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the fiber axis. In the long-wave limit these expressions are obtained explicitly.

Keywords: piezoelectric medium, acoustoelectric waves, scattering, cylindrical inho-
mogeneity
MSC 2000: 74F15, 74J20

1. INTRODUCTION

The problem of the scattering of elastic waves on a single inhomogeneity in an
elastic medium is of importance for several applications. First, such studies provide
an information about the scatterer and therefore are relevant for the nondestructive
evaluation of structural members. Another application is the investigation of the
attenuation and velocity of elastic waves propagating through a medium, consisting
of a set of noninteracting inhomogeneities. In recent years, significant progress has
been achieved in solving this problem for ideally elastic materials [1-6}.

In the present paper, we consider the scattering of acoustoelectric waves on
a continuous cylindrical fiber embedded in a piezoelectric medium of hexagonal
(transversely isotropic) symmetry. The expressions for scattering amplitudes of
the acoustoelectric waves follow from the system of the integral equations for the
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clectroelastic fields in the medium with inhomogeneity. This system is obtained
in terms of Green's function of the coupled dynamic electroelastic problem (sce
Section 2). In Section 3. explicit expressions are obtained for the components of
Green’s function and scattering amplitudes for the quasiplane dynamic problem
for the transversely isotropic piezoelectric medium. In Section 4, general formulae
are derived for the total cross-section of acoustoelectric waves propagating in the
direction normal to the fiber axis. Finally, explicit expressions are obtained for
scattering amplitudes and total cross sections of three acoustoelectric waves in the
long wave-length limit.

2. THE INTEGRAL EQUATIONS OF THE SCATTERING PROBLEM

We consider the piezoelectric medium obeying the following linear constitutive
equations:
gij = Cijrickt — €rij Ex,

D; =

(2.1)

eikiErt + Nik B,

where o and # are the stress and strain tensors, £ and D are the electric field inten-
sity and electric displacement, respectively, C' = C¥ is the tensor of elastic moduli
at fixed E, 7 = 7° is the permittivity tensor at fixed strain £, e is the piezoelectric
constants tensor, and the superscript ‘T denotes the transposed tensor.

The substitution of Egs. (2.1) into the equations of clastodynamics and Max-
well’s equations leads to a coupled system of equations of linear electroelasticity.
As usual, we disregard body sources of electrical nature. Hence, the equations of
motion have the same form as in the theory of uncoupled elasticity

63'0'-,']' - pu; = Q1 aj = a/OxJ (2.2)

where u; is the vector of elastic displacement, p is the material density, Q; is the
body force vector.

The solution of equation (2.2) together with Maxwell’s equations describes the
clastic-electromagnetic waves, i.e. elastic waves interacting with the electric field
and the electromagnetic waves accompanying the deformation. If the characteristic
velocity of the elastic waves is v, then the corresponding velocity of the electro-
magnetic waves has the order of 10°v. Therefore, we neglect the magnetic field
generated by the elastic field propagating with the velocity v. It follows, then, that
the magnetic effects can be neglected and the quasistatic approximation for the
electric field can be used.

An additional field equation is the conservation of free electric charges:

8iDi = —q, (23)

where g is the density of free electric charges and D; is the dielectric displacement.
Since 1 .
E; = =00, €ij = §(8,UJ + 8ju,-), (2.4)
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where ¢ is the electric potential, the constitutive equations can be rewritten in the
form
oij = CijrOug + eijx O,
. (2.5)
D; = e, Qg — ik Op .

Substituting them into (2.2) and (2.3) yields a coupled system of linear differential
equations of electroelasticity for the piezoelectric medium:
0;CijriOuy, + €O — pit; = —Q, 2.6
Jieip Opug — OO = —q.

