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1. Introduction and main results

Let 𝑓(𝑥) be Lebesgue integrable on any finite closed subinterval of [0,∞) and
𝑛 ∈ N+, 𝑛 ≥ 2. We consider the Baskakov-Kantorovich operator defined by

̃︀𝑉𝑛𝑓(𝑥) := ∞∑︁
𝑘=0

𝑣𝑛,𝑘(𝑥) (𝑛− 1)

∫︁ 𝑘+1
𝑛−1

𝑘
𝑛−1

𝑓(𝑢) 𝑑𝑢, 𝑥 ≥ 0,

where
𝑣𝑛,𝑘(𝑥) :=

(︂
𝑛+ 𝑘 − 1

𝑘

)︂
𝑥𝑘(1 + 𝑥)−𝑛−𝑘.

Let
𝑤(𝑥) := (1 + 𝑥)𝛾 , 𝛾 ∈ R, (1.1)

and
𝐿𝑝(𝑤)[0,∞) := {𝑓 ∈ 𝐿1,𝑙𝑜𝑐(0,∞) : 𝑤𝑓 ∈ 𝐿𝑝[0,∞)},

where 1 ≤ 𝑝 ≤ ∞. Here 𝐿1,𝑙𝑜𝑐(0,∞) stands for the space of all functions which are
Lebesgue integrable on any finite closed subinterval of (0,∞). Let ‖ · ‖𝑝 denote the
standard norm in 𝐿𝑝[0,∞). The norm in 𝐿𝑝(𝑤)[0,∞) is defined by ‖𝑓‖𝑤,𝑝 := ‖𝑤𝑓‖𝑝.
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The 𝐾-functional that turns out to naturally describe the approximation rate
of ̃︀𝑉𝑛 in 𝐿𝑝(𝑤)[0,∞) is

̃︀𝐾(𝑓, 𝑡)𝑤,𝑝 := inf
𝑔∈̃︁𝑊𝑝(𝑤)[0,∞)

{︀
‖𝑤(𝑓 − 𝑔)‖𝑝 + 𝑡

⃦⃦
𝑤 ̂︀𝐷𝑔⃦⃦

𝑝

}︀
,

where ̂︀𝐷𝑔(𝑥) := (𝜙2(𝑥)𝑔′(𝑥))′, 𝜙(𝑥) :=
√︀
𝑥(1 + 𝑥) and the space ̃︁𝑊𝑝(𝑤)[0,∞) is

defined, in the case 𝛾 ≤ 0, by

̃︁𝑊𝑝(𝑤)[0,∞) :=
{︁
𝑔 ∈ 𝐴𝐶1

𝑙𝑜𝑐(0,∞) : 𝑔, ̂︀𝐷𝑔 ∈ 𝐿𝑝(𝑤)[0,∞), lim
𝑥→0+0

𝜙2(𝑥)𝑔′(𝑥) = 0
}︁
,

and, for 𝛾 > 0, the functions in ̃︁𝑊𝑝(𝑤)[0,∞) are, in addition, required to satisfy
the condition lim𝑥→∞ 𝜙2(𝑥)𝑔′(𝑥) = 0. As usually, we denote by 𝐴𝐶𝑚

𝑙𝑜𝑐(0,∞), where
𝑚 ∈ N0, the space of all functions on (0,∞), which possess absolute continuous
derivatives up to order 𝑚 on any finite closed subinterval of (0,∞).

Gadjev [9] proved the direct estimate

‖̃︀𝑉𝑛𝑓 − 𝑓‖𝑝 ≤ 𝑐 ̃︀𝐾(𝑓, 𝑛−1)1,𝑝,

for all 𝑓 ∈ 𝐿𝑝[0,∞), 1 ≤ 𝑝 ≤ ∞, and 𝑛 ∈ N+, 𝑛 ≥ 2. Here 𝑐 is a positive constant
whose value is independent of 𝑓 and 𝑛.

That estimate was generalised in 𝐿𝑝(𝑤)[0,∞), 1 ≤ 𝑝 ≤ ∞, for any 𝛾 ∈ R by
Parvanov [24]

‖𝑤(̃︀𝑉𝑛𝑓 − 𝑓)‖𝑝 ≤ 𝑐 ̃︀𝐾(𝑓, 𝑛−1)𝑤,𝑝, 𝑓 ∈ 𝐿𝑝(𝑤)[0,∞), 𝑛 > |𝛾|+ 1. (1.2)

Gadjev [9] (for 𝛾 = 0) and Gadjev and Uluchev [17] (for 𝛾 < 0) proved a two-
term strong converse inequality when 1 < 𝑝 ≤ ∞, which shows that (1.2) cannot be
improved for these 𝑝 and 𝛾.

We will characterise the 𝐾-functional ̃︀𝐾(𝑓, 𝑡)𝑤,𝑝 for 𝛾 ≤ 0 by the weighted
Ditzian-Totik modulus of continuity [4, (6.1.5) and (3.2.1)]

𝜔̄1
1+𝜒(𝑓, 𝑡)𝑤,𝑝 := sup

0<ℎ≤𝑡
‖𝑤

−→
Δℎ(1+𝜒)𝑓‖𝑝,

where 𝜒(𝑥) := 𝑥 and
−→
Δ𝜏𝑓(𝑥) := 𝑓(𝑥+ 𝜏)− 𝑓(𝑥),

and the weighted Ditzian-Totik modulus of smoothness of a second order 𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝,

defined by [4, (6.1.5)]

𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 := sup

0<ℎ≤𝑡
‖𝑤Δ2

ℎ𝜙𝑓‖𝑝,

where

Δ2
𝜏𝑓(𝑥) :=

{︃
𝑓(𝑥+ 𝜏)− 2𝑓(𝑥) + 𝑓(𝑥− 𝜏), 𝑥− 𝜏 ≥ 0,

0, otherwise.
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We will show that the following equivalence relation holds. Before that we need
to introduce a relation. We say that the real-valued functionals 𝐴(𝑓, 𝑡) and 𝐵(𝑓, 𝑡)
are equivalent and write 𝐴(𝑓, 𝑡) ∼ 𝐵(𝑓, 𝑡) for 𝑓 and 𝑡 in specified domains if and
only if there exists a positive constant 𝑐 such that 𝑐−1𝐵(𝑓, 𝑡) ≤ 𝐴(𝑓, 𝑡) ≤ 𝑐𝐵(𝑓, 𝑡)
for all 𝑓 and 𝑡 in the specified domains.

Theorem 1.1. Let 1 < 𝑝 ≤ ∞ and 𝑤(𝑥) be given by (1.1) with 𝛾 ≤ 0. Then
there exists 𝑡0 > 0 such that̃︀𝐾(𝑓, 𝑡2)𝑤,𝑝 ∼ 𝜔2

𝜙(𝑓, 𝑡)𝑤,𝑝 + 𝜔̄1
1+𝜒(𝑓, 𝑡

2)𝑤,𝑝,

where 𝑓 ∈ 𝐿𝑝(𝑤)[0,∞) and 0 < 𝑡 ≤ 𝑡0.

Remark 1.2. As we will show in the proof of the theorem, the inequalitỹ︀𝐾(𝑓, 𝑡2)𝑤,𝑝 ≤ 𝑐
(︀
𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 + 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝

)︀
,

where 𝑓 ∈ 𝐿𝑝(𝑤)[0,∞) and 0 < 𝑡 ≤ 𝑡0 with some 𝑡0 > 0, holds for 𝑝 = 1 as well.
Then, in the case 𝛾 ≤ 0, the direct estimate (1.2) can be stated in the form

‖𝑤(̃︀𝑉𝑛𝑓 − 𝑓)‖𝑝 ≤ 𝑐
(︀
𝜔2
𝜙(𝑓, 𝑛

−1/2)𝑤,𝑝 + 𝜔̄1
1+𝜒(𝑓, 𝑛

−1)𝑤,𝑝

)︀
for all 𝑓 ∈ 𝐿𝑝(𝑤)[0,∞), 1 ≤ 𝑝 ≤ ∞, and 𝑛 ≥ 𝑛0 with some constant 𝑛0 ≥ 2, which
is independent of 𝑓 .

Relations like the one in Theorem 1.1 are not new. The first one of this type
known to the author was proved by Gonska and Zhou [18, Theorem 1.2 and Re-
mark 1.3] (see also [1, Theorem B]) for the approximation by the Kantorovich op-
erator in 𝐿𝑝[0, 1]. It is for 1 < 𝑝 ≤ ∞, too. Later on, the author established a
similar characterisation of the rate of the weighted simultaneous approximation by
the Bernstein and Kantorovich operators and their iterated Boolean sums [6]. About
the case 𝑝 = 1, Ivanov [22] introduced a different kind of a modulus of smoothness
to characterise the 𝐾-functional associated to the Kantorovich and Durrmeyer op-
erator.

A very closely related result like the one in Theorem 1.1 in the unweighted case
was established in [10]. In the case 𝑝 = ∞, the characterisation in Theorem 1.1 was
essentially established in [7].

Let us recall that the weighted approximation by the Baskakov operator and
the Meyer-König and Zeller operator are closely related [25] (see also [8] and [12,
Section 2]). This relation might turn useful to transfer results about the rate of
approximation by the Baskakov-Kantorovich operator to the Kantorovich form of the
Meyer-König and Zeller operator. Direct estimates about the latter were established
in [11, 13]. Also, it seems quite reasonable to expect that a similar characterisation
of the rate of approximation can be established for the operators considered in [15,
16, 21] as well. In this regard, the 𝐾-functional used in [14], where such operators
were considered, is equivalent to the one characterised in [5, Theorem 5.1] with
𝑟 = 2. Finally, such an approach should be effective to characterise the𝐾-functionals
associated to the approximation rate of combinations of exponential-type operators
of the type introduced in [2, 23] and [4, Section 9.2]. Approximation results about
such operators were established, e.g., in [26–28] (see also [19]).
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2. Preliminaries

We will relate the𝐾-functional ̃︀𝐾(𝑓, 𝑡)𝑤,𝑝 to two simpler ones. They are defined
by

𝐾2,𝜙(𝑓, 𝑡)𝑤,𝑝 := inf
{︀
‖𝑤(𝑓 − 𝑔)‖𝑝 + 𝑡‖𝑤𝜙2𝑔′′‖𝑝 :

𝑔 ∈ 𝐴𝐶1
𝑙𝑜𝑐(0,∞), 𝑔, 𝜙2𝑔′′ ∈ 𝐿𝑝(𝑤)[0,∞)

}︀
and

𝐾1,1+𝜒(𝑓, 𝑡)𝑤,𝑝 := inf
{︀
‖𝑤(𝑓 − 𝑔)‖𝑝 + 𝑡‖𝑤(1 + 𝜒)𝑔′‖𝑝 :

𝑔 ∈ 𝐴𝐶𝑙𝑜𝑐(0,∞), 𝑔, (1 + 𝜒)𝑔′ ∈ 𝐿𝑝(𝑤)[0,∞)
}︀
.

