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Long wave-length pattern formation is studied by means of numerical integration of a
fourth-order in space nonlinear evolution equation subjected to Dirichlet lateral bound-
ary conditions. Computationally efficient implicit difference scheme and algorithm are
devised employing the method of operator splitting.

The case of Bénard convection in Boussinesq limit is considered. For different sets of
the parameters different convective planforms are found: a pattern of hexagons (H ™)
with upward flow in their centers, hexagons (H ~) with downward flow in the centers,
coexisting hexagons and squares (S), and a case where the squares are selected. In the
case when the critical wave-number vanishes (the wave-length diverges) the pattern
selected is of a single cell which fills the whole domain under consideration.
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1. INTRODUCTION

Pattern formation in a thin layer of fluid heated from below occurs when the
vertical temperature gradient exceeds certain threshold [12, 20, 10, 6]. The nature
of the instability and the characteristics of the convective motion depend not only
on the fluid parameters but also on the geometric and physical properties of the
container. In sufficiently deep cells, or in cells in which the fluid is confined between
rigid horizontal boundaries, the convective motion settles when the buoyancy force
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overcome the viscous forces (Rayleigh-Bénard problem). In sufficiently shallow
lavers with open surfaces, the inhomogeneities of the surface-tension distribution
arc responsible for the onset of the motion (Bénard-Marangoni problem) [3. 13].
Depending on whether the horizontal boundaries are good thermal conductors or
not, the characteristic wave-length of the convective structure is either comparable
to or is much larger than the depth of the cell.

In this work we deal with the problem of pattern selection and the long-term
evolution of the planar field in horizontally limited systems, subject to rigid bound-
ary conditions at the sidewalls: u = Ju/dn = 0, where u is the temperature.

Different amplitude equations are derived in the literature as simplified models
for the convective motion in lieu of the full system of the compressible Navier-
Stokes (N-S) equations. Here belongs the Swift-Hohenberg (S-H) equation (see, for
instance, [6]) and its generalizations [1], as well as the Knobloch equation [8, 9],
to mention a few. The main difference between these two models is that the S-H
cquation has a Lyapunov potential, while the Knobloch equation has not, being
thus physically much closer to the original model based on the full Navier-Stokes
equations.

Knobloch’s equation (1) is very similar to the 2D Navier-Stokes (N-S) system
not only as a physical model but as a mathematical structure as well. It is simpler
in the sense that it is a scalar equation containing no pressure, and hence no
incompressibility constraint has to be satisfied. On the other hand, Eq. (1) is more
complicated than the N-S one on the account of the numerous nonlinear terms
which make it a multi-parametric model with a rich phenomenology.

Following [5], we employ the method of operator splitting to construct an effi-
cient difference scheme and algorithm for solving the generalized diffusion equation
(1) which contains fourth-order spatial derivatives. This is the numerical objec-
tive of the present paper. The proximity of the solution to its asymptotic state
is assessed via monitoring the L,-norm of the difference between two consecutive
time steps; this norm is sensitive not only to the changes in the amplitude of the
structure but also to the evolution of its phase.

The second objective of the present paper is to obtain physically relevant re-
sults. In this instance, the emphasis is placed on three aspects. First, the pattern
selection is examined and the results are compared to the existing ones, particularly
to those obtained in the framework of the Knobloch’s equation. Second, we find
numerically the possible non-stationary asymptotic states toward which the system
evolves. Third, the long-time evolution of the patterns is tracked. In all these cases
the wave-length and the spectral content of the patterns in terms of Fourier modes
are thoroughly examined.

2. POSING THE PROBLEM

Chapman & Proctor [4] and Sivashinsky[15, 16] introduced an equation to
describe the long wave-length pattern formation induced by buoyancy or by surface-
tension instabilities in a thin layer of fluid. This equation was later generalized by
Knobloch to the form



du : :
-ég =au — uViu - Vi + &V - |Vu|’Vu
t (1)

+ 8V - V*uVu — 4V - uVu + §V?|Vul?,

Here, u{x,y,t) is the horizontal planform of the temperature deviation from the
conductive profile, , y and t are slow variables, p is the scaled bifurcation pa-
rameter, and a represents the effect of finite thermal conductivity of the horizontal
boundaries, or finite Biot number. When the boundary conditions at the top and
bottom of layer are not identical, then 3 # 0 and § # 0. Respectively, if non-
Boussinesq effects are to be taken into account, one has v # 0. In the present
paper we do not deal with non-Boussinesq effects, hence, we set v = 0. The coef-
ficient & can always be set to %1, see [8], except for solidification in binary alloys,
where it vanishes. Specifically, in the case of Bénard’s convection, x = +1.

