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For a graph 𝐺 the symbol 𝐺
𝑣
−→ (𝑎1, . . . , 𝑎𝑟) means that in every 𝑟-coloring of the

vertices of 𝐺, for some 𝑖 ∈ {1, 2, . . . , 𝑟} there exists a monochromatic 𝑎𝑖-clique of color
𝑖. The vertex Folkman numbers

𝐹𝑣(𝑎1, . . . , 𝑎𝑟 ; 𝑞) = min{∣𝑉 (𝐺)∣ : 𝐺
𝑣
−→ (𝑎1, . . . , 𝑎𝑟) and 𝐾𝑞 ⊈ 𝐺}

are considered. We prove that

𝐹𝑣(2, . . . , 2
︸ ︷︷ ︸

𝑟

; 𝑟 − 1) = 𝑟 + 7 , 𝑟 ≥ 6 and 𝐹𝑣(2, . . . , 2
︸ ︷︷ ︸

𝑟

; 𝑟 − 2) = 𝑟 + 9 , 𝑟 ≥ 8 .
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1. INTRODUCTION

We consider only finite, non-oriented graphs without loops and multiple edges.
We call a 𝑝-clique of the graph 𝐺 a set of 𝑝 vertices, each two of which are adjacent.
The largest positive integer 𝑝 such that the graph 𝐺 contains a 𝑝-clique is denoted
by cl(𝐺). In this paper we shall also use the following notation:

∙ 𝑉 (𝐺) is the vertex set of the graph 𝐺;

∙ 𝐸(𝐺) is the edge set of the graph 𝐺;
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∙ 𝐺 is the complement of 𝐺;

∙ 𝐺[𝑉 ], 𝑉 ⊆ 𝑉 (𝐺) is the subgraph of 𝐺 induced by 𝑉 ;

∙ 𝐺− 𝑉 , 𝑉 ⊆ 𝑉 (𝐺) is the subgraph of 𝐺 induced by 𝑉 (𝐺) ∖ 𝑉 ;

∙ 𝛼(𝐺) is the vertex independence number of 𝐺;

∙ 𝜒(𝐺) is the chromatic number of 𝐺;

∙ 𝑓(𝐺) = 𝜒(𝐺) − cl(𝐺);

∙ 𝐾𝑛 is the complete graph on 𝑛 vertices;

∙ 𝐶𝑛 is the simple cycle on 𝑛 vertices.

Let 𝐺1 and 𝐺2 be two graphs without common vertices. We denote by 𝐺1+𝐺2

the graph 𝐺 for which 𝑉 (𝐺) = 𝑉 (𝐺1) ∪ 𝑉 (𝐺2) and 𝐸(𝐺) = 𝐸(𝐺1) ∪ 𝐸(𝐺2) ∪ 𝐸′,
where 𝐸′ = {[𝑥, 𝑦] : 𝑥 ∈ 𝑉 (𝐺1), 𝑦 ∈ 𝑉 (𝐺2)}.

The Ramsey number 𝑅(𝑝, 𝑞) is the smallest natural 𝑛 such that for every 𝑛-
vertex graph 𝐺 either cl(𝐺) ≥ 𝑝 or 𝛼(𝐺) ≥ 𝑞. An exposition of the results on the
Ramsey numbers is given in [25]. In Table 1.1 we list the known Ramsey numbers
𝑅(𝑝, 3) (see [25]).

𝑝 3 4 5 6 7 8 9 10
𝑅(𝑝, 3) 6 9 14 18 23 28 36 40–43

Table 1.1: The known Ramsey numbers

Definition. Let 𝑎1, . . . , 𝑎𝑟 be positive integers. We say that the 𝑟-coloring

𝑉 (𝐺) = 𝑉1 ∪ ⋅ ⋅ ⋅ ∪ 𝑉𝑟 , 𝑉𝑖 ∩ 𝑉𝑗 = ∅, 𝑖 ∕= 𝑗

of the vertices of the graph 𝐺 is (𝑎1, . . . , 𝑎𝑟)-free, if 𝑉𝑖 does not contain an 𝑎𝑖-
clique for each 𝑖 ∈ {1, . . . , 𝑟}. The symbol 𝐺

𝑣

−→ (𝑎1, . . . , 𝑎𝑟) means that there is no
(𝑎1, . . . , 𝑎𝑟)-free coloring of the vertices of 𝐺.

Let 𝑎1, . . . , 𝑎𝑟 and 𝑞 be natural numbers. Define

𝐻𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) = {𝐺 : 𝐺
𝑣

−→ (𝑎1, . . . , 𝑎𝑟) and cl(𝐺) < 𝑞},

𝐹𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) = min{∣𝑉 (𝐺)∣ : 𝐺 ∈ 𝐻𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞)}.