We consider now the harmonic oscillation of the medium with frequency w.
Since the dependence of quantities entering (2.6) on time is given by the multiplier
expl—iwt), the svstem (2.6) takes the form

0 Cijr O+ pwu; + 8jei510rp = —Q,
B;e1 Orur— i Opp = —q.

Let the body forces (J; and electric charges g be distributed in some domain
V7. The solution of the system (2.7) that vanishes at infinity can be represented as

wi(z) = /Gu,.(ar - 2")Qp(2") da' +/I’i($ —2")g(z") da’,
Vv v

(2.8)
ola) = /'}'k(-T — 2" Qr(z") da’ —f—'/g(:l: — 2')q(x") da’

Vv v

{the dependencies on frequency w are omitted). The substitution of these expres-
7

sions into the left-hand sides of (2.7) leads to a system of differential equations for
the kernels G (z), Ti(2), ve(z) and g{z) — the components of the clectroelastic
Green’s function:

(8;Cijui Ok + pu?6i)Gim (z) + 0j€ijkOk¥m(T) = ~6imd(),
(0;Cijn10k + p*0:u)Ti(x) + 0jeijk0kg(x) = 0,
0i€i Ok Gim(x) — Oimir Ok ym(z) = 0,
ielOkLi(x) — Oimurg(x) = —0(x),
where d(z) is the Dirac function. Fourier transformation of these equations yields
Na k)G (k)+ hi(k)vy; (k) = 6;5,
hi (k)Gij (k)= Mk)v;(k) = 0,
Au(k)Le(2)+ hi(k)g(k) = 0,
hi (k)To(k)= A(k)g(k) =1,

(2.10)
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where .
Ai =k;Cijpkr — pwdia,  hi(k) = eirikrki,

(2.11)
h;r = e?;-(kikk: /\(k) = nig‘k,‘kk.
The solution of the system (2.10) can be written in the form
1 —1
Gir = (Aik+ —j‘“h,hZ) , 9= —()\ -+ h;r'\zll h.j)_l.,
(2.12)
1
%= 3hEGrs o= —A'hug.
One can show that v; = I';. Introducing the notation
Gik(kaw) '7-i(kaw) :
Gk,w) = (2.13)
7 (k,w)  g(k,w)

the z-presentation of Green’s function can be obtained via the inverse Fourier
transformation:

G(z,w) = / G(k,w)e** dk. (2.14)

(27)3

The equations of motion (2.7) can be written in the following symbolic form:

E(V)f(’t) = 0! £(v*“}) = T(V) + wzpj, (215)
where
-\ T (V) (V) _ dir O B u(x)
"= gw) o) | =0 o 197 e |

(2.16)

Ti(V) = 0;Cijn0y,  ti(V) =010k, 7(V) = 0imir Ok

Consider now an unbounded medium with the electroelastic characteristics £°
and density pg, where

C? el.
0 __ i3kl ik
€ikl Mk

containing a region V with different electroelastic characteristics £ and density p.

Let the harmonic vibrations of frequency w propagate in the medium with the
inhomogeneity. The electroelastic fields in such a medium satisfy equations (2.15)
in which C,e,n and p are functions of coordinates. We represent these functions in
the form

C(z) =C° +C'V(z), e(z)=¢e+e'V(z),

(2.18)
n(@) =0’ +n'V(z), plz)=po+mV(z),
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where V(2) is the characteristic function of the region V', and the quantities with
the superscript ‘1" denote the differences

Cl=C-C°% e =e-€, n'=n-1" p1=p-p. (2.19)

The problem of electroelastic fields determination in the medium with an in-
clusion can be then reduced to the following system of integral equations:

fla) = fOx) +/S(:c — 2" YL F(2) d2' + wzpl/g(;v - 2")J fla')dz',  (2.20)
Vv v

with f9(z) denoting the “incident” field. The latter satisfies the equation

[TO(V) + wpo ) fO(z) = 0 (2.21)
with the notations
ctoet Gika(z)  7ik(T)
[:1 — = ) : S
el —p S(@) Yig(2)  —galz) |
(2.22)
’ e(x)
F(z) _B(2)

Here G(z), v(x) and g(z) are the respective z-representations of the functions
entering (2.13).

When z € V, Eq. (2.20) describes the electroelastic fields inside the inhomo-
geneity on which the fields outside of it can be constructed uniquely.