To recall, we have set 𝜒(𝑥) := 𝑥.
By [4, Theorem 6.1.1], there exists 𝑡0 > 0 such that for all 𝑓 ∈ 𝐿𝑝(𝑤)(0,∞)

and 𝑡 ∈ (0, 𝑡0] there hold

𝐾2,𝜙(𝑓, 𝑡
2)𝑤,𝑝 ∼ 𝜔2

𝜙(𝑓, 𝑡)𝑤,𝑝 (2.1)

and
𝐾1,1+𝜒(𝑓, 𝑡)𝑤,𝑝 ∼ 𝜔̄1

1+𝜒(𝑓, 𝑡)𝑤,𝑝. (2.2)

We will also make use of the 𝐾-functional

𝐾2,𝜑(𝑓, 𝑡)𝑝,[0,1] := inf
{︀
‖𝑓 − 𝑔‖𝑝,[0,1] + 𝑡‖𝜑2𝑔′′‖𝑝,[0,1] :

𝑔 ∈ 𝐴𝐶1
𝑙𝑜𝑐(0, 1), 𝑔, 𝜑

2𝑔′′ ∈ 𝐿𝑝[0, 1]
}︀
,

where ‖ · ‖𝑝,𝐽 stands for the standard 𝐿𝑝-norm on the interval 𝐽 and 𝜑(𝑥) :=√︀
𝑥(1− 𝑥). Similarly, we have (see [4, Theorem 2.1.1]) that there exists 𝑡0 > 0

such that for all 𝑓 ∈ 𝐿𝑝[0, 1] and 𝑡 ∈ (0, 𝑡0] there holds

𝐾2,𝜑(𝑓, 𝑡
2)𝑝,[0,1] ∼ 𝜔2

𝜑(𝑓, 𝑡)𝑝,[0,1]. (2.3)

Here 𝜔2
𝜑(𝑓, 𝑡)𝑝,[0,1] is the Ditzian-Totik modulus of smoothness of order 2, defined

in [4, (2.1.2)] by
𝜔2
𝜑(𝑓, 𝑡)𝑝,[0,1] := sup

0<ℎ≤𝑡
‖Δ̄2

ℎ𝜑𝑓‖𝑝,[0,1],

where

Δ̄2
𝜏𝑓(𝑥) :=

{︃
𝑓(𝑥+ 𝜏)− 2𝑓(𝑥) + 𝑓(𝑥− 𝜏), 𝑥± 𝜏 ∈ [0, 1],

0, otherwise.

The last two 𝐾-functionals which will play an auxiliary role in the proof of the
main result are given by

𝐾2,𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞) := inf
{︀
‖𝜒𝛾(𝑓 − 𝑔)‖𝑝,[1/4,∞) + 𝑡‖𝜒𝛾+2𝑔′′‖𝑝,[1/4,∞) :

𝑔 ∈ 𝐴𝐶1
𝑙𝑜𝑐(1/4,∞), 𝑔, 𝜒2𝑔′′ ∈ 𝐿𝑝(𝜒

𝛾)[1/4,∞)
}︀
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and

𝐾1,𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞) := inf
{︀
‖𝜒𝛾(𝑓 − 𝑔)‖𝑝,[1/4,∞) + 𝑡‖𝜒𝛾+1𝑔′‖𝑝,[1/4,∞) :

𝑔 ∈ 𝐴𝐶𝑙𝑜𝑐(1/4,∞), 𝑔, 𝜒𝑔′ ∈ 𝐿𝑝(𝜒
𝛾)[1/4,∞)

}︀
. (2.4)

The first 𝐾-functional is related to the weighted Ditzian-Totik modulus of smooth-
ness of second order, defined by [4, (6.1.5)]

𝜔2
𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞) := sup

0<ℎ≤𝑡
‖𝜒𝛾Δ2

ℎ𝜒𝑓‖𝑝,[1/4,∞),

and the second 𝐾-functional to the weighted Ditzian-Totik modulus of continuity,
defined by [4, (6.1.5)]

𝜔̄1
𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞) := sup

0<ℎ≤𝑡
‖𝜒𝛾−→Δℎ𝜒𝑓‖𝑝,[1/4,∞),

where

Δ2
𝜏𝑓(𝑥) :=

{︃
𝑓(𝑥+ 𝜏)− 2𝑓(𝑥) + 𝑓(𝑥− 𝜏), 𝑥− 𝜏 ≥ 1/4,

0, otherwise,

and −→
Δ𝜏𝑓(𝑥) := 𝑓(𝑥+ 𝜏)− 𝑓(𝑥).

We have, by [4, Theorem 6.1.1], that there exists 𝑡0 > 0 such that for all 𝑓 ∈
𝐿𝑝(𝑤)(0,∞) and 𝑡 ∈ (0, 𝑡0] there hold

𝐾2,𝜒(𝑓, 𝑡
2)𝜒𝛾 ,𝑝,[1/4,∞) ∼ 𝜔2

𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞) (2.5)

and
𝐾1,𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞) ∼ 𝜔̄1

𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞). (2.6)

In all the above instances, the modulus of continuity is defined by the for-
ward finite difference rather than by the symmetric one as it was done in the cited
definitions in [4]. We do that for technical convenience only. We still have (2.2)
and (2.6) for the forward finite difference modulus of continuity. That was shown
in [4, Theorem 3.2.1] for the case 𝛾 = 0, but the proof can be readily extended to
any real 𝛾.