The graph𝐺 ∈ 𝐻𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) is said to be an extremal graph in𝐻𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞),
if ∣𝑉 (𝐺)∣ = 𝐹𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞).

It is clear that 𝐺
𝑣

−→ (𝑎1, . . . , 𝑎𝑟) implies cl(𝐺) ≥ max{𝑎1, . . . , 𝑎𝑟}. Folk-
man [3] proved that there exists a graph 𝐺 such that 𝐺

𝑣

−→ (𝑎1, . . . , 𝑎𝑟) and
cl(𝐺) = max{𝑎1, . . . , 𝑎𝑟}. Therefore

𝐹𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) exists ⇐⇒ 𝑞 > max{𝑎1, . . . , 𝑎𝑟}. (1.1)
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The numbers 𝐹𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) are called vertex Folkman numbers.

If 𝑎1, . . . , 𝑎𝑟 are positive integers, 𝑟 ≥ 2 and 𝑎𝑖 = 1 then it is easily seen that

𝐺
𝑣

−→ (𝑎1, . . . , 𝑎𝑖, . . . , 𝑎𝑟) ⇐⇒ 𝐺
𝑣

−→ (𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, 𝑎𝑟).

Thus it suffices to consider only such numbers 𝐹𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) for which 𝑎𝑖 ≥ 2,
𝑖 = 1, . . . , 𝑟. In this paper we consider the vertex Folkman numbers 𝐹𝑣(2, . . . , 2; 𝑞).
Set

(2, . . . , 2
︸ ︷︷ ︸

𝑟

) = (2𝑟) and 𝐹𝑣(2, . . . , 2
︸ ︷︷ ︸

𝑟

; 𝑞) = 𝐹𝑣(2𝑟; 𝑞).

By (1.1),
𝐹𝑣(2𝑟; 𝑞) exists ⇐⇒ 𝑞 ≥ 3. (1.2)

It is clear that
𝐺

𝑣

−→ (2𝑟) ⇐⇒ 𝜒(𝐺) ≥ 𝑟 + 1. (1.3)

Since 𝐾𝑟+1

𝑣

−→ (2𝑟) and 𝐾𝑟 ∕

𝑣

−→ (2𝑟), we have

𝐹𝑣(2𝑟; 𝑞) = 𝑟 + 1 if 𝑞 ≥ 𝑟 + 2.

In [2] Dirac proved the following result.

Theorem 1.1. ([2]) Let 𝐺 be a graph such that 𝜒(𝐺) ≥ 𝑟 + 1 and cl(𝐺) ≤ 𝑟.
Then

(a) ∣𝑉 (𝐺)∣ ≥ 𝑟 + 3;

(b) If ∣𝑉 (𝐺)∣ = 𝑟 + 3, then 𝐺 = 𝐾𝑟−3 + 𝐶5.

According to (1.3), Theorem 1.1 admits the following equivalent form:

Theorem 1.2. Let 𝑟 ≥ 2 be a positive integer. Then

(a) 𝐹𝑣(2𝑟; 𝑟 + 1) = 𝑟 + 3;

(b) 𝐾𝑟−2 + 𝐶5 is the only extremal graph in 𝐻𝑣(2𝑟; 𝑟 + 1).

In [14] L̷uczak, Ruciński and Urbański defined for arbitrary positive integers
𝑎1, . . . , 𝑎𝑟 the numbers

𝑚 =

𝑟
∑

𝑖=1

(𝑎𝑖 − 1) + 1 and 𝑝 = max{𝑎1, . . . , 𝑎𝑟}. (1.4)

They proved the following extension of Theorem 1.2.

Theorem 1.3. ([14]) Let 𝑎1, . . . , 𝑎𝑟 be positive integers and 𝑚 and 𝑝 be defined
by (1.4). Let 𝑚 ≥ 𝑝+ 1. Then
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(a) 𝐹𝑣(𝑎1, . . . , 𝑎𝑟;𝑚) = 𝑚+ 𝑝;

(b) 𝐾𝑚−𝑝−1 + 𝐶2𝑝+1 is the only extremal graph in 𝐻𝑣(𝑎1, . . . , 𝑎𝑟;𝑚).

For another extension of Theorem 1.1 see [21].