3. ELECTROELASTIC FIELDS IN THE TRANSVERSELY
ISOTROPIC PIEZOELECTRIC MEDIUM CONTAINING
A CONTINUOUS CYLINDRICAL FIBER

We consider an inhomogeneity having the shape of an infinite circular cylinder
(continuous fiber) with the axis parallel to z3-axis of the Cartesian coordinate
system. Let the plane wave propagate in the direction normal to z3-axis. Since
L(z) and p(z) are functions of z,,z only, the functions f°(z), f(z), F(z) are
independent of x3. Taking into account the relation

o0

L[ emkom qgt = 6(ky)

2
Eq. (2.20) transforms into the following one:

fy) = "y) +/5(y -y )L F(y') dy’ +w2p1/9(y ~y)Tf) Y, @3.1)
S S
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where S is the cylindrical cross-section, y = (21, 2,) and

Gly—-y) = kdk/G(k exp(~ik - (y - y))d(b, k= (ki ks). (3.2)

The expression for G(k) has to be obtained from G(k,«) , given by (2.13) by setting
ks = 0.

Let 3 be the axis of transverse isotropy. The material is characterized by five
independent elastic moduli C° = {Cll,Cl,.C’?_ C2,C3.Co% = 1(CY) — .'?.3)},

three piezoelectric constants €’ = {ef;, e{;, €3, } and two permeability coefficients

n® = {n?,,n%5}. Tosimplify the needed in the sequel tensorial operations (inversion,
contractions, etc), the tensors CY,e” and n° are expressed in the form

1

C? = 3(C1 + Ci2)T* + 2C5; (T' - %T"’)

+ C4(T? + T) + 4C9, T° + C3,T°, (3.3)

eO = 031U1 +(’lrU- +€ U" 7;0 = -n?ltl +7733t2.

The basic tensors T, ..., T U, U?, U3, t!, t* are defincd here by means of their
components as follows:

UH _9 Ael}h Tfjkl - szel.tls Tijk.l = H,Jmkm,,

T4

| _ ‘ 6 m
gk = mamO, - T = Ogamymy, - Ty = mangmgmy, (3.4)
Ul

72— 2m,.0. I A
e = Oima, Uby = 2m05,, U = mamgmy,

1 2
ti] = 91-,-, tij =Tm;my,

in the Cartesian system whose x3-axis is along the unit vector m; the components
of the tensor #,; are 8;; = d;; — mym,; .

The appropriate formulae for the operations on these tensors are given in the
Appendix.

The fiber material possesses the transverse isotropy aligned with the one of
the matrix. The tensors of the elastic moduli, of the piezoelectric constants and of
the dielectric coefficients of the fibers can be expressed in the same tensorial basis,
similarly to (3.3) (without the superscript ‘0’).

Using (3.3), one obtains

Nk (7;) = A\n;ny + .-‘\3(9,';‘. - ﬁ-jﬁ},-,) + Aam;my,
(3.5)

where
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These expressions and (2.12) imply that

1 1
Gulh,w) = =T + — (0 — WiTig) + —mymy,
"\1 ‘:I\'_ \3
1 73(60 )2 e
glk,w) = —— . 12 s Vi 2,
k), [ Mg niy A
P . (e9,)
\; =k Cly —pow®, Ciy =CY + -%5——-
M1
Introducing the quantities
2 2 9
2 Pow” 3% — Pow” 32 — Pow”
=5 PT=7=5, BlL=—7F
Ch Céo Cly

the expressions (3.7) are recast as

_E.,'—’T-/,- (12 32 . ,“32
+— {5 = + mimy, == -
k ' , k=01

_ 1 80 2
(T _ 15 I
vi(k,w) = — |\ 5 | =5 —M,; .
k' — 87

(3.7)

(3.8)

To determine the z-representation of functions Gy (k,w), vi(k,w) and g(k,w), ac-

cording to (2.14), we have to calculate the integral

o0 2w

1 kdk [ .
[ = : / /e“"“yd ).
(27)? ﬁ e ¢

Since

27 27

/C—ik Ydp = /gifycosé do = 2/cos(Ey cos ¢) dg = 2w Jo(ky),
0 0

o

where Jy(z) is the Bessel function, we have

= iHc(;”(ﬁy)-

E +(e+if)2 4

o0 — - - o0 — —_— -
I:i/ Jo_(fy)kdkzilim/ Jolky)kdk
27 k- 32 27 =0
0

0
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Here, Hé”(z) is the Hankel function of the first kind. Hence, the z-representation
of these functions has the form

