 t2)w,p7

where 0 < t < to with some ¢y independent of f; hence we get (3.1).

To establish the reverse relation, we use the same approach as in the proof of |7,
Theorem 1.2], where the case p = co was considered.

Let 1 < p < co. For any t € (0,%o] with some ¢y € (0,1] to be specified in the
course of the proof, we will define a function g; € W,,(w)[o, 00) such that

lw(f = g0)llp < cwZ(fs t)wps (3.2)
and R
t2”ngt||p S c (wi(ﬁ t)w,p + w%—o—x(fv t2)w,p) . (33)
Then we readily get
K(ft)wp < ¢ (@3 (ft)wp + @1y (ftwp),  0<t<to.

To establish (3.3), we will show that

t2||w(1 + X)QQHP <c (w?p(f7 t)w,P + (I)h_x(f’ t2)w,p) (3'4)

and
Plwe’g! |y < ¢ (WA (fs Duwp + @1 (s )wp) - (3.5)
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We will define g; by patching smoothly two approximants of f on [0,3/4] and
[1/2, 00), respectively, which satisfy (3.2), (3.4) and (3.5).

We begin with the approximant on [0,3/4]. We use the same argument as in [0,
p. 132] and [7, pp. 25-26]. It is not long and we include it for the sake of completeness.
Let m € N4 be such that t € (1/(m + 1),1/m] and let Q:(z) := Qr(f)(z) be the
quasi-interpolant spline operator of order r+41 with knots t;, j = —m+1,...,m—1,
used in the proof of [3, Chapter 6, Theorem 6.2] with » = 2 for the interval [0, 1]
instead of [—1,1].

We have, by [3, Chapter 5, Proposition 4.6, and Chapter 6, Theorem 4.2, (6.22)
and (6.24)]), that Q, € AC'[0,1] and

Ilf = Qtllp,jo, < Cwi(f, )p,j0,1]5
Q4 p 0,1 < cw(f, ) p. 0,115 (3.6)
¢*QY llp,0,1) < CW¢(f, ) p.0,1]

for 0 < t < 1/4. Here w(f,t), 0,1] denotes the classical modulus of continuity
in L,[0,1].
Next, since w(z) > ¢ > 0 and ¢(z) < ¢(x) on [0, 1], then
Ko g(f,t)p0,1] < Ko o(ft)w,ps
hence, by virtue of and (2.1) and (2.3) (cf. [1, Theorem 4.1.1])
(fa )p7[0 1] <cw (fa t)w,p (37)
for 0 < t < tp with some o € (0,1). In addition, similarly,

(fa ) [0,1] <cw1+x(f7 ) w,ps 0<t§t0

We combine the last two estimates with (3.6) to deduce

||f - Qt||p,[0,3/4] < cw?@(.ﬂ t)w,zn (38)
t2||Q2||p,[O 3/4] < C(I)%_i_x(f? 2)111,197 3.9
110°Q¢ Ip.j0.3/4) < W (fs ),y (3.10)

for 0 <t < ty.

We proceed to the definition of the approximant on [1/2,00). We will use the
same one as in the second half of the proof of [7, Theorem 1.2], where the case p = co
was only considered. The prove below include all y € R and 1 < p < 0.

Let 1 < p < co. Following [7, p. 27|, we introduce the Steklov-type function

/2
=% / / 1’ + x(ug +u2)) + f(m —x(uy + UQ))] duy dus,

where 0 <t <1/2 and z > 1/2.
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By Minkowski’s integral inequality, we arrive at

9 [t/2 [t/2
HX”(f—Hth,[l/z,oo)S;z/ / X AL sy Fllp.1/2.00) dus d

t)2
=~ t2 / fa x7,[1/4,00) dul dU2
X(fa )X“’,[l/4,oo)-

Then similarly to (3.7), we use (2.1) and (2.5) to further deduce

(S = Hllpia/200) < €@2(f e 0 <1< o (311)

We set
t/2
Ht( = / / a:+x(u1 +u2)) duy dus.

We have H(z) = Hy(z) + H_(z).
We write H; in the form

2 I(1+t/2) 2 I(lth)

ey (u—2z)f(u )du—|—7 (z(1+¢t) —u)f(u) du.

Hy(z) =
' 22 Jo(141/2)

Therefore, H; € AC* [1/2,00) and straightforward calculations yield

H(z) = ftz/ot/z [f (Hm (u+ ;)) —f(:c—i—xu)} du

t/2  pt)2
_% ; /0 [f(:c+m(u1+u2))—f(:c—km(ul—i—;))} duq dus.

