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The paper is focused on an important aspect of the central problem of the mechanics of
the unidirectionally reinforced fibrous composites. This problem concerns the features
of the matrix-fibre load transfer phenomenon which, actually, provides by itself the
very reinforcing effect of the fibres. The paper illustrates that the successful analysis of
this problem definitely needs, first, the exact solution of a certain typical or, say, rep-
resentative axisymmetric boundary value problem of the elasticity theory and, second,
a representation of this solution in a form, which is convenient enough for additional
mathematical manipulations. Such an explicit with respect to the problem variables
polynomial representation is derived in the paper.
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1. INTRODUCTION

A specific feature of the present contribution is that the purely mathematical
result derived in it is, in practice, a useful and effective tool from the view point
of the mechanics, i.e. of the study of the mechanical properties and the mechanical
behaviour of an important for the engineering practice class of advanced struc-
tural materials, namely the unidirectionally reinforced fibrous composites. For this
reason the analysis of the mathematical problem considered is preceded by a rel-
atively extended preliminary section, the aim of which is to indicate at least the
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main problems associated with the mechano-mathematical modelling of the unidi-
rectional fibrous composites and to illustrate, at the same time, the necessity and
the practical value of the result obtained.

2. PRELIMINARIES

Composite materials consist, generally speaking, of a relatively weak and com-
pliant continuous phase within which inclusions of different, most often stiff and
strong materials, are discretely distributed and, as a rule, firmly bound to the
surrounding continuous matrix phase. Depending on the material, the shape, the
volume fraction and the geometry of the spatial distribution and mutual orientation
of the inclusions, composite properties and, especially, their mechanical properties
may differ considerably and even drastically from the respective properties of the
matrix material. The strong effect that such inclusions produce on the properties
of the matrix has been used since long in the fabrication of new structural materials
with desired in advance unique combinations of mechanical propertics. Basically,
the goal of the practical use of this effect is to create materials with high strength
and stiffness parameters, i.c. to reinforce the weak materials used as matrix phases.
For this reason the effect is commonly referred to as a reinforcing effect.

This effect is especially pronounced in the so-called fibre-reinforced composites.
The discrete reinforcing phase in these composites presents itself one or another
network of rods. wires or whiskers, which are usually called fibres. An important
for the practice class of such composites is that of the unidirectionally reinforced
fibrous composites, i.e. of composites with straight parallelly aligned fibres. In most
of the cases the fibres have the form of circular cylinders with a specific for each
given composite radius-to-length ratio, which is often called fibre slenderness ratio.

The unidirectional composites are anisotropic or, speaking more precisely,
transversely isotropic materials. They may have high strength and stiffness in the
direction of the reinforcing fibres, but remain weak and compliant, as the matrix
is. in the transverse direction. The practice proves that the degree of anisotropy
or, which is the same, the strength of the very effect of the unidirectional fibrous
reinforcement. depends on two basic structural parameters, namely the fibre volume
fraction and the fibre slenderness ratio.

The strength and the stiffness of the unidirectional composites in their, say,
strong direction, which is the direction of the reinforcing fibres, appear to be almost
directly proportional to the fibre volume fraction. The simple “rule of mixtures”-
tvpe relations. used in the engineering practice, prove to be reliable quantitative
approximations to the actual effect that the fibre volume fraction produces on the
degree of strengthening and stiffenning of the matrix material.

The fibre slenderness ratio influences the strength and stiffness characteristics
of the unidirectional composites in their strong direction in a more complicated
way. In composites, which differ only in the lengths of the reinforcing fibres, but
are otherwise identical in all remaining material and structural parameters, includ-
ing fibre radii, those with longer fibres, i.e. with smaller slenderness ratios, are
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stronger and stiffer. A distinct feature of the practically observed dependencies of
the strengthening effect on this ratio is that the decrease in the latter provides a
respective increase in this effect only over certain restricted and specific for each
composite structure ranges of increasing fibre lengths.