2
e HY (8r) — =2 [Hm RN R L Y
Gik(r,w) = 4,00w {9 B Hy ' (Br) Fyiove Lo (q;)]d+m1mk6LH0 (,J.u)},
i 315 (1)
ll
g(r w) — ! Inr — _7'_ (%)2,82 H(”(ﬁ_LT)
’ 2mn?, dpow? \n9, ) "0 ’
where

[f(gr)]; = flar) — f(Br), =]yl (3.11)

Egs. (3.1), when written in detail, have the form

ui(y) = u?(y)+ /[‘I’imn(R)Emn (yl) - "/}Lm(R)Em(y,)
S (3.12)

+ e’ Gu(Ryue(y') | dy/,

so(y)=<p°(y)+/'[‘1>nm(R)€mn( ") = om(R)En(y")
S

(3.13)
+ plw'zvk(R)uk(y’)] dy’,
where
lI’imn(lz) zk !(R)Cumn + Vi k (R)ekm.n’

Yim(R) = Gk g (R)ekim — Visk (R)Mims
H 1‘T (3.14)

®n(R) =, (R) klmn (R)el.nma

¢TR(R ’Yk [(R)eklnl + g k(R)ana R = |y - yll'

Egs. (3.12) and (3.13) allow one to find the far-field asymptotics of the electroelastic
fields. Taking into account the asymptotic formulas at r — oo

R‘1~r"l, R~r—(n-y'), m=%, y =yl

0 d HOY 5 b iy
qR ( )mnk T, _ez(qy—n/ )eﬂq ny }’
ayh 33/1.", ( ) 1 Tqy

one has

wi(y) =) +uiy), ely) =) +¢° ), (3.15)
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and the “scattered” fields uf(y) and ©®(y) are determined by the expressions

() = Ai() St Bil) e + i) e
f' = A;jn)——+ Lin)—— + C;in \
o VU i vy

(3.16)

Here 4;(n), Bi(n), Ci(n) and ¢(n) are the amplitudes of the three cylindrical waves
that can be represented in the form

Ai(n) = ning fr(an),  Bi(n) = (Bix — ning) fir.(Bn),

Ci(n) = mimy fr(Brn) +m; f(Bin), (3.17)
0
e(n) = S [ mafu(Buin) + f(Bum) |,
M

with the notations

3 i q3 —T . !
f"’(qn) = 2_7;6 / {?’qnl/ [CAlrhnnE’nn(y)

2,00{.4)2
S

—€lum Em(y') ] e t(nY) dy’ + le2/uk(R)e-iQ(n'yl) dy’
S

. i 6?5 ,Bi _im ., 17 !
f(!g.l.n) - 20! 2 UT ge ! zﬁink [ekmnsmn(y )
s 11
S

+ N Em (y')]e"i”*(“‘yl’ dy', ¢=0a,8,8..

(3.18)

4. SCATTERING CROSS-SECTION IN A PIEZOELECTRIC MEDIUM

We define the intensity vector I;, associated with a stress field o5, the electric
potential ¢ and the velocities u; and D; by the relation

I; :Gijﬁj+<pDi. (4.1)

Similarly, we denote by I} the intensity vector associated with the scattered fields,
and by I? the intensity vector associated with the incident fields. The term “in-
tensity” refers to the rate of energy transfer per unit area in the direction normal

to the one of propagation, that is

I = I‘inls (42)
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where n; is the unit vector in the direction of propagation. The power flux (the
rate of energy transfer across the surface S with unit normal n;) is

Q :/I,--ni ds = /(a;jdj +©D)n; dS. (4.3)
S s

For a given angular frequency corresponding to period T', the total cross section
(J{w) is the ratio of the average power flux over all directions to the average intensity
of the incident ficlds:
(Q°)
t

(1%’

Qw) = (4.4)
where ()¢ denotes the time averaging over the period 7'.