From (1.1) it follows that the numbers 𝐹𝑣(𝑎1, . . . , 𝑎𝑟;𝑚− 1) exist if and only
if 𝑚 ≥ 𝑝 + 2. The exact values of all numbers 𝐹𝑣(𝑎1, . . . , 𝑎𝑟;𝑚 − 1) for which
𝑝 = max{𝑎1, . . . , 𝑎𝑟} ≤ 4 are known. A detailed exposition of these results was given
in [13] and [23]. We do not know any exact values of 𝐹𝑣(𝑎1, . . . , 𝑎𝑟;𝑚−1) in the case
when max{𝑎1, . . . , 𝑎𝑟} ≥ 5. Here we shall note only the values 𝐹𝑣(𝑎1, . . . , 𝑎𝑟;𝑚−1)
when 𝑎1 = 𝑎2 = ⋅ ⋅ ⋅ = 𝑎𝑟 = 2, i.e. of the numbers 𝐹𝑣(2𝑟; 𝑟). From (1.2) these
numbers exist if and only if 𝑟 ≥ 3. If 𝑟 = 3 and 𝑟 = 4 we have that

𝐹𝑣(23; 3) = 11; (1.5)

𝐹𝑣(24; 4) = 11. (1.6)

The inequality 𝐹𝑣(23; 3) ≤ 11 was proved in [15] and the opposite inequality
𝐹𝑣(23; 3) ≥ 11 was proved in [1]. The equality (1.6) was proved in [18] (see also
[19]). If 𝑟 ≥ 5 we have the following result.

Theorem 1.4. ([17], see also 24]) Let 𝑟 ≥ 5. Then:

(a) 𝐹𝑣(2𝑟; 𝑟) = 𝑟 + 5;

(b) 𝐾𝑟−5 + 𝐶5 + 𝐶5 is the only extremal graph in 𝐻𝑣(2𝑟; 𝑟).

Theorem 1.4(a) was proved also in [8] and [14].

According to (1.2), the number 𝐹𝑣(2𝑟; 𝑟− 1) exists if and only if 𝑟 ≥ 4. In [17]
we proved that

𝐹𝑣(2𝑟; 𝑟 − 1) = 𝑟 + 7 if 𝑟 ≥ 8. (1.7)

In this paper we improve (1.7) by proving the following result:

Theorem 1.5. Let 𝑟 ≥ 4 be an integer. Then:

(a) 𝐹𝑣(2𝑟; 𝑟 − 1) ≥ 𝑟 + 7;

(b) 𝐹𝑣(2𝑟; 𝑟 − 1) = 𝑟 + 7 , if 𝑟 ≥ 6;

(c) 𝐹𝑣(25; 4) ≤ 16.

In [9] Jensen and Royle showed that

𝐹𝑣(24; 3) = 22. (1.8)
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We see from Theorem 1.5 and (1.8) that 𝐹𝑣(25; 4) is the only unknown number
of the kind 𝐹 (2𝑟; 𝑟 − 1)1.

From (1.2) it follows that the Folkman number 𝐹 (2𝑟; 𝑟 − 2) exists if and only
if 𝑟 ≥ 5. In [16] we proved that 𝐹𝑣(2𝑟; 𝑟 − 2) = 𝑟 + 9 if 𝑟 ≥ 11. In this paper we
improve this result as follows:

Theorem 1.6. Let 𝑟 ≥ 5 be an integer. Then:

(a) 𝐹𝑣(2𝑟; 𝑟 − 2) ≥ 𝑟 + 9;

(b) 𝐹𝑣(2𝑟; 𝑟 − 2) = 𝑟 + 9 , if 𝑟 ≥ 8.

The numbers 𝐹𝑣(2𝑟; 𝑟 − 2), 5 ≤ 𝑟 ≤ 7, are unknown.

2. AUXILIARY RESULTS

Let 𝐺 be an arbitrary graph. Define

𝑓(𝐺) = 𝜒(𝐺)− cl(𝐺).

Lemma 2.1. Let 𝐺 be a graph such that 𝑓(𝐺) ≤ 2. Then

∣𝑉 (𝐺)∣ ≥ 𝜒(𝐺) + 2𝑓(𝐺).

Proof. Since 𝜒(𝐺) ≥ cl(𝐺), we have 𝑓(𝐺) ≥ 0. For 𝑓(𝐺) = 0 the inequality is
trivial. Let 𝑓(𝐺) = 1 and 𝜒(𝐺) = 𝑟 + 1. Then cl(𝐺) = 𝑟. Note that 𝑟 ≥ 2 because
of 𝜒(𝐺) ∕= cl(𝐺). By (1.3) we have 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 + 1). Thus, from Theorem 1.2(a)
it follows that ∣𝑉 (𝐺)∣ ≥ 𝑟 + 3 = 2𝑓(𝐺) + 𝜒(𝐺). Let 𝑓(𝐺) = 2 and 𝜒(𝐺) = 𝑟 + 1.
Then cl(𝐺) = 𝑟 − 1. Since 𝜒(𝐺) ∕= cl(𝐺), cl(𝐺) = 𝑟 − 1 ≥ 2, i.e. 𝑟 ≥ 3. From
Theorem 1.4(a), (1.5) and (1.6) we obtain that ∣𝑉 (𝐺)∣ ≥ 𝑟 + 5 = 𝜒(𝐺) + 2𝑓(𝐺).
This completes the proof of Lemma 2.1.