In order to estimate the 𝐾-functional ̃︀𝐾(𝑓, 𝑡)𝑤,𝑝 from below by means of the
𝐾-functionals 𝐾2,𝜙(𝑓, 𝑡)𝑤,𝑝 and 𝐾1,1+𝜒(𝑓, 𝑡)𝑤,𝑝, hence, in view of (2.1) and (2.2), by
𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 and 𝜔̄1

1+𝜒(𝑓, 𝑡)𝑤,𝑝, we will use the embedding inequalities below. They are
known (see [17, Lemma 4]), we include their short proof for the reader’s convenience.

Proposition 2.1. Let 1 < 𝑝 ≤ ∞ and 𝑤(𝑥) be given by (1.1) with 𝛾 ≤ 0. Let
𝑔 ∈ ̃︁𝑊𝑝(𝑤)[0,∞). Then

‖𝑤(1 + 𝜒)𝑔′‖𝑝 ≤ 𝑝

𝑝− 1

⃦⃦
𝑤 ̂︀𝐷𝑔⃦⃦

𝑝
(2.7)

and
‖𝑤𝜙2𝑔′′‖𝑝 ≤ 3𝑝− 1

𝑝− 1

⃦⃦
𝑤 ̂︀𝐷𝑔⃦⃦

𝑝
. (2.8)
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For 𝑝 = ∞, the expressions 𝑝/(𝑝− 1) and (3𝑝− 1)/(𝑝− 1) are to be interpreted
as their limit at infinity.

Proof. Since |𝑤(𝑥)𝜙2(𝑥)𝑔′′(𝑥)| ≤ 2|𝑤(𝑥)(1 + 𝑥)𝑔′(𝑥)|+ |𝑤(𝑥) ̂︀𝐷𝑔(𝑥)|, it is enough to
show (2.7).

We let 𝜀→ 0 + 0 in∫︁ 𝑥

𝜀

̂︀𝐷𝑔(𝑢) 𝑑𝑢 = 𝜙2(𝑥)𝑔′(𝑥)− 𝜙2(𝜀)𝑔′(𝜀), 𝑥 > 0,

to arrive at
𝑥(1 + 𝑥)𝑔′(𝑥) =

∫︁ 𝑥

0

̂︀𝐷𝑔(𝑢) 𝑑𝑢, 𝑥 > 0. (2.9)

We applied the Dominated Convergence Theorem and lim𝜀→0+0 𝜙
2(𝜀)𝑔′(𝜀) = 0.

Regarding the former, we have ̂︀𝐷𝑔 ∈ 𝐿1[0, 𝑥] for any 𝑥 > 0 by virtue of Hölder’s
inequality.

Next, (2.9) yields

|𝑤(𝑥)(1 + 𝑥)𝑔′(𝑥)| ≤ 1

𝑥

∫︁ 𝑥

0

|𝑤(𝑢) ̂︀𝐷𝑔(𝑢)| 𝑑𝑢, 𝑥 > 0; (2.10)

hence, for 1 < 𝑝 <∞,(︂∫︁ ∞

0

|𝑤(𝑥)(1 + 𝑥)𝑔′(𝑥)|𝑝 𝑑𝑥
)︂1/𝑝

≤
(︂∫︁ ∞

0

(︂
1

𝑥

∫︁ 𝑥

0

|𝑤(𝑢) ̂︀𝐷𝑔(𝑢)| 𝑑𝑢)︂𝑝

𝑑𝑥

)︂1/𝑝

.

Now, by virtue of Hardy’s inequality (see [20, p. 245])(︂∫︁ ∞

0

(︂
1

𝑥

∫︁ 𝑥

0

|𝐹 (𝑢)| 𝑑𝑢
)︂𝑝

𝑑𝑥

)︂1/𝑝

≤ 𝑝

𝑝− 1
‖𝐹‖𝑝,

with 𝐹 (𝑢) = 𝑤(𝑢) ̂︀𝐷𝑔(𝑢), we arrive at (2.7) for 1 < 𝑝 <∞.
In the case 𝑝 = ∞, we readily derive from (2.10) the inequality

‖𝑤(1 + 𝜒)𝑔′‖∞ ≤
⃦⃦
𝑤 ̂︀𝐷𝑔⃦⃦∞.

Thus (2.7) is established.

3. Proof of Theorem 1.1

We denote by 𝑐 and 𝑡0 positive constants, whose value is independent of the
functions involved, the function variable and 𝑡. Their value can vary at each occur-
rence.

First, we will show that there exist a positive constant 𝑡0 such that for all
𝑓 ∈ 𝐿𝑝(𝑤)[0,∞) and 𝑡 ∈ (0, 𝑡0], there holds

𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 + 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝 ≤ 𝑐 ̃︀𝐾(𝑓, 𝑡2)𝑤,𝑝. (3.1)
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Let 𝑔 ∈ ̃︁𝑊𝑝(𝑤)[0,∞). By Proposition 2.1, there hold

‖𝑤(1 + 𝜒)𝑔′‖𝑝 ≤ 𝑐‖𝑤 ̂︀𝐷𝑔‖𝑝
and

‖𝑤𝜙2𝑔′′‖𝑝 ≤ 𝑐‖𝑤 ̂︀𝐷𝑔‖𝑝.
Consequently, (1 + 𝜒)𝑔′, 𝜙2𝑔′′ ∈ 𝐿𝑝(𝑤)[0,∞),

𝐾1,1+𝜒(𝑓, 𝑡)𝑤,𝑝 ≤ ‖𝑤(𝑓 − 𝑔)‖𝑝 + 𝑡‖𝑤(1 + 𝜒)𝑔′‖𝑝 ≤ 𝑐
(︀
‖𝑤(𝑓 − 𝑔)‖𝑝 + 𝑡‖𝑤 ̂︀𝐷𝑔‖𝑝)︀

and

𝐾2,𝜙(𝑓, 𝑡)𝑤,𝑝 ≤ ‖𝑤(𝑓 − 𝑔)‖𝑝 + 𝑡‖𝑤𝜙2𝑔′′‖𝑝 ≤ 𝑐
(︀
‖𝑤(𝑓 − 𝑔)‖𝑝 + 𝑡‖𝑤 ̂︀𝐷𝑔‖𝑝)︀.