Knobloch considered modes forming square and hexagonal lattices, but he did
not address the question of relative stability between squares and hexagons, and
suggested that the problem should be studied numerically. He did not consider
the case in which kK = —1, nor did he interrogate the non-stationary patterns that
could emerge due to the non-potential character of Eq. (1). Shtilman & Sivashinsky
(14] integrated Eq. (1) numerically in a square region of approximately 4 x 4 wave-
lengths, subjected to periodic boundary conditions. They set v = 0, 3 > 4 and
obtained a structure of positive hexagons quite in accordance with experimental
findings in Bénard-Marangoni convection and the analytical results of Knobloch
for this range of parameters. Recently, Skeldon & Silber [17] extended the stability
analysis performed by Knobloch and found some scenarios, where transition from
hexagons to rectangles may occur. In some cases, these authors found that near
onset some more exotic spatially periodic planforms are preferred to the usual rolls,
squares and hexagons.

The existing results, concerning pattern selection in the framework of the dy-
namics represented by Eq. (1), can be summarized as follows:

e Square lattices:

— Squares are stable if 3 =y =4 = 0;
— Rolls are stable if 3 =0 # 0 and v # 0;
— Rolls are stable for 3 #0 and 3 -0 #0if vy = 0.

e Hexagonal lattices:

— Hexagons are stable if § =~ =4 = 0;

—If 18+ v/q® = 8] < |8, 18], |[v] = O(1), the hexagons are stable at
low amplitudes, having upward (H™) or downward (H ™) flows in their
centers depending on the sign of (8+ /> —§), while the rolls are stable
at larger amplitudes;

— H* and H~ coexist at large amplitudes if ||, |y, |d] < 1.
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In this study we consider the Bénard convection in Boussinesq approximation
when k = +1 and v = 0. Only in one of the calculations for the squared tessella-
tions we use k = —1 for the sake of comparison of the physical mechanisms. The
simulations are conducted in the above selected parameter range for a square box
with horizontal dimensions 150 x 150 (approximately 20 to 23 wave-lengths per
side). Eq. (1) is integrated numerically in the points of a square grid of 402 x 402
points, which means roughly 17.5 points per wave-length. This is a significant im-
provement of the resolution in comparison with the works from the literature. The
time-step used in our simulations is At = 0.1.

Section 4.1 presents the results concerning H*+ or H~ hexagons. Section 4.2
discusses squared tessellations S, obtained both with k = +1 and k = —1. Section
4.3 deals with the problem of the coexistence between squares and hexagons. In
Section 4.4 the result of a simulation for & = 0 is presented. This is a case when
the critical wave-length diverges (zero critical wave-number).

3. NUMERICAL SCHEME

Following [5], we use here the idea of operator splitting to create efficient scheme
which will allow extensive numerical experiment. In order to secure the desired
properties of the operators to be inverted, we use a semi-implicit approximation of
the nonlinear terms. First we recast the original PDE to a form stemming from a
first order discrete representation of the time derivative:

un+l —yh
— = (A7 + AY) u™ + 7, (2)
or
[I - (A7 + A7) u™! = At (u™ + M), (3)

where I is the identity operator, and u™, u™*! stand for the dependent variable on
the respective time stage. Respectively, the operators AZ, A} and the function f"
are defined as follows:

n (8 84 0 n26
Az—i-a?+n55(|Vu|a—x),
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Here it becomes clear why the scheme is called “semi-implicit”. The nonlinear
terms involving the third derivatives and proportional to the coefficient k are taken
in divergent form in which the coefficients are from the “old” time-stage, while the
derivatives itself are treated implicitly. Generally speaking, some more terms can

be approximated implicitly, but such an approximation will destroy the negative

fr=-2
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definiteness of the operators to be inverted at each time step. For this reason we
leave them on the “old” time stage.