Let 𝐺 = 𝐺1 +𝐺2. Obviously,

𝜒(𝐺) = 𝜒(𝐺1) + 𝜒(𝐺2); (2.1)

cl(𝐺) = cl(𝐺1) + cl(𝐺2). (2.2)

Hence,
𝑓(𝐺) = 𝑓(𝐺1) + 𝑓(𝐺2). (2.3)

1Meanwhile, it has been proved that 𝐹𝑣(25; 4) = 16, see J. Lathrop, S. Radziszowski, Com-
puting the Folkman Number 𝐹𝑣(2, 2, 2, 2, 2; 4), Journal of Combinatorial Mathematics and Com-
binatorial Computing, 78 (2011), 213–222.
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A graph 𝐺 is said to be vertex-critical chromatic if 𝜒(𝐺 − 𝑣) < 𝜒(𝐺) for all
𝑣 ∈ 𝑉 (𝐺). We shall use the following result in the proof of Theorem 1.6.

Theorem 2.1. ([4], see also [5]) Let 𝐺 be a vertex-critical chromatic graph
and 𝜒(𝐺) ≥ 2. If ∣𝑉 (𝐺)∣ < 2𝜒(𝐺) − 1, then 𝐺 = 𝐺1 + 𝐺2, where 𝑉 (𝐺𝑖) ∕= ∅,
𝑖 = 1, 2.

Remark. In the original statement of Theorem 2.1 the graph 𝐺 is supposed to
be edge-critical chromatic (and not vertex-critical chromatic). Since each vertex-
critical chromatic graph 𝐺 contains an edge-critical chromatic subgraph 𝐻 such
that 𝜒(𝐺) = 𝜒(𝐻) and 𝑉 (𝐺) = 𝑉 (𝐻), the above statement is equivalent to the
original one. It is also more convenient for the proof of Theorem 1.6.

Let 𝐺 be a graph and 𝐴 ⊆ 𝑉 (𝐺) be an independent set of vertices of the graph
𝐺. It is easy to see that

𝐺
𝑣

−→ (2𝑟), 𝑟 ≥ 2 ⇒ 𝐺−𝐴
𝑣

−→ (2𝑟−1). (2.4)

Lemma 2.2. Let 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑞), 𝑞 ≥ 3 and ∣𝑉 (𝐺)∣ = 𝐹𝑣(2𝑟; 𝑞). Then

(a) 𝐺 is a vertex-critical (𝑟 + 1)-chromatic graph;

(b) If 𝑞 < 𝑟 + 3, then cl(𝐺) = 𝑞 − 1.

Proof. By (1.3), 𝜒(𝐺) ≥ 𝑟 + 1. Assume that (a) is false. Then there would
exist 𝑣 ∈ 𝑉 (𝐺) such that 𝜒(𝐺− 𝑣) ≥ 𝑟 + 1. According to (1.3), 𝐺− 𝑣 ∈ 𝐻𝑣(2𝑟; 𝑞).
This contradicts the equality ∣𝑉 (𝐺)∣ = 𝐹𝑣(2𝑟; 𝑞).

Assume that (b) is false, i.e. cl(𝐺) ≤ 𝑞− 2. Then from 𝑞 < 𝑟+3 it follows that
cl(𝐺) < 𝑟 + 1. Since 𝜒(𝐺) ≥ 𝑟 + 1 there are 𝑎, 𝑏 ∈ 𝑉 (𝐺) such that [𝑎, 𝑏] /∈ 𝐸(𝐺).
Consider the subgraph 𝐺1 = 𝐺 − {𝑎, 𝑏}. We have 𝑟 ≥ 2, because 𝜒(𝐺) ∕= cl(𝐺).
Thus, from (2.4) and cl(𝐺) ≤ 𝑞− 2 it follows that 𝐺1 ∈ 𝐻𝑣(2𝑟−1; 𝑞− 1). Obviously,
𝐺1 ∈ 𝐻𝑣(2𝑟−1; 𝑞 − 1) leads to 𝐾1 + 𝐺1 ∈ 𝐻𝑣(2𝑟; 𝑞). This contradicts the equality
∣𝑉 (𝐺)∣ = 𝐹𝑣(2𝑟; 𝑞), because ∣𝑉 (𝐾1 +𝐺1)∣ = ∣𝑉 (𝐺)∣ − 1. Lemma 2.2 is proved.