To estimate the L,(x7™!)[1/2, 00)-norm of each of the integrals above, we subtract
and add f(x), split the integral into two terms by the triangle inequality, and apply
Minkowski’s integral inequality. For the first integral, we have
P 1/p
dm)

([t [ (s (a4) - st )
g(/;: xv/omf(ﬁx(w;))—f(x) pda:>1/p
- P\ /P

T TN T N
= /0 ||X’YA(“'H/Q)Xpr,[l/Q,oo) du +/0 HX’yAquHp,[l/Z,oo) du

§tw (fa )x"’,p [1/4,00)"

du

/2
2 / (@ + zu) — f(2)] du
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We estimate the L,(x?™!)[1/2,00)-norm of the second integral in the above
expression of HJ in a similar way. Thus, we arrive at

t2||X 7)1<(fa t)x”’,p,[l/4,oo) < cw%+x(fv t2)’w,p7 0 <t <ty,

as for the second estimate we took into account (2.2) and (2.6).

We prove the analogue of this estimate for H_; in a similar way, as we take into
account the fact that if we replace the forward finite difference in the definition of
G))l(( I3 )7 p,[1/4,00) With the backward one, we get a modulus, which is still equivalent
to the same K-functional; hence to &;}C(f, )y p.[1/4,00) (see [4, Section 3.2]).

Consequently,

X H | 1 /2,00) < cw}+x(f, wp, 0<t <t (3.12)

By means of straightforward calculations, we arrive at

H!(z) = _;];152/0”2 [f <x+x<u+;>) —f(x—!—xu)} du
2 (e (w0 ) -1 (40
thz /t/Q/t/Q{ flz+z(ur +u2)) — f(x+x<u1+;)>}du1du2

2t +2) [f(ﬁxt)—f(xm;ﬂ

22
+2it2 {f(x+wt)—2f(x+ff >+f( )]

We estimate the L,(x?*2)[1/2, 00)-norm, multiplied by ¢2, of all the terms on the
first four lines on the right-hand side above by @i, (f, tQ)wLp as we did for Hj.
Likewise, we estimate the norm of the corresponding terms in H”,. As for the terms
on the last line, we consider their sum with the corresponding terms in H”, and
write this sum in the form

Gi(2) ::% {f(a:+:ct)—2f (x+x )+f( )}

. {f(m—xt)—Qf(x—w2>+f( )]

= 2 A2 f(n) — s A2, (),

2212
hence
PTGl 1 /2,00) < Wi (fs )y pif1/4,00)-
Further, we use (2.1) and (2.5) to get

{xTT2G,

J1/2,00) S €W (fa wp
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Thus, we show that
X2 H |1 /2.00) < € (@h (D wp + 0Ly (f1)wp), 0<t<to.  (3.13)

We are ready to define g:(x) and derive that it satisfies (3.2), (3.4) and (3.5).
We apply a standard argument (see, e.g., [3, p. 176]). Let ¢» € C°°(R) be such that
P(x) =0 for x < 1/2 and ¢(z) = 1 for z > 3/4. Clearly, there exists a positive
constant ¢ such that [¢()(z)| < ¢, x € R, where i = 0, 1,2. We set

gr(x) = (1 = (2))Q¢(x) + ¥ (2)Hi(z), x=0.

Then g; € AC} (0, 00) and lim, 040 ¢%(2)g;(x) = lim, 040 2(1 + 2)Q}(z) = 0.
Next, we take into account that |¢(z)| < cfor x € R, ¢)(x) = 0 for z < 1/2 and
Y(x) =1 for x > 3/4, and (3.8) and (3.11) to get

lw(f = go)llp < c(If = Qtllp,0,3/4 + X (f — He)
< cwi(f)wp, 0 <t <t

pl1/2,00))

Thus, (3.2) is established.
We represent the first derivative of g; in the form

g:(x) = ¥'(@)[f(z) = Qu(2)] = ¥ (@) [f(x) — Hi(2)] + (1 — (2)) Qi () + ¢ (2) Hi ().

Then, similarly to the last estimate, but using also (3.9) and (3.12), we get

w4+ x)gillp < c(Ilf = Qellp.y2.3/4 + IX7(f = Ho)llp.1/2,3/4
+ Q¢ lIp.j0,3/4) + ||X’Y+1Ht/||p,[l/2,oo))
< e (Wi (st wp + 01y (frtwyp), 0<t <t

Thus, (3.4) is established.
Finally, for the second derivative of g;, we have

g/ (x) = " (@)[f(z) = Qe(x)] — " (2)[f (x) — Hy()]
— 20(2)Qi(w) + 20" (2) Hi(x) + (1 — () QY () + ¢ () HY ().

Then, similarly to the last two estimates, but taking into account all relations (3.8)—
(3.10) and (3.11)—(3.13), we arrive at

"

P lweg! llp < c(llf - Qtllp.11/2,3721 + IXT(f = He)llp,j1/2,3/4]
F1Qulp1 /2,374 + X Hillp1/2.3/4)
Q¢ p.10,3/4) + X" 2HY llp.1/2,00))
< e (Wi wp + 01y (i t)wyp), 0<t <t
Thus, we have shown (3.5) and completed the proof of g, € Wp(w)[O7 oo) and the

second part of the proof of Theorem 1.1 for 1 < p < oo. The validity of that part
for p = oo was shown in [7, pp. 27-29].
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