Having found the far-field asymptotics of the scattered electroelastic fields we
can now compute the total cross-section according to relation (4.4). Since the power
flux is a real number,

@ = § [{(o0 + o)+ )+ (o 9)(D1 + D)) midS, (45
S

where *+7 denotes the complex conjugate. Since we assume the vibrations to be
harmonic,
w [ — 24wt * ow 2iwi * *
(Q)( = T/(—auuie + aij-uv,-e - U;‘j“‘i +0’iju.1-
s (4.6)

—pDje™ ! + " Die*™! — " Dj + D3), n; dS.
Computing the time average yields
1 * * . p
(@) = —§wIm (oiuf — D™ )n; dS. (4.7)
S

Hence, the expression for the total cross-section takes the form

' S

1
0\ _ . 0, %0 0, %0y 0
where n? is the normal to the front of the incident wave.

We apply now the general formula (4.8) to the scattering of the acoustoelectric
waves on a continuous cylindrical surface of unit height and a radius r concentric
with the fiber. Taking into account that the contribution to the energy flux through
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rwo cross-sections of this surface by the plane wave propagating normally to the
fiber axis is zero, we have

27

Qw) = — (10) Im/( o ju;’ — Dig njrde, (4.9)
0

where ¢ is the angle between the wave normal n® and an arbitrary normal to the
fiber hlllfd((‘..
To compute Q(w), we have to find (utilizing (3.16))

. o pioy eiﬁy

+C(n) + e e(n)3y ] .
VY ! Vi

Substituting the expressions for transversely isotropic tensors C7jy, and e, we
obtain

ezay

VI

o _ (..1;3 i , e'JJ. Y
+Ciq B,j(-n),dw + CyymimpCr(n) 3, } ,

Vi

1
Ui) H,_,' = l { [ §(C’?] + C?Q)'I'l,i'n;\._«l;‘.(n) 4 C(?(j (n)]
(4.10)

where the relation

(6?5)2
77?

CY g Crn) + el c(n) = (C,?,, + ) (myfr(Bin) + f(3in)) = ClymCr(n)

1
is taken into account with C, determined by (3.7). Similarly,

elay iy

D =i e ming Ap(n)a— + ni(eSsmpCr(n) = ndc(n))B.L
{ 31 ) \/y t\%15 11 ( \/,y

!

This implies that

Ly

VY

Din; = i(esmpCp(n) — nnc(n))dL (4.11)

Since
SymiCr(n) = yetn) = (mifu(8 3im)) (e = ) =0
Lom Ce(n) —myye(n) = (mefu(Boin) + f(Bin) J(e]s —€15) =0,
the second term in (4.9) does not contribute to the total scattering cross-section.
The substitution of these expressions, alongside with the relation
piay e—ii?y O—izhy

= AT + B+ G )

147



into (4.9) yields eventually:

w

70)

Q) =~

27
/ [CYi a4 + C3s8B:|* + C14B.L1Ci|*] do, (4.12)
0

where |4;]? = 4; A7
We assume that the incident waves have the form

Wy, w) = Uiy 0y, w) = eikn’y, (4.13)

where k is the wave number, n? is the wave normal (perpendicular to the fiber axis),
'; is the polarization vector and @ is the amplitude of the electric field. Since

0; €510k — 05Ok’ = 0,

it follows that o
1S 1 U (4.14)

UJS!