Lemma 2.3. Let 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑞), 𝑟 ≥ 2. Then

∣𝑉 (𝐺)∣ ≥ 𝐹𝑣(2𝑟−1; 𝑞) + 𝛼(𝐺).

Proof. Let 𝐴 ⊆ 𝑉 (𝐺) be an independent set such that ∣𝐴∣ = 𝛼(𝐺). Consider
the subgraph 𝐺1 = 𝐺−𝐴. According to (2.4), 𝐺1 ∈ 𝐻𝑣(2𝑟−1; 𝑞). Hence ∣𝑉 (𝐺1)∣ ≥
𝐹𝑣(2𝑟−1; 𝑞). Since ∣𝑉 (𝐺)∣ = ∣𝑉 (𝐺1)∣+ 𝛼(𝐺), Lemma 2.3 is proved.

We shall use also the following three results:

𝐹𝑣(2, 2, 𝑝; 𝑝+ 1) ≥ 2𝑝+ 4, see [20] ; (2.5)

𝐹𝑣(2, 2, 4; 5) = 13, see [22]. (2.6)
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Theorem 2.2. ([12]) Let 𝐺 be a graph, cl(𝐺) ≤ 𝑝 and ∣𝑉 (𝐺)∣ ≥ 𝑝+ 2, 𝑝 ≥ 2.
Let 𝐺 also possess the following two properties:

(i) 𝐺 ∕
𝑣

−→ (2, 2, 𝑝);

(ii) If 𝑉 (𝐺) = 𝑉1 ∪ 𝑉2 ∪ 𝑉3 is a (2, 2, 𝑝)-free 3-coloring, then ∣𝑉1∣+ ∣𝑉2∣ ≤ 3.

Then 𝐺 = 𝐾1 +𝐺1.

3. AN UPPER BOUND FOR THE NUMBERS 𝐹𝑣(2𝑟; 𝑞)

Consider the graph 𝑃 whose complementary graph 𝑃 is depicted in Figure
1. This graph is a well-known construction of Greenwood and Gleason [6], which

Figure 1: Graph 𝑃

shows that 𝑅(5, 3) ≥ 14, since ∣𝑉 (𝑃 )∣ = 13 and

𝛼(𝑃 ) = 2; (3.1)

cl(𝑃 ) = 4 (see [6]). (3.2)

From ∣𝑉 (𝑃 )∣ = 13 and (3.1) it follows that 𝜒(𝑃 ) ≥ 7. Since {𝑣1} ∪ {𝑣2, 𝑣3} ∪ ⋅ ⋅ ⋅ ∪
{𝑣12, 𝑣13} is a 7-chromatic partition of 𝑉 (𝑃 ), we have

𝜒(𝑃 ) = 7. (3.3)

Let 𝑟 and 𝑠 be non-negative integers and 𝑟 ≥ 3𝑠+ 6. Define

𝑃 = 𝐾𝑟−3𝑠−6 + 𝑃 + 𝐶5 + ⋅ ⋅ ⋅+ 𝐶5
︸ ︷︷ ︸

𝑠

.

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 5–17. 11



From (2.1), (2.2), (3.2) and (3.3) we obtain that 𝜒(𝑃 ) = 𝑟+1 and cl(𝑃 ) = 𝑟−𝑠−2.
By (1.3), it follows that 𝑃 ∈ 𝐻𝑣(2𝑟; 𝑟 − 𝑠− 1) and thus

𝐹𝑣(2𝑟; 𝑟 − 𝑠− 1) ≤ ∣𝑉 (𝑃 )∣.

Since ∣𝑉 (𝑃 )∣ = 𝑟 + 2𝑠+ 7, we proved the following

Theorem 3.1. Let 𝑟 and 𝑠 be non-negative integers and 𝑟 ≥ 3𝑠+ 6. Then

𝐹𝑣(2𝑟; 𝑟 − 𝑠− 1) ≤ 𝑟 + 2𝑠+ 7.

Remark. Since 𝑟 ≥ 3𝑠+ 6 we have 𝑟 − 𝑠 − 1 > 2. Thus, according to (1.2),
the numbers 𝐹𝑣(2𝑟; 𝑟 − 𝑠− 1) exist.