Now the full inversion of the operator [I — (A} + A;‘)] requires a consider-
able computational effort. We use here the operator-splitting scheme of stabilizing
correction. We split Eq. (3) into the following two half-time steps [5]:

(I-AtAMa = (I+AtAY)u" + At f™, (4)
(I-AtAy)uw™! = a— AtAju™ (5)

Upon applying the operator (I — At A7) to Eq. (5) and adding the result to
Eq. (4) one obtains

(I + (Ag)2AnAn) ¥ v

Y At
which means that within the second order approximation in time, the splitting
scheme is equivalent to the original semi-explicit scheme (2). The advantage of
the splitting is twofold. The operator in the left-hand side of Eqgs. (4) and (5)
displays a penta-diagonal structure when the space operators are approximated
to second order on the difference level. The elements of these operators are just
numbers and not matrices, as in the case of Eq. (3). Second, Eq. (4) can be solved
line by line and Eq. (5) can be solved column by column, reducing considerably
the storage requirements. The five-diagonal systems were then solved by Gaussian
elimination with pivoting. The scheme (4), (5) generalizes for the fourth-order
diffusion operators the classical operator splitting scheme of stabilizing correction
(7, 21].

When a stationary pattern is investigated, the boundary conditions and coeffi-
cients of equation do not depend explicitly on the time ¢ and the computed transient
solution should converge to the steady solution unless a chaotic régime onsets. Of
prime importance for computing the steady solutions is the selection of the crite-
rion to judge whether the convergence is reached since the amplitude and the phase
dynamics of the pattern evolve on different time scales. The phase evolves much
slower than the amplitude does. Then the uniform norm of the difference between
two consecutive iterations will follow the rate with which the maximal amplitude
of the transient approaches the maximal amplitude of the steady solution. Using
an uniform norm would send a false signal that solution converges long before the
phase pattern reaches its stationary shape. Following [5], we track the time evo-
lution of patterns by monitoring an L;-type of norm which measures the rate of
change of the distance between two successive states of the system. The L;-norm
is sensitive to the evolution of both the amplitude and the phase:

1 X iy —

At Zi,j juntt]

= (A;1 + AL‘I) un+1 + fn’

Ly = (6)

where the sums are made over all interior points of the grid.
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4. NUMERICAL RESULTS

In this section we present the results of our numerical simulations of the
Knobloch equation (1). All simulations begin at ¢ = 0, from a random initial
condition. As already mentioned in the foregoing discussion, we focus our atten-
tion on the case & > 0. We choose without loosing the generality kK = 1. Only
in one of the runs we use x = —1 for the sake of comparison. More exhaustive
treatment of the non-Bénard case k < 0 is due elsewhere.

We consider only the cases when a < 0, which means that there is no energy
input proportional to the temperature u. For a < 0 the said term accounts for a
linear attenuation of the solution. Then for the dispersion relation for the Fourier
modes of the linear part of Eq. (1) in unbounded region and for the interval of
unstable wave-numbers we get

s=a+pug® —q*, ——\/—-—Ial<Q< +\/——Ia

where the negative sign of a is acknowledged.

One sees that there is a whole band of unstable modes. The fastest growing
mode (the largest positive s) is ¢ = /u/2 with exponent s,, = a + é\/ﬁf In
most of the cases treated in the present work g,, does not have much impact on
the results and cannot effectively serve as a representative critical number. For
this reason we propose a somewhat more elaborate definition of the critical wave
number q.. Namely, we find the value of u for which s,, = 0, i.e. the value for which
an unstable mode first appears. Clearly, this can happen only for 1 = 21/|a|. Then
we call “critical wave-number” the magnitude of g, for this particular value of p,

= \/IEI-. As it will become clear in what follows, this critical wave-number is
rather relevant to the wave motions under consideration.