¢ =

Hence, the expression for (7?); can be represented in the form

(1°), = _W'I‘ Cll +C1)(U - 0°) + Cgs(U - U) + (Cgy — C)(U - m)
(4.15)

5. THE TOTAL SCATTERING CROSS-SECTION
IN THE LONG-WAVE LIMIT

As it follows from expressions (3.17) for the amplitudes A;(n), B;(n), C;(n) and
¢(n), the determination of vector f;(kn) and scalar f(3,n) plays a key role in the
scattering problem. These quantities depend on the electroelastic fields u;, ¢ (and
the accompanying fields €;; and E;), inside the region occupied by the scatterer.
The mentioned fields have to be determined from the solution of the coupled elec-
troelastic dynamic problem for the medium with the inhomogeneity. If these fields
are found approximately, then the obtained formulae yield approximate expressions
for the scattering cross-sections. Several approximations have been suggested (see
the discussion of [4]), to mention only Born’s approximation, quasistatic approxima-
tion and extended quasistatic approximation. We use the quasistatic (long-wave)
approximation. The feature of this approximation is the replacement of the actual
strain and electric fields inside of the inclusion by those of the static (infinite wave-
length) problem. As it is well-known [7-11], if the external fields F° = [°, E°] in
the static limit (w = 0) are uniform in S, then the fields F = [, E] inside this
region are also uniform and have, after [11], the form

Iijru 0

F=AF", A=(T+PcH™!, I=
0 i

o Tijre = 06y, (5.1)
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where P is an operator with constant components that can be represented in the
tensor basis (3.4) as

PO 0
P = 0 p0 ’
p’
1 o 171 1 1 n?
PO — 2 Tl _ _T2) 11 TS 9
[4091 (CO i ) ( 2 280 (5:2)
efs .. C? .
p’ = 42;0 5, 7%= 2A440t1 Do =17, 044 + (€35)*.
Note that only the product
L'F =L AF® = LAFY, A =/('A (5.3)

enters the right-hand sides of Eqs. (3.18). The components of the constant oper-
ator £# can be obtained by using tensorial operations in the basis (3.4), see the
Appendix. Then

LA =

1

eTA _nA

(C‘l, + C3)T? +2C4 (Tl - -;-T2>

+ CA(T? + TY) + 4CH T + CH TS,

(5.4)

et = e31Ul - e,sU + (333U3 7)’4 = 1){41t] - ng‘},,t2,

with the notations

DN

1 ¢l +cL\ !
(CA +CA) = 2(Chy + ) (1+————“ i 12) |

cl /1 1 \17}
chcufps e (g )
66 7 o0 2 \C{,  Cg

Cl +ChH\ ™ ! L,
Cfy = C} ( "%CTl‘:) , Chi= A_f [Cia 2, (0447711 + (e15) )] ’

-1
A _ (C} 3) Ch +0112)
C33 = Cy3 — C?l (1 + ——20{)1 ) (5.5)

L+ CL\ 1 el
eé‘ﬁ = e3, (1 + —1;5‘?‘1"'1'2‘) , 6145 = Z; [ €15+ S A 2A (0447711 + (e15) )]
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Ay = [1 + ZIE;( +C41’hl)} [1 + i;( efsers + (447211)]

4A0 (6445’15 C 615) ("7(1)13}5 _"7}13[1)5) .

In the foregoing expressions the quantities with superscript ‘1" refer to the difference
between the inclusion and the matrix electroelastic constants.

The determination of amplitudes 4;(n), B;(n) and C;(n) utilizes the following
relations that hold in the long-wave approximation:

O—iqn-)" ~ 1, 'u.,(z_ — (-:l? l Ik(]“' R, (k = ﬁ\flg-].)a

o _ €% rr0 0 0 ? 0 (56)
g = 70—')((,f't.7'n.k), Ek = —zf'3_Ln[\ 0 (LI."”\)
LS Uit

where U is the polarization vector, k is the wave number and n° is the normal to
the wave front.
In accordance with (3.18), we have

. 2 3
iTa q .
filan) = 5\ e~/ 12U
42 ‘ k

2p0w"‘ 27

0
A 0770 €15 (770 A .0
- quk,pqnqup - qf3; nT(L-kmk)ek,pnmp} .
11

—_
(W53 1
=1

—

ima® [ ¢7 e (€5
f(3in) = — ~\/ —e " ( 31
( 2ppw= V 2m n?,

&0
0 €15 770, . \.-A 0
kekpqnm L + 3L -—7?1 (Ukmk)nkpnknp] ,

where C4, e and n are defined in (5.4) and (5.5), respectively, and a is the fiber
radius.
We now consider several special cases.