4. PROOF OF THEOREM 1.5

Proof of Theorem 1.5(a) Let 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 1). We need to show that
∣𝑉 (𝐺)∣ ≥ 𝑟 + 7. From Lemma 2.3 we have

∣𝑉 (𝐺)∣ ≥ 𝐹𝑣(2𝑟−1; 𝑟 − 1) + 𝛼(𝐺).

By (1.5), (1.6) and Theorem 1.4(a) we deduce 𝐹𝑣(2𝑟−1; 𝑟 − 1) ≥ 𝑟 + 4. Hence

∣𝑉 (𝐺)∣ ≥ 𝑟 + 4 + 𝛼(𝐺). (4.1)

We prove the inequality ∣𝑉 (𝐺)∣ ≥ 𝑟 + 7 by induction with respect to 𝑟. From
Table 1.1 we see that

𝑅(𝑟 − 1, 3) < 𝑟 + 6 if 𝑟 = 4 or 𝑟 = 5. (4.2)

Obviously, from 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 1) it follows that 𝜒(𝐺) ∕= cl(𝐺). Thus, 𝛼(𝐺) ≥ 2.
From (4.1) we obtain ∣𝑉 (𝐺)∣ ≥ 𝑟 + 6. From this inequality and (4.2) we see that
∣𝑉 (𝐺)∣ > 𝑅(𝑟−1, 3) if 𝑟 = 4 or 𝑟 = 5. Since cl(𝐺) < 𝑟−1, it follows that 𝛼(𝐺) ≥ 3.
Now from (4.1) we obtain that ∣𝑉 (𝐺)∣ ≥ 𝑟 + 7 if 𝑟 = 4 or 𝑟 = 5.

Let 𝑟 ≥ 6. We shall consider separately two cases:

Case 1. 𝐺 ∕

𝑣

−→ (2, 2, 𝑟 − 2). From Theorem 2.2 we see that only following two
subcases are possible:

Subcase 1a. 𝐺 = 𝐾1 + 𝐺1. From 𝐺 ∈ 𝐻𝑣(2𝑟, 𝑟 − 1) it follows that 𝐺1 ∈

𝐻𝑣(2𝑟−1; 𝑟−2). By the induction hypothesis, ∣𝑉 (𝐺1)∣ ≥ 𝑟+6. Therefore, ∣𝑉 (𝐺)∣ ≥
𝑟 + 7.

Subcase 1b. There is a (2, 2, 𝑟 − 2)-free 3-coloring 𝑉 (𝐺) = 𝑉1 ∪ 𝑉2 ∪ 𝑉3 such
that ∣𝑉1∣ + ∣𝑉2∣ ≥ 4. Let us consider the subgraph �̃� = 𝐺[𝑉3]. By assumption
�̃� does not contain an (𝑟 − 2)-clique, i.e. cl(�̃�) < 𝑟 − 2. Since 𝑉1 and 𝑉2 are
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independent sets and 𝐺
𝑣

−→ (2𝑟), it follows from (2.4) that �̃�
𝑣

−→ (2𝑟−2). Thus,
�̃� ∈ 𝐻𝑣(2𝑟−2; 𝑟−2). By (1.6) and Theorem 1.4(a), ∣𝑉 (�̃�)∣ ≥ 𝑟+3. As ∣𝑉1∣+∣𝑉2∣ ≥ 4,
we have ∣𝑉 (𝐺)∣ ≥ 𝑟 + 7.

Case 2. 𝐺
𝑣

−→ (2, 2, 𝑟 − 2). Since cl(𝐺) < 𝑟 − 1, 𝐺 ∈ 𝐻𝑣(2, 2, 𝑟 − 2; 𝑟 − 1).
From (2.5) it follows that ∣𝑉 (𝐺)∣ ≥ 2(𝑟 − 2) + 4 = 2𝑟. Hence, if 2𝑟 ≥ 𝑟 + 7, i.e.
𝑟 ≥ 7, then ∣𝑉 (𝐺)∣ ≥ 𝑟 + 7. Let 𝑟 = 6. Then 𝐺 ∈ 𝐻𝑣(2, 2, 4; 5). By (2.6) we
conclude that ∣𝑉 (𝐺)∣ ≥ 13.

Proof of Theorem 1.5(b) Let 𝑟 ≥ 6. According to Theorem 1.5(a) we have
𝐹𝑣(2𝑟; 𝑟− 1) ≥ 𝑟+7. From Theorem 3.1 (𝑠 = 0) we obtain the opposite inequality
𝐹𝑣(2𝑟; 𝑟 − 1) ≤ 𝑟 + 7.