The hexagon pattern with an upward flow in the centers of hexagons is denoted
by Ht. Respectively, H~ stands for the pattern in which the flow in the centers
of hexagons is downward. The grey shades of the plots are selected between white
(regions with the most rapid upward flow) and black (the fastest downward flow).
In order to gather more information about the motion, the Fourier transform of
the pattern is shown in the figures. To this end, we include also a panel in the
figures showing the sum of the amplitudes of all wave-numbers A in the interval
between ¢ and q + Agq, regardless to their orientation. Respectively, Aq is the grid
spacing of the discrete Fourier transform. The respective result is depicted in the
lowest panels of the figure as a function of (g/g.). The position gs of the peak
identifies the fundamental mode of the structure which is, in general, different from
the critical mode g.. :

4.1. FINITE WAVE-LENGTH HEXAGONS

The starting point of our simulations is the numerical work [14]. We adopt
the same values used by those authors for the coefficients of the quadratic terms,
namely 8 = —0.125v/7, @ = —0.8 and p = 2.7.
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For 6 = —0.75V7 < 0. the system evolves into a pattern of positive hexagons

which we designate as H~

The structure obtained at the end of the simulation

(1 = 19050) is shown in the top-left panel of Fig. 1.
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Fig. 1. Hexagons in square geometry for p = 2.7, a = —0.8, § = —0.125V/7. Left panels: H* at
t = 19050 for 6 = —0.75V/7. Right panels: H~ at t = 15990 for § = 0.75v/7. From top to
bottom: the pattern; the time evolution of L;-norm; the Fourier transform; the wave-number

content of the pattern
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In the beginning, the small scales existing in the random initial condition are
rapidly attenuated due to the filtering action of the dissipative part @ — V* of the
linear operator of Eq. (1). The most significant growth of the amplitude occurs
in this phase and the decrease of the L;-norm is very fast. The second phase is
essential for the pattern evolution. It is characterized by an irregular behaviour of
L, which on average decays much slower than in the initial stage. As the structure
evolves, new cells are created or annihilated, dislocations move, and grains slide
relative to each other. The number of defects usually diminishes as longer space
correlations are created and the whole pattern moves. Tribelsky et al. show in [19]
that just before and after a cell is created or annihilated, the evolution accelerates
according to a power law. The peaks of the L;(t)-curve reflect the time moments
when qualitative changes occur in the pattern. Eventually, the system finds a
configuration where further qualitative changes become extremely difficult and then
the third stage of evolution begins characterized by a sustained exponential decay
of the L;-norm. We terminate the simulation after the L;-norm decreases another
order of magnitude since the moment of onset of the third phase of the evolution.

The pattern shown in the top-left panel of Fig. 1 contains three grains, the
first one being adjacent to the upper boundary and having one of the axis of the
lattice parallel to that wall. A second smaller grain of the same lattice orientation
occupies a part of the lower wall. The third (the biggest) grain occupies the central
part of the box and presents a lattice rotated by an angle of 7 /6 with respect to the
other two. Several hepta-penta defects can be observed on the grain boundaries.

The third panel in the left column of Fig. 1 shows the core part of Fourier
modes of the pattern at the end of the simulation ¢ = 19050. Twelve peaks can
be observed in the ring of fundamental modes, reflecting the existence of lattices
with two orientations. In addition, this figure shows also the existence of secondary
peaks (the bottom-left panel in Fig. 1) which can be explained using the arguments
presented graphically in Fig. 2.

In order to identify the relative importance of the amplitude of the modes,
irrespective to their orientation, we computed the sum (denoted by A) of the am-
plitudes found in circular rings of the Fourier transform centered in ¢ = 0 and
limited by

nAq— Aq/2 < g <nlq+ Agq/2,

where Ag = 27/l and n = 1,2,... The values of A, obtained as a function of q/q.
and normalized by max(A), are plotted in the bottom-left panel of Fig. 1. The
curve displays an absolute maximum in ¢/q. = 0.98, which we define as ¢;/q.,
with ¢y being the fundamental wave-number of the pattern. There are also several
smaller peaks associated with modes v/3 qf, 24y, v4i qs and 2v3 gs. It is seen that
the fundamental wave-length of the pattern is smaller than the critical one. We also
outline by dashed vertical lines the limits on the band of linearly unstable modes. It
can be seen that there are secondary peaks out of that band, i.e. active modes with
negative eigenvalue. The next four relevant peaks are located in ¢/¢. = v/3,¢s/4c,
2q7/qe, 2.65 =~ V/7,q7/q. and 2v/3¢s/q.. The amplitude of the peaks diminishes
as q/q. increases due to the fact that the eigenvalue of a mode becomes more and
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more negative, as the distance to the band of linearly unstable modes increases.
This reveals an important signature of weakly-nonlinear systems: the interaction
between modes promoted by the nonlinear dynamics merely introduces corrections
to the fundamental modes, the latter being the most important in defining the
- essential features of the structure.