Briefly speaking, the unidirectional composites are characterized by specific
slenderness ratios or, at fixed fibre radii, by specific fibre lengths. When the value
of the specific for a given composite slenderness ratio is approached from above
by means, for example, of a continuous increase of the fibre lengths at fixed fibre
vadii. the reinforcing effect continuously increases up to a specific for the composite
maximum level and then, with further fibre lengths increase, this effect remains
practically unchanged. The specific or, say, the critical fibre length upon which
the reinforcing effect becomes insensitive to further fibre length increase, proves
to be a distinct inherent characteristic of the unidirectional composites. Practical
observations indicate that it is a complex and, as a matter of fact, still not quite
well known function of the material parameters of the composites. The existing
experimental data certify that the critical fibre lengths for different fibre-matrix
systems vary from a few to tens and even hundreds fibre radii. This fact is a clear
mndication that the theoretical approaches to the problem of determining the critical
fibre lengths should not be based on rough initial physical models, neither should
involve, from a mathematical view point, rough simplifications and approximations.

From its purely qualitative side the existence of such a critical fibre length
is easily understandable. The point is that in composites loads are not directly
applied to the fibres, but to the matrix into which they are embedded. The role
of the matrix is, besides to serve as a binding medium, also to transfer loads from
composite surfaces, where the loads are applied, to the fibres. This matrix-fibre
loacl transfer is. in reality, the essence of the very mechanism of realization of the
reinforcing effect. Due to this mechanism the strong and stiff fibres take or absorb
and. respectively, carry most of the loads applied, as mentioned. to the matrix.
This actually explains the high load bearing capacities of the fibrous composites, i.e.
their potential to carry loads that considerably exceed the restricted load bearing
capacities of the weak matrix materials.

Obviously enough, the matrix transfers loads to the fibres through their end
and cylindrical surfaces. Due to a number of reasons the end fibre surfaces have
little effect on the overall load transfer pattern. One of these reasons is that the area
of the end fibre surfaces is much smaller than that of the cylindrical lateral surfaces.
Therefore, the contribution of fibre ends to the load transfer should not be expected
to be comparable to that of the cylindrical surfaces. The increase in the area of
fibre end surfaces, which is achievable by preparing fibres with oval instead of flat
ends. proves practically not to affect the load transfer features. This is due to the
fact that, mainly for technological reasons, the fibre-matrix bonds at fibre ends are
not of the same necessarily high quality as those over the cylindrical fibre surfaces.
Thus, irrespectively of whether fibre ends are flat or oval, the stresses developing
over the weak fibre ends-matrix interfaces prove to be simply small enough to play
a more or less decisive role in the load transfer processes. That is why in most of
the studies of the load transfer phenomena fibre ends are viewed as stress free.
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It. would be probably instructive to note, before considering the load transfer
through the cylindrical fibre surfaces, that fibrous composites are designed mainly
to carry loads in the reinforcement direction, i.e. in the axial fibre direction. The
transfer of such loads is evidently due to the axial interfacial shear stresses de-
veloping as a result of the mechanical fibre-matrix interaction. To illustrate this,
it would be sufficient just to consider the equilibrium in the axial direction of an
arbitrary fibre portion and immediately to notice that these are exactly the axial
interfacial shear stresses that balance the axial loads acting at the ends of such a
fibre portion.This fact demonstrates that the study of the load transfer should be
first. of all focused on the problem of determining the longitudinal (i.e. along the
fibre length) distribution of the axial interfacial shear stresses.

Coming closer to this problem, let us remind once more that the increase of
fibre lengths up to certain specific critical values results in higher load bearing
capacities or that, briefly speaking, longer fibres absorb and, respectively, carry
higher axial loads. In part, this effect is certainly due to the fact that since the
fibre length increase is also increase in the area of the cylindrical fibre surfaces,
then the axial interfacial shear stresses, when acting over increased areas, should
introduce into the fibres and, respectively, balance increased axial loads. At the
same time one should not exclude as a reason for this effect the eventual changes
and, in particular, the possible increase of the intensities of the same shear stresses.
Moreover, the very distribution along the fibre length of these stresses may change
and thus have also effect on the level of the axial loads transferred from the matrix
to the fibre.