Proof of Theorem 1.5(c) There is a 16-vertex graph 𝐺 such that 𝛼(𝐺) = 3
and cl(𝐺) = 3, because 𝑅(4, 4) = 18 (see [6]). From ∣𝑉 (𝐺)∣ = 16 and 𝛼(𝐺) = 3
obviously it follows that 𝜒(𝐺) ≥ 6. By (1.3), 𝐺

𝑣

−→ (25). So, 𝐺 ∈ 𝐻𝑣(25; 4). Hence
𝐹𝑣(25; 4) ≤ ∣𝑉 (𝐺)∣ = 16.

Theorem 1.5 is proved.

Corollary 4.1 Let 𝐺 be a graph such that 𝑓(𝐺) ≤ 3. Then

∣𝑉 (𝐺)∣ ≥ 𝜒(𝐺) + 2𝑓(𝐺).

Proof. If 𝑓(𝐺) ≤ 2, then Corollary 4.1 follows from Lemma 2.1. Let 𝑓(𝐺) = 3
and 𝜒(𝐺) = 𝑟+1, then cl(𝐺) = 𝑟−2. Since 𝜒(𝐺) ∕= cl(𝐺), it follows that cl(𝐺) ≥ 2.
Thus, 𝑟 ≥ 4. By (1.3) we get 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 1). From Theorem 1.5(a) we obtain
∣𝑉 (𝐺)∣ ≥ 𝑟 + 7 = 𝜒(𝐺) + 2𝑓(𝐺).

Remark. In 𝐻𝑣(2𝑟; 𝑟−1), 𝑟 ≥ 8, there are more than one extremal graph. For
instance, in 𝐻𝑣(28; 7) besides 𝐾2 + 𝑃 (see Theorem 3.1), the graph 𝐶5 + 𝐶5 + 𝐶5

is extremal, too.

5. PROOF OF THEOREM 1.6

Proof of Theorem 1.6(a) Let 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 2). We need to show that
∣𝑉 (𝐺)∣ ≥ 𝑟 + 9. From Lemma 2.3 we have

∣𝑉 (𝐺)∣ ≥ 𝐹𝑣(2𝑟−1; 𝑟 − 2) + 𝛼(𝐺).

By Theorem 1.5(a), 𝐹𝑣(2𝑟−1; 𝑟 − 2) ≥ 𝑟 + 6. Thus,

∣𝑉 (𝐺)∣ ≥ 𝑟 + 6 + 𝛼(𝐺). (5.1)
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We prove the inequality ∣𝑉 (𝐺)∣ ≥ 𝑟 + 9 by induction with respect to 𝑟. From
Table 1.1 we see that

𝑅(𝑟 − 2, 3) < 𝑟 + 8, 5 ≤ 𝑟 ≤ 7. (5.2)

Obviously, from 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 2) it follows that 𝜒(𝐺) ∕= cl(𝐺). Thus, 𝛼(𝐺) ≥ 2.
From (5.1) we obtain ∣𝑉 (𝐺)∣ ≥ 𝑟 + 8. This, together with (5.2), implies ∣𝑉 (𝐺)∣ >
𝑅(𝑟 − 2, 3) if 5 ≤ 𝑟 ≤ 7. Since cl(𝐺) < 𝑟 − 2, 𝛼(𝐺) ≥ 3. By the inequality (5.1),
∣𝑉 (𝐺)∣ ≥ 𝑟 + 9, 5 ≤ 𝑟 ≤ 7.

Let 𝑟 ≥ 8. Obviously, it suffices to consider only the situation when

∣𝑉 (𝐺)∣ = 𝐹𝑣(2𝑟; 𝑟 − 2). (5.3)

By (5.3) and Lemma 2.2 we have that

𝐺 is a vertex-critical (𝑟 + 1)-chromatic graph; (5.4)

and
cl(𝐺) = 𝑟 − 3. (5.5)

From (5.4) and (5.5) it follows that

𝑓(𝐺) = 4. (5.6)

We shall consider separately two cases.

Case 1. ∣𝑉 (𝐺)∣ < 2𝑟 + 1. By (5.4) and Theorem 2.1 we obtain that

𝐺 = 𝐺1 +𝐺2. (5.7)

From (5.7), (2.1) and (5.4) obviously it follows that

𝐺𝑖, 𝑖 = 1, 2 is a vertex-critical chromatic graph. (5.8)

Let 𝑓(𝐺1) = 0. Then, according to (5.8) 𝐺1 is a complete graph. Thus, it follows
from (5.7) that 𝐺 = 𝐾1 +𝐺′. It is clear that

𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 2)⇒ 𝐺′ ∈ 𝐻𝑣(2𝑟−1; 𝑟 − 3).