Thess & Bestehorn [18] found by direct integration of Navier-Stokes equations
that an H ~-structure appears in Bénard-Marangoni convection if the Prandtl num-
ber of the fluid is smaller than a critical value. We encounter negative hexagons
H~ for positive § = 0.75v/7. The size of the system and the values of the rest of
the parameters are the same as in the preceding case H", except for the coefficient
d, for which we took the opposite sign.

The pertinent drawings are shown in the right panels of Fig. 1. In this case the
end of the simulation appears at ¢ = 15990. Now the system develops a more com-
plex structure than in the H%-case, which is also reflected by the Fourier transform
of the pattern. Several dislocations and hepta-penta defects are observed. Yet,
the curve L;(t) displays the same qualitative features found in the previous case
and the time interval required to attain a sustained exponential decay of L;(t) is
also comparable (¢ = 15990 here and ¢t = 19050 in the previous configuration). The
higher level of disorder of the H ~-case is compatible with the higher forcing, applied
to the system, which is reflected by a somewhat wider band of linearly unstable
modes. The bottom-right panel of Fig. 1 shows that H~ contains the same struc-
ture of Fourier modes as the one found for H*. The fundamental wave-number of
the pattern is greater than the critical wave-number, namely gy = 1.03 g..

Fig. 2 focuses on an extended area around the core part of the Fourier transform
of the Ht-pattern shown in the respective panels of Fig. 1. Fig. 2 is constructed
using a nonlinear scale of gray shades, in order to enhance the weaker peaks for
better observation. It is seen that the peaks fall in five concentric circumferences,
whose diameters follow the same relations found for the abscissa of the peaks shown
in the lowermost panels of Fig. 1. The first one (1) contains the fundamental modes
of the pattern, gy. Six directions (12 peaks) are observed on this circumference,
due to the existence of grains with two orientations in the pattern under consider-
ation. The second circumference (2) with radius ¢ = v/3 ¢y contains wave-vectors
generated by the interaction of fundamental modes of the hexagonal lattice (see
also Fig. 2(b)). The third circumference (3) contains the second harmonic of the
structure 2 gs. The fourth circumference (4) with radius g = v/7 g contains modes
generated by the interaction of q; and 2 qy, forming an angle of /3. Two different
orientations are possible in each /3 sector leading to the existence of 12 pairs of
peaks in this circumference, see Fig. 2(b) and Fig. 2(c). The fifth circumference
contains modes with wave-number g = 2v/3 qs. Fig. 2(d) displays a scheme of the
pattern in the physical space as contained in each cell.

Twelve peaks can be observed in circumferences # 2, 3 and 5, but circumference
# 4 contains twelve pairs of peaks. Fig. 2(b) and Fig. 2(c) clarify the origin of these
peaks.

Fig. 2(b) shows a hexagon in the Fourier space composed of fundamental
modes. The interaction of two aligned fundamental modes results in the second
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Fig. 2. HT in square geometry

harmonic, the interaction of two wave-vectors qy, forming an angle of 7/3, gives
a mode with ¢ = /3 gz, the interaction of the latter one with itself originates the
mode 2v/3¢; and the interaction of a v/3 g;-mode with a fundamental one creates
a V7 gs-mode. In this case there are two possibilities in each /3 sector. This is
why twelve pairs of peaks appear in the circumference # 4.

Fig. 2(c) shows the hexagons in Fourier space, obtained by linking the peaks
associated to one of the lattices of the pattern. Fig. 2(d) shows a scheme of a
convective cell in the configurational space. Thus we compare the normalized fun-
damental mode qf/g. of the pattern, with the normalized average mode g¢,/q.,
where the average mode is defined as

N
ga = 2m S_a ) (7)
where N is the number of cells in the pattern, and S, is the area of the box.
Due to the existence of empty spaces at the grain boundaries, close to the
sidewalls, the above estimate gives as a rule an average wave-number smaller than
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g¢. In addition, the pattern contains some cells (like the heptagons) which are
larger than the average cell.