Next, we take the infimum on 𝑔 ∈ ̃︁𝑊𝑝(𝑤)[0,∞) to arrive at

𝐾1,1+𝜒(𝑓, 𝑡)𝑤,𝑝 ≤ 𝑐 ̃︀𝐾(𝑓, 𝑡)𝑤,𝑝, 𝑡 > 0,

and
𝐾2,𝜙(𝑓, 𝑡)𝑤,𝑝 ≤ 𝑐 ̃︀𝐾(𝑓, 𝑡)𝑤,𝑝, 𝑡 > 0.

Now, (2.1) and (2.2) imply

𝜔̄1
1+𝜒(𝑓, 𝑡

2)𝑤,𝑝 ≤ 𝑐 ̃︀𝐾(𝑓, 𝑡2)𝑤,𝑝,

and
𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 ≤ 𝑐 ̃︀𝐾(𝑓, 𝑡2)𝑤,𝑝,

where 0 < 𝑡 ≤ 𝑡0 with some 𝑡0 independent of 𝑓 ; hence we get (3.1).
To establish the reverse relation, we use the same approach as in the proof of [7,

Theorem 1.2], where the case 𝑝 = ∞ was considered.
Let 1 ≤ 𝑝 ≤ ∞. For any 𝑡 ∈ (0, 𝑡0] with some 𝑡0 ∈ (0, 1] to be specified in the

course of the proof, we will define a function 𝑔𝑡 ∈ ̃︁𝑊𝑝(𝑤)[0,∞) such that

‖𝑤(𝑓 − 𝑔𝑡)‖𝑝 ≤ 𝑐 𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝, (3.2)

and
𝑡2
⃦⃦
𝑤 ̂︀𝐷𝑔𝑡⃦⃦𝑝 ≤ 𝑐

(︀
𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 + 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝

)︀
. (3.3)

Then we readily get

̃︀𝐾(𝑓, 𝑡)𝑤,𝑝 ≤ 𝑐
(︀
𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 + 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝

)︀
, 0 < 𝑡 ≤ 𝑡0.

To establish (3.3), we will show that

𝑡2‖𝑤(1 + 𝜒)𝑔′𝑡‖𝑝 ≤ 𝑐
(︀
𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 + 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝

)︀
(3.4)

and
𝑡2‖𝑤𝜙2𝑔′′𝑡 ‖𝑝 ≤ 𝑐

(︀
𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 + 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝

)︀
. (3.5)
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We will define 𝑔𝑡 by patching smoothly two approximants of 𝑓 on [0, 3/4] and
[1/2,∞), respectively, which satisfy (3.2), (3.4) and (3.5).

We begin with the approximant on [0, 3/4]. We use the same argument as in [6,
p. 132] and [7, pp. 25–26]. It is not long and we include it for the sake of completeness.
Let 𝑚 ∈ N+ be such that 𝑡 ∈ (1/(𝑚 + 1), 1/𝑚] and let 𝑄𝑡(𝑥) := 𝑄𝑇 (𝑓)(𝑥) be the
quasi-interpolant spline operator of order 𝑟+1 with knots 𝑡𝑗 , 𝑗 = −𝑚+1, . . . ,𝑚−1,
used in the proof of [3, Chapter 6, Theorem 6.2] with 𝑟 = 2 for the interval [0, 1]
instead of [−1, 1].

We have, by [3, Chapter 5, Proposition 4.6, and Chapter 6, Theorem 4.2, (6.22)
and (6.24)]), that 𝑄𝑡 ∈ 𝐴𝐶1[0, 1] and

‖𝑓 −𝑄𝑡‖𝑝,[0,1] ≤ 𝑐 𝜔2
𝜑(𝑓, 𝑡)𝑝,[0,1],

𝑡2‖𝑄′
𝑡‖𝑝,[0,1] ≤ 𝑐 𝜔(𝑓, 𝑡2)𝑝,[0,1],

𝑡2‖𝜑2𝑄′′
𝑡 ‖𝑝,[0,1] ≤ 𝑐 𝜔2

𝜑(𝑓, 𝑡)𝑝,[0,1]

(3.6)

for 0 < 𝑡 ≤ 1/4. Here 𝜔(𝑓, 𝑡)𝑝,[0,1] denotes the classical modulus of continuity
in 𝐿𝑝[0, 1].

Next, since 𝑤(𝑥) ≥ 𝑐 > 0 and 𝜑(𝑥) ≤ 𝜙(𝑥) on [0, 1], then

𝐾2,𝜑(𝑓, 𝑡)𝑝,[0,1] ≤ 𝑐𝐾2,𝜙(𝑓, 𝑡)𝑤,𝑝;

hence, by virtue of and (2.1) and (2.3) (cf. [4, Theorem 4.1.1])

𝜔2
𝜑(𝑓, 𝑡)𝑝,[0,1] ≤ 𝑐 𝜔2

𝜙(𝑓, 𝑡)𝑤,𝑝 (3.7)

for 0 < 𝑡 ≤ 𝑡0 with some 𝑡0 ∈ (0, 1). In addition, similarly,

𝜔(𝑓, 𝑡2)𝑝,[0,1] ≤ 𝑐 𝜔̄1
1+𝜒(𝑓, 𝑡

2)𝑤,𝑝, 0 < 𝑡 ≤ 𝑡0.