It is hoped that the foregoing considerations reveal to a certain extent the
complex multiaspect nature of the load transfer problem. In fact, this central
for the mechanics of the unidirectional composites problem has been since long a
subject of extended research. The result of this research is the number of load
transfer models that the current composite materials literature offers. Without a
discussion on their positive and negative sides it will be mentioned here that all
these models are practically similar in a few basic aspects.

First, they are based on the experimentally observed fact that the mechan-
ical behaviour, mainly in the reinforcement direction, of a typical unidirectional
composite is very close to that of a representative composite element, say, unit
composite cell, which, being composed of a single fibre with a firmly bound coaxial
matrix coating, is stressed axisymmetrically and, in addition, symmetrically with
respect to its middle cross-section.

Second, the models reflect, but rather in a qualitative than in a more or less
satisfactory quantitative manner, the concentration of stresses close to the ends of
the fibres where. as a result and a manifestation of the stress concentration, local
failure phenomena, mainly in the form of fibre-matrix debonding (i.e. of interfacial
cracks). often take place. In this regard the similarity of the models lies in the fact
that they consider as a major reason for these phenomena mainly the concentration
of the interfacial axial shear stresses. Accordingly, they deal, basically, with the
problem of deriving the patterns of the shear stress concentration fields close to the
fibre ends.
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Third, the shear stress concentration patterns that the models provide are
derived from either simple strength of materials-type analyses or from too much
simplified axisymmetric boundary value problems of the elasticity (or plasticity)
theory. The simplifications concern both the mathematical treatments of the equa-
tions governing these problems and the mechano-mathematical models of the actual
physical boundary conditions, especially the conditions for the stresses at the fibre
ends. These conditions will be discussed below.

Finally, the models generally assume that no interfacial shear stresses develop
along most of the fibre lengths and suggest one or another specific monotonous
increase of the intensities of these stresses along the remaining relatively short
end fibre portions. But, strictly speaking, such simple distributions of stresses
are just inconsistent with the elasticity theory since the equations of the latter
are, as it is known, of elliptic type. Accordingly, the distributions of fibre stresses,
including the interfacial shear stresses, might be either uniform along the entire fibre
length or strictly non-uniform along each non-vanishingly short fibre portion. Thus,
from a quantitative view point, such simple axial stress distributions are acceptable
only in the sense of the Saint Venant’s principle and as approximations to certain
particular exact solutions of the general axisymmetric elasticity problem. Since
these solutions, 1.e. the exact solutions of the particular boundary value problems
associated with the models, are not known, one could hardly derive estimates of
the errors that such approximations involve and decide, respectively, about the
reliability of the models.

Irrespectively of their roughness and simplicity, these models are widely used
in the practice of composites design and application since they provide quantitative
estimates of the load transfer parameters and, thus, of the load bearing potentials
of the fibrous composites, which, even if not realistic enough in the details, are
quite acceptable as mean or integral estimates.

Another positive side of the models is that they have revealed in part the
specific nature of the above mentioned nontrivial dependence of the reinforcing
effect on the lengths of the fibres. The models definitely indicate that the separation
of a fibre into a central uniformly stressed portion, which only carries axial load,
but does not take load directly from the surrounding matrix, and neighbouring this
portion with relatively short end portions, along which the matrix transfers load
to the fibre, are quite realistic. This separation of the fibre into a load bearing, or,
effective and load transfer, or, ineffective portions is commonly adopted today. In
view of these models the main problem of the load transfer analysis is to determine
the current load transfer fibre length as a function of both the fibre-matrix system
and the current load, applied to the composite, and, in addition, to specify the
characteristic for the composite critical maximum load transfer length, now as a
function of the fibre-matrix system only. If this critical length is specified, then, in
order to gain maximum load bearing effect from a given unidirectional fibre-matrix
system, one should use fibres of length which is greater than or at least equal to
twice the critical length. Such fibres are usually referred to as long fibres. Fibres
of lengths below the critical length are vieweéd as short fibres. The respective
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composites arc usually called composites with long, or continuous and short, or
discontinuous fibres.