4.2. FINITE WAVE-LENGTH SQUARES

We turn now to the question of identifying the conditions leading to square
tessellations. Knobloch [9] shows that squares are stable when the system is a
Boussinesq fluid with symmetric horizontal boundaries (8 = v = § = 0). Shtilman
& Sivashinsky [14] obtain the same result by numerically integrating Eq. (1) in a
4 x 4 wave-length box assuming periodic boundary conditions. The squares can
also occur when 8 = § # 0. We consider two configurations of parameters, one of
them with & = +1 and the other one with Kk = —1.

The case k = +1 evolves until ¢ = 41100. The high forcing, applied to the
system (u — p. = 0.602), justifies the rather disordered structure obtained in this
case (see the left panels in Fig. 3). This behavior is captured also by the Fourier
transform. The most conspicuous feature of the pattern is the orientation of the
dominant lattice parallel to the diagonals of the box (note that it is parallel to the
sidewalls in the case & = —1). The normalized fundamental mode is qs/q. = 1.
The consecutive peaks are associated with the modes v/2 ¢y, 2q5, V5 gy and 3 ¢;.

The pattern obtained for x = —1 (right column of panels in Fig. 3) displays
an almost perfect structure, possibly due to the lower forcing applied to the sys-
tem. It consists of essentially one grain with several defects (dislocations). The
almost perfect structure of the pattern is reflected by a very clear but rich Fourier
spectra. There is no circle of fundamental modes. The inner part of the transform
displays a squared geometry. Fundamental modes are found only in the directions
parallel to the sidewalls and — as observed in the early stages of evolution — a
second lattice, parallel to the diagonals of the box, coexists with the dominant
lattice. The secondary lattice of modes clearly stems from the interaction of two
orthogonal fundamental modes. The bottom-right panel of Fig. 3 shows that the
normalized fundamental mode is gf/q. = 1.01, and several subsequent peaks, lo-
cated at v2qf/qc, 245/4c, 2.23q5/qc = v5q5/qc and 3qs/qg.. It is interesting to
mention that the modes with g = 2v/2 g¢, which have a wave-vector shorter than
3¢¢, do not survive.

Among the cases, discussed in the present work, this is the most demanding in
terms of computational effort, requiring 2 x 10° steps to attain the convergence to
the steady solution, ¢t = 200000 with time increment At = 0.1.

4.3. COEXISTENCE OF FINITE WAVE-LENGTH SQUARES AND HEXAGONS

The results from the previous sections show that hexagons are selected if 3
differs significantly from é and that squares appear when 8 = §. Then the natural
question is whether hexagons and squares can coexist if 3 differs slightly from 4.
The second question is of whether or not H* and H~ can coexist if |3], |§] < 1.

The answer to the first question is affirmative. The hexagons and squares do
coexist when the value of 3 is in the vicinity of 4. Furthermore, the hexagons are
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Fig. 3. Squared tessellations. Left panels: S-pattern for x = +1 at ¢t = 41100 and =25
a=-09, 8 =48 = -0.25V/7. Right panel: S-pattern for x = —1 at ¢ = 200000 for p= 2.0,
a=-09, 8=6=—-3V7. From top to bottom: the pattern; the time evolution of Li-norm:
Fourier transform; wave-number content of the pattern shown

positive or negative, depending on the sign of (B8 —d), exactly as in the case of the
single-pattern tessellations, studied in Section 3.1. However. the conditions for the
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coexistence of both patterns appear to be much less robust than those that define
a single pattern. We find that the coexistence of patterns depends not only on
the coefficients of the quadratic terms of Eq. (1) but also on the magnitude of the
forcing applied and on the system size, as well. A change in one of these parameters
may lead to the collapse of one of the patterns. For instance, with the increase of
the forcing, the dominant pattern changes from hexagons to squares. This result
was also obtained in [2] by direct integration of the three-dimensional Navier-Stokes
equations. In [11] the competition between hexagons and squares in a generalized
Swift-Hohenberg equation was studied. It was found there that the front between
competing patterns must be perpendicular to their corresponding modes in order
to be stable.