5.1. LONGITUDINAL WAVES

In this case,
k=a, Ul=nY, Ulm;=0 (5.8)

150



and the expressions for fi(an) and fi(3n) read

. -_) F{

1ma a” 4 2 0

fr(an) = D 7€ —in/ {plw ny.
@

— o [§(le} +C{3) + +Cigg(2cos ¢ — 1)] "‘}*
(5.9)

ira® 3% _.
fr(Bn) = Spo? ‘Q—We""/“{plw'ng

—af [ (CYr + C{S)ng + C4(2n2 cos ¢ — n;.)] }

According to (3.17), we find now

ima® [ad i, L |1 .
Ai(n) = e[S gmin/a {p—lcosgﬁ - {E(Cﬁ +Cl’?3) + C; Gco‘,?é}}

2 V 2n Po CY,
Ay _ ira® [ —in/a | P1 Cés 0 2
Bi(8n) = 5 ¢ o 2(00 cos ¢ | (n] — n;cos @), (5.10)
where
(=afp. (5.11)

Obviously, f(3in) = 0 and the vector fr(3.n) lies in the xyx,-plane. Therefore
fu(Binymy =0 and Ci(n) = ¢(n) = 0.
Taking into account the relation

1
(1% = — §WGC?1 (5.12)

and substituting (5.10) into the right-hand side of (4.12), we obtain, after integra-
tion with respect to ¢,

Q) = Tataa* { s | S0 + 02

(5.13)
0 (18) ]+ () (o)} et
+(CEY¥ 1+ =) |+ = + =), v = Po-
( 66 cd ] 0 C‘) L i1
5.2. SHEAR WAVES POLARIZED IN THE X' T9-PLANE
In this case,
U =¢Y (e9n) =eim) =0), k=2,
(5.14)

1
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The scalar f(3,.n) vanishes (as in the previous case) and

'2

3
frlan) = \/ & i/ [pr1w?e) — aBCE (e) cos ¢ + nl sing)]
2p w2V 2w
(5.15)
. ira® [j3° —irn/4 2~A (0 0 o
fe(Bn) = 2o 5. ¢ [prwiel — B2Cég (el cos ¢ + nf sin@)] .
The amplitudes A;(n) and B;(n) of the scattered waves take the form
Ai(n) = iLaz O[—3(3"“'/4 smqb ( sm 2¢
YT 9 Voog o
. — ira® )63 —im /4 P1
Bi(n) = 5 o © [ p (e n; sin d)) (5.16)

C4
ﬁ2 g (e cos + ndsing — n; sm2¢)]
Hence, the total scattermg cross-section of the waves, according to the general
expression (4.12), is
1

(povl)? 5(Cee)* (1 +¢)

71.2
Qr(w) = T a(6a)’ [
(5.17)

2
+<B‘1‘) (1'*'42)“, v¥ = Cog/ po-
Po

As it follows from (5.13) and (5.17), the total scattering cross-sections of the
longitudinal and shear waves polarized in the ;z,-plane do not contain any di-
electric or piezoelectric constants. This was to be expected, since the x;z,-plane
is the plane of isotropy, so that the piezoelectric behaviour does not manifest it-
self. The situation, however, is quite different when shear waves, polarized in the
z3-direction, are considered.

5.3. SHEAR WAVES POLARIZED IN Z3-DIRECTION
Indeed, we have in this case,
1
0 _ _ o\ __ /
Ul =mp, k=8, (I >t—_§w6LC44- (5.18)

Obviously, 4;(n) = B;(n) = 0 and the vector fx(3.) and the scalar f(3,) become

2 3 A L0
fe(Bin) = —Lemin/d [— - = (C + —=2 )| cos @,
k( ) 2 271_ ,00 » 44 T’(l)l

=

(5.19)

f(Bin) = - ira® ie—mm ?s ( + ?snA) cos ¢
2 2 nll €15 ,’70 11
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It follows, then, that

2

ira® [5% _ix ) m 1 efs\” ’
Ci(n) = 5 ie 4 p_o - _!14 ‘:Cﬁ; + (%‘10—: nﬁ COS @ p m;. (5.20)

The total scattering cross-section for these waves is

2

2 2
: w2 1 0\ 2 2
Qri(w) = F(Braf’a { ———y | Cii+ (e%) nh | +2 (p_l) ;
8 (povy  )* T Po (5.21)

2.2 . !
vy, = Cys/po-

For the purely elastic behaviour (ef5 = 0) this expression coincides with the one
obtained in [12].