We combine the last two estimates with (3.6) to deduce

‖𝑓 −𝑄𝑡‖𝑝,[0,3/4] ≤ 𝑐 𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝, (3.8)

𝑡2‖𝑄′
𝑡‖𝑝,[0,3/4] ≤ 𝑐 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝, (3.9)

𝑡2‖𝜙2𝑄′′
𝑡 ‖𝑝,[0,3/4] ≤ 𝑐 𝜔2

𝜙(𝑓, 𝑡)𝑤,𝑝 (3.10)

for 0 < 𝑡 ≤ 𝑡0.
We proceed to the definition of the approximant on [1/2,∞). We will use the

same one as in the second half of the proof of [7, Theorem 1.2], where the case 𝑝 = ∞
was only considered. The prove below include all 𝛾 ∈ R and 1 ≤ 𝑝 ≤ ∞.

Let 1 ≤ 𝑝 <∞. Following [7, p. 27], we introduce the Steklov-type function

𝐻𝑡(𝑥) :=
2

𝑡2

∫︁ 𝑡/2

0

∫︁ 𝑡/2

0

[︀
𝑓
(︀
𝑥+ 𝑥(𝑢1 + 𝑢2)

)︀
+ 𝑓

(︀
𝑥− 𝑥(𝑢1 + 𝑢2)

)︀]︀
𝑑𝑢1 𝑑𝑢2,

where 0 < 𝑡 ≤ 1/2 and 𝑥 ≥ 1/2.
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By Minkowski’s integral inequality, we arrive at

‖𝜒𝛾(𝑓 −𝐻𝑡)‖𝑝,[1/2,∞) ≤
2

𝑡2

∫︁ 𝑡/2

0

∫︁ 𝑡/2

0

‖𝜒𝛾Δ2
(𝑢1+𝑢2)𝜒

𝑓‖𝑝,[1/2,∞) 𝑑𝑢1 𝑑𝑢2

≤ 2

𝑡2

∫︁ 𝑡/2

0

∫︁ 𝑡/2

0

𝜔2
𝜒(𝑓, 𝑡)𝜒𝛾 ,[1/4,∞) 𝑑𝑢1 𝑑𝑢2

≤ 𝜔2
𝜒(𝑓, 𝑡)𝜒𝛾 ,[1/4,∞).

Then similarly to (3.7), we use (2.1) and (2.5) to further deduce

‖𝜒𝛾(𝑓 −𝐻𝑡)‖𝑝,[1/2,∞) ≤ 𝑐 𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝, 0 < 𝑡 ≤ 𝑡0. (3.11)

We set ̃︀𝐻𝑡(𝑥) :=
2

𝑡2

∫︁ 𝑡/2

0

∫︁ 𝑡/2

0

𝑓
(︀
𝑥+ 𝑥(𝑢1 + 𝑢2)

)︀
𝑑𝑢1 𝑑𝑢2.

We have 𝐻𝑡(𝑥) = ̃︀𝐻𝑡(𝑥) + ̃︀𝐻−𝑡(𝑥).
We write ̃︀𝐻𝑡 in the form

̃︀𝐻𝑡(𝑥) =
2

𝑥2𝑡2

∫︁ 𝑥(1+𝑡/2)

𝑥

(𝑢− 𝑥)𝑓(𝑢) 𝑑𝑢+
2

𝑥2𝑡2

∫︁ 𝑥(1+𝑡)

𝑥(1+𝑡/2)

(𝑥(1 + 𝑡)− 𝑢)𝑓(𝑢) 𝑑𝑢.

Therefore, ̃︀𝐻𝑡 ∈ 𝐴𝐶1[1/2,∞) and straightforward calculations yield

̃︀𝐻 ′
𝑡(𝑥) =

2

𝑥𝑡2

∫︁ 𝑡/2

0

[︂
𝑓

(︂
𝑥+ 𝑥

(︂
𝑢+

𝑡

2

)︂)︂
− 𝑓(𝑥+ 𝑥𝑢)

]︂
𝑑𝑢

− 4

𝑥𝑡2

∫︁ 𝑡/2

0

∫︁ 𝑡/2

0

[︂
𝑓
(︀
𝑥+ 𝑥(𝑢1 + 𝑢2)

)︀
− 𝑓

(︂
𝑥+ 𝑥

(︂
𝑢1 +

𝑡

2

)︂)︂]︂
𝑑𝑢1 𝑑𝑢2.