The answer to the second question is negative. We do not find a coexistence of
positive and negative hexagons. Squares emerge in the neighbourhood of the point
where the transition H* — H ™ occurs, i.e. in the point where the sign of (3 — &)
changes, and the transition occurs in the form H+* — S — H ™, or vice versa.
Besides, one of the hexagon types disappears before the onset of the other, and the
squares are the only stable pattern in the case when 8 = 4.

As in all of the previous figures the top panels of Fig. 4 show the state of the
system at the end of the simulation. The drawings corresponding to the evolution
of Li-norm are placed on the next row. The third row consists of the Fourier
transforms of the patterns. The last row shows the wave-number content of the
pattern.

In the first numerical experiment (the left column of panels in Fig. 4) we set
B to a value, slightly bigger than d, which is supposed to be a case in the interface
between the regions of Ht and S. Indeed, our simulations show that the system
eventually evolves to a state of coexistence of both patterns (designated by SH™).
Note that the system shows a tendency to develop squares close to the sidewalls.
There are lines along which the distance between hexagons, and in some cases
between squares, is larger than the average one. These lines are “fault lines” across
which the neighbouring domains with different patterns slide during the evolution
of the pattern towards a steady state. The orientations of the hexagonal and
the square lattices are rather deformed and in some regions the directions of the
dominant lattice keep rotating in time.

The Fourier transform indicates that the dominant modes fall in a circular ring
of nearly critical modes. The modes are somewhat more evenly distributed along
the ring than in the cases where the orientation of the lattice is less deformed.
The fundamental wave-number here is ¢ = 1.01g.. However, the curve of the
wave content as a function of /g, (bottom-left panel of Fig. 4) does not suggest
the existence of secondary modes, as it is the case in the above treated sets of
parameters.

For the second example of coexistence we set 8 and § so as to place the system
in the limit between the regions of H~ and S. Our results show that it evolves to a
coexistence of hexagons and squares, whose pattern is much more ordered than in
the previous case. Hexagons appear close to the upper, left and right sidewalls, and
also in the lower part of the box when the domain is larger. The squares occupy
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Fig. 4. Coexistence of squares S and hexagons H* or H~. Left panels: SH* at t = 73860 for
p=23 a=-0.9and 8 =-0.05/7, § = —0.07V7. Right panels: SH~ at t = 71950 for
=28 a=-0.9and 8 =0.1V7, 8 = 0.17v7. From top to bottom: the pattern; the time
evolution of the Li-norm; Fourier transform; wave-number content of the pattern shown
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mostly the inner part of the system.

The Fourier transform displays a squared structure, which is in a sharp contrast
with the circular structure found in the previous case. Each corner of the square
contains a small peak. In addition, there are three other peaks along each side
of the square totaling twelve along the all four sides. The peak in the center of
each side is slightly off the square and the twelve peaks actually fall in a circular
ring of fundamental modes. These peaks define two hexagonal lattices rotated by
an angle of w/6 with respect to each other. The hexagons, belonging to one of
the lattices, appear close to the left and the right sidewalls of the system. The
hexagons, belonging to the second lattice, appear closer to the upper sidewall. The
two lattices do not coexist in the same parts of the configurational space. Both
the image of the structure and the associated Fourier transform suggest that the
amplitudes of the hexagons, belonging to each lattice, are of the same order, because
they belong to the ring of fundamental modes.

The structure of squares results from the superposition of a lattice of funda-
mental modes with ¢ = ¢; and a second one, rotated by an angle of 7/4 relatively
to the former and having ¢ = v/2 ¢;.

A different situation occurs with the other two lattices which are associated
with the structure of squares. The first lattice is defined by two directions parallel
to the sidewalls and by modes falling in the ring of fundamental modes. The
four corresponding peaks in the Fourier transform coincide with those of the two
hexagonal lattices which, consequently, are the highest peaks. The second lattice is
rotated by an angle of 7 /4 with respect to the former, with modes v/2 ¢y, generated
by the nonlinear interaction of the fundamental modes. Here, the two square lattices
do coexist in the same physical space.