It is not surprising that the models suggest estimates of the critical load trans-
fer lengths which differ considerably. These estimates depend on the different in
their roughness approximations involved in each particular model. There is a num-
ber of reasons for which these estimates should not be viewed as sufficiently precise
though, as was mentioned above, they are acceptable in integral sense. In part,
this is due to the fact that, as was also mentioned, the very concept of specifying
effcctive and ineffective fibre portions is a matter of approximate interpretation of
an exact solution of the axisymmetric elasticity problem. This interpretation im-
plicitly assumes that the exactly determined interfacial shear stresses, acting along
the central (effective) fibre portion, are small, i.e. practically negligible, and that
they monotonously Increase towards fibre ends along the load transfer (ineffective)
fibre portions. But such an interpretation, being, let us mention again, acceptable
on the whole, necessarily requires, first of all, to specify the level below which the
stresses in question could be viewed as negligible. The models do not suggest such
levels. Morcover, they can not specify the latter since such specifications require
by themselves as a reference basis the unknown exact stress distributions.

The basic limitation of the existing models is that they take practically no
account of the actual boundary conditions at the fibre ends. Generally, they assume
that high interfacial shear stresses develop close to fibre ends, but entirely ignore
the corresponding considerable drop that these stresses should necessarily undergo
along certain end fibre portions, adjacent to fibre ends, due to the fact that these
ends are practically almost free of shear stresses. The models simply ignore these
end portions as clements of the load transfer pattern.

Two remarks are due with respect to this fact. First, from the view point of
the pure load transfer, the ignorance of these portions is not an important disad-
vantage since, from most general considerations, the latter should be expected to
be short enough and thus not to cause considerable corrections in the estimates of
the load transfer lengths. Second and more important is that the models ignore
the entire complex interfacial stress field developing along these end fibre portions.
This specific stress field has been constructed in a recent author’s paper [1], where
some of the results of an extended author’s study in progress are briefly reported.
As it is shown in the paper, this field develops along end fibre portions, which are
really short. Their lengths do not exceed a few fibre radii, which proves that these
portions really could not contribute considerably to the overall load transfer. But
at the same time it is definitely proved in the paper that this stress concentration
field is the factor that actually governs the onset of the failure phenomena close
to the fibre ends. In fact, the paper illustrates, first of all, that these phenom-
ena are not governed, as the considered models suggest, by the interfacial shear
stress concentration, but by the much higher concentration of the interfacial radial
stresses. Moreover, as it is shown in the paper, the radial interfacial stress changes
its sign along the short end fibre portions. In other words, this high by itself stress
is always positive, i.e. tensile, along certain parts of these portions. Obviously, this
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high tensile interfacial radial stress is the factor dominating the critical conditions
of onset of failure phenomena close to the fibre ends.

The load transfer model proposed in [1] could be referred to as a full fibre
length model since, in contrast to the models considered, it involves the very end
fibre portions which these models ignore. Being actually derived by means of sewing
of two exact axisymmetric solutions of the elasticity theory, the model is not only
free from the shortcomings of the existing simple models, but, in view of the consid-
erations of the present section, is a real reference basis on which one could estimate
the reliability of these approximate models.

It is hoped that this section clearly indicates that the general axisymmetric
problem of the theory of elasticity is of immediate relevance to the mechanics of
the unidirectional fibrous composites. The realistic modelling and prediction of
the properties and the behaviour of these composites definitely require not only
the derivation of exact solutions of certain particular, but similar on the whole
axisymmetric boundary valuc elasticity problems. In fact, it is equally important
to be easily able to manipulate further such solutions in order, for example, to con-
struct superpositions, to derive approximations with desired accuracy, to estimate
the accuracy of certain existing approximations or, as in [1], to sew such exact
solutions.

It would be very advantageous, for these reasons, to have at one’s disposal a
convenient. i.e. an easy for mathematical manipulations, form of the exact solution
of a certain, say, representative problem of the mechanics of the unidirectional
fibrous composites. In what follows, this problem is first formulated and its solution
is then shown to be representable indeed in a really convenient explicit analytical
polynomial form.