To estimate the 𝐿𝑝(𝜒
𝛾+1)[1/2,∞)-norm of each of the integrals above, we subtract

and add 𝑓(𝑥), split the integral into two terms by the triangle inequality, and apply
Minkowski’s integral inequality. For the first integral, we have(︃∫︁ ∞

1/2

⃒⃒⃒⃒
⃒𝑥𝛾+1 1

𝑥

∫︁ 𝑡/2

0

[︂
𝑓

(︂
𝑥+ 𝑥

(︂
𝑢+

𝑡

2

)︂)︂
− 𝑓(𝑥+ 𝑥𝑢)

]︂
𝑑𝑢

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

)︃1/𝑝

≤

(︃∫︁ ∞

1/2

⃒⃒⃒⃒
⃒𝑥𝛾

∫︁ 𝑡/2

0

⃒⃒⃒⃒
𝑓

(︂
𝑥+ 𝑥

(︂
𝑢+

𝑡

2

)︂)︂
− 𝑓(𝑥)

⃒⃒⃒⃒
𝑑𝑢

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

)︃1/𝑝

+

(︃∫︁ ∞

1/2

⃒⃒⃒⃒
⃒𝑥𝛾

∫︁ 𝑡/2

0

|𝑓(𝑥+ 𝑥𝑢)− 𝑓(𝑥)| 𝑑𝑢

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

)︃1/𝑝

≤
∫︁ 𝑡/2

0

⃦⃦
𝜒𝛾−→Δ(𝑢+𝑡/2)𝜒𝑓

⃦⃦
𝑝,[1/2,∞)

𝑑𝑢+

∫︁ 𝑡/2

0

⃦⃦
𝜒𝛾−→Δ𝑢𝜒𝑓

⃦⃦
𝑝,[1/2,∞)

𝑑𝑢

≤ 𝑡 𝜔̄1
𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞).
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We estimate the 𝐿𝑝(𝜒
𝛾+1)[1/2,∞)-norm of the second integral in the above

expression of ̃︀𝐻 ′
𝑡 in a similar way. Thus, we arrive at

𝑡2‖𝜒𝛾+1 ̃︀𝐻 ′
𝑡‖𝑝,[1/2,∞) ≤ 𝑐𝑡 𝜔̄1

𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞) ≤ 𝑐 𝜔̄1
1+𝜒(𝑓, 𝑡

2)𝑤,𝑝, 0 < 𝑡 ≤ 𝑡0,

as for the second estimate we took into account (2.2) and (2.6).
We prove the analogue of this estimate for ̃︀𝐻−𝑡 in a similar way, as we take into

account the fact that if we replace the forward finite difference in the definition of
𝜔̄1
𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞) with the backward one, we get a modulus, which is still equivalent

to the same 𝐾-functional; hence to 𝜔̄1
𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞) (see [4, Section 3.2]).

Consequently,

𝑡2‖𝜒𝛾+1𝐻 ′
𝑡‖𝑝,[1/2,∞) ≤ 𝑐 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝, 0 < 𝑡 ≤ 𝑡0. (3.12)

By means of straightforward calculations, we arrive at

̃︀𝐻 ′′
𝑡 (𝑥) = − 8

𝑥2𝑡2

∫︁ 𝑡/2

0

[︂
𝑓

(︂
𝑥+ 𝑥

(︂
𝑢+

𝑡

2

)︂)︂
− 𝑓(𝑥+ 𝑥𝑢)

]︂
𝑑𝑢

− 2

𝑥2𝑡

∫︁ 𝑡/2

0

[︂
𝑓

(︂
𝑥+ 𝑥

(︂
𝑢+

𝑡

2

)︂)︂
− 𝑓

(︂
𝑥+ 𝑥

𝑡

2

)︂]︂
𝑑𝑢

+
12

𝑥2𝑡2

∫︁ 𝑡/2

0

∫︁ 𝑡/2

0

[︂
𝑓
(︀
𝑥+ 𝑥(𝑢1 + 𝑢2)

)︀
− 𝑓

(︂
𝑥+ 𝑥

(︂
𝑢1 +

𝑡

2

)︂)︂]︂
𝑑𝑢1 𝑑𝑢2

+
2(𝑡+ 2)

𝑥2𝑡

[︂
𝑓(𝑥+ 𝑥𝑡)− 𝑓

(︂
𝑥+ 𝑥

𝑡

2

)︂]︂
+

2

𝑥2𝑡2

[︂
𝑓(𝑥+ 𝑥𝑡)− 2𝑓

(︂
𝑥+ 𝑥

𝑡

2

)︂
+ 𝑓(𝑥)

]︂
.

We estimate the 𝐿𝑝(𝜒
𝛾+2)[1/2,∞)-norm, multiplied by 𝑡2, of all the terms on the

first four lines on the right-hand side above by 𝜔̄1
1+𝜒(𝑓, 𝑡

2)𝑤,𝑝 as we did for ̃︀𝐻 ′
𝑡.

Likewise, we estimate the norm of the corresponding terms in ̃︀𝐻 ′′
−𝑡. As for the terms

on the last line, we consider their sum with the corresponding terms in ̃︀𝐻 ′′
−𝑡 and

write this sum in the form

𝐺𝑡(𝑥) :=
2

𝑥2𝑡2

[︂
𝑓(𝑥+ 𝑥𝑡)− 2𝑓

(︂
𝑥+ 𝑥

𝑡

2

)︂
+ 𝑓(𝑥)

]︂
+

2

𝑥2𝑡2

[︂
𝑓(𝑥− 𝑥𝑡)− 2𝑓

(︂
𝑥− 𝑥

𝑡

2

)︂
+ 𝑓(𝑥)

]︂
=

2

𝑥2𝑡2
Δ2

𝑥𝑡𝑓(𝑥)−
4

𝑥2𝑡2
Δ2

𝑥𝑡/2𝑓(𝑥);

hence
𝑡2‖𝜒𝛾+2𝐺𝑡‖𝑝,[1/2,∞) ≤ 𝑐 𝜔2

𝜒(𝑓, 𝑡)𝜒𝛾 ,𝑝,[1/4,∞).