In the last case the wave-number content of the pattern exhibits a maximum
at g5 = 1.07g.. The average wave-number, measured according to Eq. (7), is also
larger than the critical one.

4.4. PATTERNS FOR VANISHING LINEAR ATTENUATION COEFFICIENT a = 0

In this section we discuss the numerical findings for &« = 0 when, according
to dispersion equation, the lower limit of the unstable wave-number is zero. The
coefficients of the quadratic terms were selected to place the system in the H™-
régime. Then all scales with ¢ < ,/Jz are supposed to be linearly unstable while the
scales with ¢ > /it are damped.

The numerically obtained time evolution of the pattern is shown in Fig. 5.
Smaller cells are indeed damped first. The more important finding, however, is
that the cells increase with time and the system evolves towards a state where a
single cell eventually occupies the whole box. This is somewhat counter-intuitive
because one might expect in this case an onset of regular pattern with the most
unstable wave-number ¢,, = /u/2 = 1 for the selected value p = 2. Moreover,
the box we have chosen is large enough to harbour more than 12 wave-lengths g,
and hence this is not an effect connected with the distortion of the fastest-growing
modes, due to the lack of space for their spatial extent.
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t = 500 t = 1000

Fig. 5. Evolution of the H~-pattern for a = 0, u = 2.0, # = —0.125V/7, and § = 0.75V7

Thus the interpretation of this simulation is that patterns with a characteristic
size of the cell are obtained when larger than the box size wave-lengths are present
among the linearly unstable wave-lengths of the system. The evolution eventually
ends up in a stationary single-cell state, filling the whole bounding box. The influ-
ence of the boundaries on the motion makes the fastest growing (more unstable)
modes to disappear eventually and only the largest convective cell, compatible with
the box size, survives.

5. CONCLUSIONS

In the present work we investigate the properties of long wave-length patterns
formed in systems which evolve according to the non-variational dynamics described
by Eq. (1). The non-Boussinesq effects are neglected by setting v = 0 in Eq. (1).
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We found hexagonal tessellations H¥ (H ™) for 8 > ¢ (8 < §) and tessellations
of squares for § = §. By setting 3 to a value slightly larger than § we identified
states of coexistence between H* and S. Similarly, we found coexisting H~ and S
patterns when choosing 3 to be slightly smaller than . These states of coexistence
are less robust than those of single patterns. They depend on the forcing applied
and on the horizontal dimensions of the system. A change in one of these parameters
may lead to the disappearance of one of the patterns.

Typically, the speed of evolution of the patterns shows a rapid decay in the
early stages. In the intermediate stages the speed is rather irregular because of the
creation or annihilation of cells, transport of dislocations, deformation of grains.
These are evolutions of the phase of the pattern in general. The last stage is a
sustained monotone decay of the L;-norm, suggesting that the system eventually
attains a stationary state. The onset of the sustained decay serves as a criterion to
terminate the computations.

The analysis of the spectral content of these patterns reveals that the fun-
damental wave-number of the structure is very close to the critical. The largest
discrepancy occurs in the case of coexistence of hexagons H~ and squares S, where
we find a fundamental mode which is 7% larger than the critical. The Fourier
analysis also shows the existence of active modes outside the band of linearly un-
stable modes. In the case of single-pattern tessellations, these modes are not merely
higher harmonics of the fundamental mode, but they can also originate from the
interactions between modes with different orientations and/or wave-numbers. The
ability of the system to generate and sustain secondary active modes leads in the
case of square patterns to the coexistence, in the same subdomain in the configu-
rational space, of a dominant lattice and a secondary one, the latter slanted by an
angle 7 /4 with respect to the former.

For o = 0 our calculations indicate that all scales shorter than the measures
of the box are eliminated as the system evolves in time from a random initial
condition. A single-cell stationary pattern is eventually reached, having the largest
finite wave-length which is compatible with the dimensions of the box.

For k = +1 we observe onset of patterns with larger density of defects when in-
creasing the forcing, but no indication of the existence of possible unsteady asymp-
totic states. Our preliminary results for the regime x = —1 (not shown in the
present paper) suggest that at least in two cases there appear unsteady patterns of
irregular polygons at high forcing. The numerical interrogation of this case will be
published elsewhere. '
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