3. THE REPRESENTATIVE AXISYMMETRIC PROBLEM

The commonly adopted representative model problem for a typically loaded
lonig reinforcing fibre assumes that the state of stress of the latter is, as was pointed
out above, axisymmetric and, in addition, symmetric with respect to its middle
cross section. Basing upon the superposition principle of the elasticity theory and
on the standard assumption that fibre ends are flat and free from stresses, one
may further specify the fibre stress state as resulting from uniformly distributed
normal (tensile or compressive) stresses of intensity, say g, applied to its ends
(or acting over its middle cross section), and from interfacial stresses, developing
along the lateral cylindrical fibre surface as a result of the mechanical fibre-matrix
interactions, caused by the mismatch of the mechanical properties of the fibre and
matrix materials.

The fibre, when referred to cylindrical coordinates {r, 6, z}, is assumed to oc-
cupy the domain {0 < r < ry, |2| < L, 0 < # < 2x}, where, obviously, r; and L
are fibre radius and half length, respectively. Then the boundary conditions of the
representative problem could be specified as

Trz (7‘, 0) = Trz (Tv :tL) = 0: (1)
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o.(ry,£L) =0, (or o.(r,0)=0g), (2)

where 7,.(r, z) and o.(r, z) are the shear and the axial fibre stresses, respectively.
The notations o,(r, z) and w(r, z) will be used below for the radial fibre stress and
the axial displacement in the fibre.

Obviously, the remaining boundary conditions, concerning the stresses 7,.. (ry, z)
and o,(ry, z), acting over the cylindrical fibre surface r = ¢, could not be specified
in advance. In fact, to determine these unknown stresses is, as was highlighted
above, the sense of the central for the mechanics of the unidirectional composites
problem of the matrix-fibre load transfer.

The approach to this problem is based on the understanding, developed in
the mentioned author’s study in progress and briefly described in {1}, according to
which the role of the weak and compliant matrix is rather to conduct the applied
loads to the surface of the stiff and strong fibre than to influence considerably the
specific and in much independent manner in which the fibre absorbs these loads
through its surfaces, transforms them into internal stresses, and creates its own
stress distribution pattern of the above discussed type. Such understanding of the
dominant role of the fibre, or, of its more or less independent behaviour, suggests
that the actual fibre state could be interpreted as an optimum or, say, a natural
one, or, in other words, as a state corresponding to a solution of a certain variational
problem of the elasticity theory to which the interfacial stresses in question serve
as natural boundary conditions.

This understanding is further combined with the concept of the stress func-
tion (or, stress potential) as a function which, once introduced as a solution of the
general variational problem of the elasticity theory, provides full exact solutions of
each particular boundary value problem when subject to the respective boundary
conditions. Use is made of the known representations of the stresses and displace-
ments by means of the stress function for the general axisymmetric elasticity prob-
lem. For the quantities of interest in the present study these representations read,
cf. [2],

0. = 5‘1— {(2 - v)Ap - gi‘f] , (3)
Tpz = 587 [(1 - v)Ap - g—?’;] , (4)

o= 2 (vao-52)., ®
wzilc—;[Q(l—u)A —%i—f], (6)

where ©(r, z) is the stress function (A%p(r,z) = 0), A is the Laplace operator, v
and G are, respectively, the Poisson’s ratio and the shear modulus of the material
considered or, in our case, of the fibre material.
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Finally, use is also made of the productive Timoshenko’s idea (cf.[2]) of repre-
senting the particular solutions for the stress function in terms of Legendre poly-
nomials of the first kind P,(z), n =1,2,3,..., 2 = z/R, R = /r% + 22. According
to this representation each stress function of the form

W2p+1(1,2) = Aop 1 R*P > Pay_5(2) + Bopyt R 2Py, _4(2), (7)

where p = 1,2.3,..., Ajpy1 and By, are constants to be determined from the
boundary conditions, provides an axisymmetric stress state with stresses o.(r,z;p)
and 7..(r, z;p), which, as the representative problem requires, besides being ax-
isymmetric, are, respectively, even and odd functions of z, i.e. symmetric and an-
tisymmetric with respect to the middle cross-section of the fibre.