By the induction hypothesis, ∣𝑉 (𝐺′)∣ ≥ 𝑟+8. Hence, ∣𝑉 (𝐺)∣ ≥ 𝑟+9. Let 𝑓(𝐺𝑖) ∕= 0,
𝑖 = 1, 2. We see from (5.7), (2.3) and (5.6) that 𝑓(𝐺𝑖) ≤ 3, 𝑖 = 1, 2. By Corollary 4.1
we conclude that

∣𝑉 (𝐺𝑖)∣ ≥ 𝜒(𝐺𝑖) + 2𝑓(𝐺𝑖), 𝑖 = 1, 2.

Summing these inequalities and using (2.1) and (2.3) we obtain

∣𝑉 (𝐺)∣ ≥ 𝜒(𝐺) + 2𝑓(𝐺). (5.9)

According to (5.4), 𝜒(𝐺) = 𝑟 + 1. Finally, from (5.9) and (5.6) it follows that
∣𝑉 (𝐺)∣ ≥ 𝑟 + 9.
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Case 2. ∣𝑉 (𝐺)∣ ≥ 2𝑟+1. Since 𝑟 ≥ 8, then 2𝑟+1 ≥ 𝑟+9. Hence ∣𝑉 (𝐺)∣ ≥ 𝑟+9.

Proof of Theorem 1.6(b) By Theorem 1.6(a), 𝐹𝑣(2𝑟; 𝑟−2) ≥ 𝑟+9. Therefore,
we need to prove the opposite inequality 𝐹𝑣(2𝑟; 𝑟−2) ≤ 𝑟+9 if 𝑟 ≥ 8. If 𝑟 ≥ 9, this
inequality follows from Theorem 3.1 (𝑠 = 1). Let 𝑟 = 8. By 𝑅(6, 3) = 18 [11] (see
also [7]), there is a graph 𝑄 such that ∣𝑉 (𝑄)∣ = 17, 𝛼(𝑄) = 2 and cl(𝑄) = 5. From
∣𝑉 (𝑄)∣ = 17 and 𝛼(𝑄) = 2 obviously it follows that 𝜒(𝑄) ≥ 9. Thus, by (1.3),
𝑄

𝑣

−→ (28). Hence 𝑄 ∈ 𝐻𝑣(28; 6) and 𝐹𝑣(28; 6) ≤ ∣𝑉 (𝑄)∣ = 17. Theorem 1.6 is
proved.

Corollary 5.1. Let 𝐺 be a graph such that 𝑓(𝐺) ≤ 4. Then

∣𝑉 (𝐺)∣ ≥ 𝜒(𝐺) + 2𝑓(𝐺).

Proof. If 𝑓(𝐺) ≤ 3, then Corollary 5.1 follows from Corollary 4.1. Let 𝑓(𝐺) = 4
and 𝜒(𝐺) = 𝑟+1, then cl(𝐺) = 𝑟− 3. Since 𝜒(𝐺) ∕= cl(𝐺), we have cl(𝐺) ≥ 2, and
consequently, 𝑟 ≥ 5. By (1.3), 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 2). Using Theorem 1.6(a), we get
∣𝑉 (𝐺)∣ ≥ 𝑟 + 9 = 𝜒(𝐺) + 2𝑓(𝐺).

Let 𝑟 ≥ 3𝑠+ 8. Define

�̃� = 𝐾𝑟−3𝑠−8 +𝑄+ 𝐶5 + ⋅ ⋅ ⋅+ 𝐶5
︸ ︷︷ ︸

𝑠

,

where graph 𝑄 is given in the proof of Theorem 1.6(b). Since cl(𝑄) = 5 and
𝜒(𝑄) ≥ 9, we have by (2.1) and (2.2) that cl(�̃�) = 𝑟 − 𝑠 − 3 and 𝜒(�̃�) ≥ 𝑟 + 1.
According to (1.3), �̃� ∈ 𝐻𝑣(2𝑟; 𝑟 − 𝑠− 2). Thus, 𝐹𝑣(2𝑟; 𝑟 − 𝑠− 2) ≤ ∣𝑉 (�̃�)∣. Since
∣𝑉 (�̃�)∣ = 𝑟 + 2𝑠+ 9, we obtain the following

Theorem 5.1. Let 𝑟 and 𝑠 be non-negative integers and 𝑟 ≥ 3𝑠+ 8. Then

𝐹𝑣(2𝑟; 𝑟 − 𝑠− 2) ≤ 𝑟 + 2𝑠+ 9.
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