Further, we use (2.1) and (2.5) to get

𝑡2‖𝜒𝛾+2𝐺𝑡‖𝑝,[1/2,∞) ≤ 𝑐 𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝.
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Thus, we show that

𝑡2‖𝜒𝛾+2𝐻 ′′
𝑡 ‖𝑝,[1/2,∞) ≤ 𝑐

(︀
𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 + 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝

)︀
, 0 < 𝑡 ≤ 𝑡0. (3.13)

We are ready to define 𝑔𝑡(𝑥) and derive that it satisfies (3.2), (3.4) and (3.5).
We apply a standard argument (see, e.g., [3, p. 176]). Let 𝜓 ∈ 𝐶∞(R) be such that
𝜓(𝑥) = 0 for 𝑥 ≤ 1/2 and 𝜓(𝑥) = 1 for 𝑥 ≥ 3/4. Clearly, there exists a positive
constant 𝑐 such that |𝜓(𝑖)(𝑥)| ≤ 𝑐, 𝑥 ∈ R, where 𝑖 = 0, 1, 2. We set

𝑔𝑡(𝑥) := (1− 𝜓(𝑥))𝑄𝑡(𝑥) + 𝜓(𝑥)𝐻𝑡(𝑥), 𝑥 ≥ 0.

Then 𝑔𝑡 ∈ 𝐴𝐶1
𝑙𝑜𝑐(0,∞) and lim𝑥→0+0 𝜙

2(𝑥)𝑔′𝑡(𝑥) = lim𝑥→0+0 𝑥(1 + 𝑥)𝑄′
𝑡(𝑥) = 0.

Next, we take into account that |𝜓(𝑥)| ≤ 𝑐 for 𝑥 ∈ R, 𝜓(𝑥) = 0 for 𝑥 ≤ 1/2 and
𝜓(𝑥) = 1 for 𝑥 ≥ 3/4, and (3.8) and (3.11) to get

‖𝑤(𝑓 − 𝑔𝑡)‖𝑝 ≤ 𝑐
(︀
‖𝑓 −𝑄𝑡‖𝑝,[0,3/4] + ‖𝜒𝛾(𝑓 −𝐻𝑡)‖𝑝,[1/2,∞)

)︀
≤ 𝑐 𝜔2

𝜙(𝑓, 𝑡)𝑤,𝑝, 0 < 𝑡 ≤ 𝑡0.

Thus, (3.2) is established.
We represent the first derivative of 𝑔𝑡 in the form

𝑔′𝑡(𝑥) = 𝜓′(𝑥)[𝑓(𝑥)−𝑄𝑡(𝑥)]− 𝜓′(𝑥)[𝑓(𝑥)−𝐻𝑡(𝑥)] + (1− 𝜓(𝑥))𝑄′
𝑡(𝑥) + 𝜓(𝑥)𝐻 ′

𝑡(𝑥).

Then, similarly to the last estimate, but using also (3.9) and (3.12), we get

𝑡2‖𝑤(1 + 𝜒)𝑔′𝑡‖𝑝 ≤ 𝑐
(︀
‖𝑓 −𝑄𝑡‖𝑝,[1/2,3/4] + ‖𝜒𝛾(𝑓 −𝐻𝑡)‖𝑝,[1/2,3/4]

+ ‖𝑄′
𝑡‖𝑝,[0,3/4] + ‖𝜒𝛾+1𝐻 ′

𝑡‖𝑝,[1/2,∞)

)︀
≤ 𝑐

(︀
𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 + 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝

)︀
, 0 < 𝑡 ≤ 𝑡0.

Thus, (3.4) is established.
Finally, for the second derivative of 𝑔𝑡, we have

𝑔′′𝑡 (𝑥) = 𝜓′′(𝑥)[𝑓(𝑥)−𝑄𝑡(𝑥)]− 𝜓′′(𝑥)[𝑓(𝑥)−𝐻𝑡(𝑥)]

− 2𝜓′(𝑥)𝑄′
𝑡(𝑥) + 2𝜓′(𝑥)𝐻 ′

𝑡(𝑥) + (1− 𝜓(𝑥))𝑄′′
𝑡 (𝑥) + 𝜓(𝑥)𝐻 ′′

𝑡 (𝑥).

Then, similarly to the last two estimates, but taking into account all relations (3.8)–
(3.10) and (3.11)–(3.13), we arrive at

𝑡2‖𝑤𝜙2𝑔′′𝑡 ‖𝑝 ≤ 𝑐
(︀
‖𝑓 −𝑄𝑡‖𝑝,[1/2,3/4] + ‖𝜒𝛾(𝑓 −𝐻𝑡)‖𝑝,[1/2,3/4]

+ ‖𝑄′
𝑡‖𝑝,[1/2,3/4] + ‖𝜒𝛾+1𝐻 ′

𝑡‖𝑝,[1/2,3/4]
)︀

+ ‖𝑄′′
𝑡 ‖𝑝,[0,3/4] + ‖𝜒𝛾+2𝐻 ′′

𝑡 ‖𝑝,[1/2,∞)

)︀
≤ 𝑐

(︀
𝜔2
𝜙(𝑓, 𝑡)𝑤,𝑝 + 𝜔̄1

1+𝜒(𝑓, 𝑡
2)𝑤,𝑝

)︀
, 0 < 𝑡 ≤ 𝑡0.

Thus, we have shown (3.5) and completed the proof of 𝑔𝑡 ∈ ̃︁𝑊𝑝(𝑤)[0,∞) and the
second part of the proof of Theorem 1.1 for 1 ≤ 𝑝 < ∞. The validity of that part
for 𝑝 = ∞ was shown in [7, pp. 27–29].
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