The practical realization of this approach to the representative model problem
considered implies the following forms of the quantities of interest:

2p—2
o.(r,z;p) = og (%) xPyp_3(z), (8)

ooy (R ”4{ p(2p —3) :
(1, 2ip) = — 09 (E) (p~12p—1) y1—22

(9)
[ Pres@) = 2Pops(o)]| + VIR o)),
R\ ( 2(p+1-v) 1
or(r,z;p) = —oo (Z) { Cr-1)(2p-2)1- 22 (Pzp(x) - :L'Pzp—l(x))
(10)
4p* +4p -5
+4p 3 [(2p = 3)Paps(z) + 22Pyp_5(2) ] + (4pp_ ;)(gp ) Pzp—z(x)} ,

ool (R\*T 1
winzp) =55 (75) 2p—1)(2p~2){dp+ 1)

X !(4p2-8p+8p1/+2u+ %) Py, () (11)
N (2p — 1)(jz - g)(4p +1) P-z,,_3(a:)] |

In fact, the model proposed in [1] is a result of a procedure of sewing of two
solutions of the type presented by Egs. (8) — (11) with their own appropriately
chosen p-indices. Each of these solutions satisfies a pair of boundary conditions of
the type of Egs. (1) and (2) and is thus a solution of the representative axisymmetric
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problem. One of the solutions concerns the central fibre portion, say |z| <1, 1 < L,
while the other one governs the end fibre portions I < |z| < L, where, obviously,
L — [ is the length of the latter fibre portions. These two solutions are sewed over
the cross sections |z| = [ of the fibre.

The closed analvtical form of the solution of the general representative problem,
Egs. (8) — (11), has its definite advantages, but, at the same time, this form is
easily seen to be not convenient for further mathematical manipulations which one
is necessarily forced to perform for one or another reason. Such manipulations
are. for example, unavoidable part of the further elastic analysis of the complete
problem of determining the stress-strain state of the entire unit composite cell (of
which the fibre is only an element). The difficulties, arising when this form is
cventually subject to further manipulations, result, on the one hand, from the fact
that Egs. (8) — (11) are implicit with respect of the problem variables r and z.
On the other hand, the known analytical forms of the Legendre polynomials are by
themselves complicated enough. To reduce to some extent these difficulties, most
of which the author met during his work on [1}, was the author’s motive to try
to derive a simpler representation of the latter equations, namely an explicit with
respect to the variables 7 and z polynomial representation.

It should be recognized that the work on [1] and, in particular, the analysis of
the axial fibre stress, Eq. (8), gave the author the hint for the form of the simple
representation derived below. Unexpectedly, it appeared that to prove the general-
ization of this form was not a trivial combinatorics problem. As the reminder part
of this contribution illustrates, the use of some familiar special functions provides
a short and effective way to this generalization.

4. AXTAL FIBRE STRESS

The desired simplification of the axial fibre stress representation concerns, ob-
viously, only the term o.(r,z : p)/oo in Eq. (8). Upon introducing dimensionless
coordinates p, ¢ this term takes, in accordance with one of the standard represen-
tations of the Legendre polynomials P, (x), cf. [3], the form

-2 ) o k
0:(p.C:P) _ apa S (—1)* (4p — 2k — 6)! p~>
a0 ¢ ; 22r=3k1(2p — k — 3)!(2p — 2k — 3)! + C2 (12)

where (...)! stays, as usual, for the factorials of the numbers in brackets.
The sum in Eq. (12) is a polynomial of p?/(*. Let this sum be denoted by .

and written in the form
p=2 P2 m
o= Am (C—2> : (13)

Provided a more or less convenient representation of the coefficients A, m =
1,2,...,p— 2. is found, the axial fibre stress will take the explicit polynomial form

p—2
0. (p’ C;p) — Z )\n]p?-m.c‘zp—?m—?’ (14)
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which is definitely more informative and easier to deal with than the form suggested
by Eq. (12) suggests.