6. CONCLUSIONS

The obtained results for the scattering amplitudes and cross-sections of a cir-
cular scatterer in a piezoelectric medium of hexagonal (transversely isotropic) sym-
metry may be useful for many future applications, e.g., for the determination of the
symmetry of the scatterer by measuring its scattering cross-section. The Green’s
function method, presented in Section 3, can be extended to scatterers of arbi-
trary symmetry. Here a similar amplitude equation as (3.16) occurs wherein the
scattering amplitudes reflect the symmetry of the scatterer. Thus the presented
method will hopefully stimulate further work in the treatment of the scattering of
acoustoelectric waves at inhomogeneities.
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APPENDIX

The needed formulae, concerning the tensorial basis (3.4) used in the paper, are
collected here. Their application, as already demonstrated, allows one to substan-
tially simplify and standardize the appropriate tensorial operations in the problem
under consideration.

If a certain tensor A is expressed in the T-basis as

5 1 ., ,—
A=AT+ 4, (Tl - §T“) + AsT? + AT + AT + AgTS, (A.1)

then the inverse tensor A™! is given by the expression

A7l = As T? 4 - (T‘—%T‘Z) 43 T3 — 4“T
)

2A A'. A A
4 - (A.2)
+ Z; "_[‘5 Al T ; A= 2(‘41446 - -'43-‘44)-

If two tensors A and B are given in the T-basis, the contraction of these
tensors with respect to two pairs of indices reads

Aijleklmn = (2‘4131 + -43B4)T13mn + A‘ZB? (szmn Tzimn)
(24 B; + 43‘86) igmn + (2"44B1 + AGB-I)TJmn (—\3)

+ 2A5B5Tz_]mn + ("1636 + 2 44B3) ijmn:
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Consider now two tensors C and D, presented in the U-basis,

lJI\ - ZC szl. uk - ZD L,JL (.*\4)

s=1
The contraction of these tensors with respect to one index gives the tensor in T-

bhasis:

(_;v,‘_]mD J—( D )IJ+C D JI\I+CD JIJ+4C)D) IJ“+C3D'7, 1_)1\’ (‘\ O)

mk

The contraction of the tensors C and D with respect to two pairs of indices gives
a tensor, which is presented in the t-basis as

CT Dyj = 205 Dot} + (2C1 Dy + C3D3)t3;. (A.6)

It can be shown that the t-basis is orthogonal in the sense that if

aij = agt); + a;t Bij = ﬁlt} + ;%t,'l, (A.7)

then
ik By = alﬂlt + 0)321 (A.8)
and 1 1 { |
a; = a—lt‘J + ;t. (A.9)

The following formulae are also useful:

1
Aijmncmnk - (QAICI. + -435C3)U:JI. + 3 9 As Czl‘zﬂ\ + (2‘4‘101 + ‘460:5)U?jh

T 2 r'il'
CT A = (2C1 Ay + CaAg)ULL + C, AsUZE + (201 Az + C3 Ag)UJ
Cl = axCrULT + a1 CoURT + a2 C3UT A.10
Aim Cha = 20 Uy + a1 CoUj + 02C3Ujg (A.10)
Cijma'mk = () OfQUijk_ + Chon U{ﬂ\ + C;;Ofgb'jjk.

Recewved February 29, 2000
Valery M. LEVIN Thomas MICHELITSCH
Division of Mechanics institute for Theoretical Physics I
Petrozavodsk State University University of Stuttgart
Lenin Ave. 33 Pfaffenwaldring 57/4
Petrozavodsk 185640 D-70550 Stuttgart
Russia Germany
E-mail: levin@levin.pgu.karelia.su E-mail: michel@theo.physik.uni-stuttgart.de