It will be mentioned, before deriving the \,,-presentation in question, that the
solutions of the representative problem, which are of interest both from a mechanical
view point and in the context of the present contribution, are those with relatively
large p-values. Solutions with small p-values are physically unacceptable for the
load bearing central fibre portion. As it is shown in [1], superpositions of such
solutions govern, in actual fact, the state of stress of the very end fibre portions, so
that they have their definite mechanical meaning. But, at the same time, as Eq.
(12} proves, their explicit polynomial presentation is a matter of trivial transforms.

According to Eq. (8), the term o.(p, (; p}/oq here considered is

Jz(p‘é;p) — C'Bp—'.? (1 + /7_:) ) Pzp—.’i [(1 + E_;—)} . (15)
ag C'- 6"

The general representation of the Legendre polynomials by means of the hyperge-
ometric function F'(a,b; c:d) will be used below. According to this representation,

cf. 3]
PP\
1 L
( *cz)

where, inour casc, a = —p+ 2, b= —p+2,c=-2p+ I, d=1+ %-; and (...)!
are double factorials.

Now, in view of Egs. (12) — (16) and of the explicit form of F(a.b;¢;d;) with
negative integer variable b = —p + 2 < 0, namely, cf. {4],

1 4 — ” 2 _217;_3
Py 3 } = M (l + p_) Fla,b;c;d), (16)

(2p = 3N ¢?

3 7 p*
— — —p+2:-2 =14 =
F( p+2, P+ 2 p—i—z +<~)

() (- p+2)A( _pj)"‘
a Z; (—2p+ %), K! b ¢)

the coefficients A, m =0.1,...,p — 2, take the form

3
(dp - 7)! ,pZ(IH'Z) (=p+2)y 3
M = Gy T3 2o = (m) (18)
k=m ‘)p+ k1
(-+3),

where the Pochhammer symbol (a); =a(la+1)(a+2)...(a+i—1),i=1,2,...,1s
used along with the binomial coeflicients representation

(k)= B _(k=mt 1)y (19)

m m!(k —m)! m!




Upon setting s = k —m Eq. (18) takes, due to the obvious relation (a);; =
(a)i(a +1);, the form

(4p_'7)”( p+3)m( p+2)m
Gp-3)1  (-2p+ 1), ml

m

Am =
(20)

P p+m+ B, (—p+m+2),

X
Z 2p+m+%)ss!

The sum in Eq. (20) is easily seen to be, by definition (cf. Eq. (17)), equal to
F(-p+m+ g, -p+m+2;-2p+m+ %; 1) and to be thus, due to the relation,
cf. [4], F(a,b;c;d) = T(d)T(d — a — b)/T'(d — a)T'(d — b), representable as I'(—2p +
m+ 7/2)0{(=m)/I'(—p+ 2)['(=p+ 3/2), where I' denotes the well-known Gamma-
function.

With the latter form and the known representations of the I'-function Eq. (20)
implies upon due transforms and manipulations the following compact expressions
for the \,,-coefficients, m =0,1,2,...,p— 2

_ n(2m—=1)! (2p -3 .
Am = (~1) W( 9 ) (21)

Other equivalent representations of the \,-coefficients become now available from
Eq. (21) as, for example,

B m L (2p=3\(2p—m -3
Am = (=1) 22"‘( - )( o ) (22)

With Eq. (21) the final desired explicit in the {p, (}-variables polynomial repre-
sentation of the axial fibre stress becomes

p=2
L 2m =1 2p =3\ 5 0p_om-
Uz(P,GP):UoZ (-1) (—(—2?)7,)—( I;m )P' (Zp-2m=2, (23)

m=0

5. SHEAR FIBRE STRESS

The explicit polynomial representation of the shear fibre stress is, of course,
derivable in a way, similar to the one just used for the axial stress. But it would
be much simpler just to introduce Eq. (23) for the axial stress into the equilibrium
equation

62 - + ;'6—(7'7};) =0 (24)

and to get almost immediately, upon satisfying the axial symmetry condition
Tr:(o, C,p) = O the form

m—1
(pa< p) —0Jp Z /\m_p___+_1_p‘>m+lc2p am= 3 (25)

m=0

where \,, are the same coefficients as in Eq. (21) (or Eq. (22)).
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6. RADIAL FIBRE STRESS

As the structure of Egs. (5), (6) suggests, the derivation of the explicit poly-
nomial forms for the radial fibre stress o, and the axial displacement w is only a
matter of further. mainly technical manipulations and transforms of the type al-
ready considered for the axial fibre stress. Omitting the details they involve, these
manipulations reduce Eq. (10) to the form

P
0-7‘(,0: Cap) = —0p Z ﬂ'm.p:'m~2C2P—2m5 (26)
m=0
where the coefficients p,,, m =1,2,...,p, read

[ = (—1)™ Cm-1" p+l1-v m (gp)

2m)! (2p-1)(p-1) p \2m o
_ (*l)m (27n_ 3)” 2p— 2m + 3 (2p_ 2)
(2m -2)!'  2p -2 I9m — 2

. a . .
Note that due to the standard convention ( b) = 0, when b < 0, the term involving

2p -2
he tipli
the multiplier (Qm 9

the summation in Eq. (26) starts, practically, with m = 1.

) in g 1s zero, so that the coefficient pg is itself zero and

7. AXTAL DISPLACEMENT

In a similar manner the axial displacement could be reduced to the form

ooL ok UM 2D — D1 —
w(p, G p) = 5@'@})—3 Z wmp*™ (P Y (28)

where
SO () B

16p° + 4(8v — T)p® + 8(1 — 2v)p — 6v + 4
2p~1)(2p~2)(4p+1) '

and

b= (30)

- I —
The terms (22:; _32) in wg and ( I;m 3) in wp_; are zeros due to the above

) . a
mentioned convention for the binomial coefficients and the convention ( b) =0 for

b < a, respectively.
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8. CONCLUDING REMARKS

The .. 7., and o, representations, derived above, when introduced into the
cquilibrium equation

do, 0. o0p—0¢ ,
or + 0z i T =U (31)
and the Hooke's law relation
r
u = m [00—V(0’,~+0;)] (32)

imply almost directly similar polynomial representations for the remaining basic
quantities of the considered problem, namely the circumferential stress og(p, (;p)
and the radial displacement u(p, (;:p). The coefficients in these representations are
lincar combinations of the coefficients A, and .

The following remark is due with respect to the forms of the coefficients Ay,
e and w,,. Obviously, Egs. (21) (or (22)), (27) and (29) arc only particular
and certainly not the optimum forms of the otherwise large varieties of cquivalent
and mavbe even simpler and more compact forms in which these coefficients are
representable. Each of the particular forms derived above should be actunally viewed
as a basis for deriving other, eventually more convenient in one or another sense,
equivalent forms of the same coefficients.

It should be probably mentioned in addition that the stresses and displace-
ments in the fibre are not, as the first impression might be, independent of the
mechanical properties of the matrix, the geometry of the unit composite cell (i.e.
of the thickness of the matrix coating, or, which is the same, of the fibre volume
fraction), and of the current loading parameter. In fact, these parameters enter
the above derived expressions for the fibre stresses and displacements through the
multiplier og. The latter specifies the boundary conditions for the representative
problem (cf. Eq. (2)) and presents itself the axial fibre stress in the trivial case of
uniformly stressed fibre, i.e. the case which corresponds, formally, to the solution
of the representative problem with p = 1. The coupling of this trivial fibre state
with that of the surrounding matrix implies the so-called plane cross sections-type
problems for the entire unit composite cell. The determination of the gg-stress is
a basic element of the solution of these problems. References [5, 6] provide the og-
values for two particular but typical problems of thermal and mechanical loading
of a unit composite cell, namely the problems of uniform cooling (heating) of the
matrix phase and of longitudinal extension (compression) of a unit composite cell.
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