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1. PRELIMINARIES

ThI‘OU.ghOU.'C7 let B = {Z = (2’1,22) S C? | |Z1|2 + |22|2 < 1} = SUQJ/S(UQ X U1)
be the complex two dimensional ball and I' C SUs 1 be a lattice, acting freely on B.
The compact B/T" are of general type. The non-compact B/I" admit smooth toroidal
compactification (B/T')" by a disjoint union 7" = U!_, T/ of smooth irreducible
elliptic curves T/. From now on, we concentrate on A’ = (B/T)" with abelian
minimal model A. In such a case, the lattice I, the ball quotient B/T" and its
compactifications are said to be co-abelian.
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The contraction ¢ : A’ — A of the rational (—1)-curves on A’ restricts to
a biregular morphism £ : T/ — £(T)) = T;, as far as an abelian surface A does

not support rational curves. In such a way, £ produces the multi-elliptic divisor
T=¢(T) = Z T; C A, i.e., a divisor with smooth elliptic irreducible components

T;. Accordlng to Kobayashi hyperbolicity of B/T', any irreducible component of the
exceptional divisor of £ intersects T” in at least two points. Therefore £ : A’ — A is

the blow-up of A at the singular locus 75" = Y~ T; N T} of T. Holzapfel has
1<i<j<h

shown in [5] that the blow-up A’ of an abelian surface A at the singular locus T8 =

Y. T;NT; of a multi-elliptic divisor T' = Z T; is the toroidal compactification
1<Z<_]<h i=1

= (B/T)’ of a smooth ball quotient B/T if and only if A = F'x E is the Cartesian
square of an elliptic curve F and

h
Z card(T; N T"8) = 4card(T™"8). (1.1)

i=1

In order to describe the smooth irreducible elliptic curves T; on A and their in-
tersections, let us note that the inclusions 7; C A = E x E are morphisms of
abelian varieties. Consequently, they lift to affine linear maps of the corresponding
universal covers and

T, ={(u+m(E),v+m(E))]|au+bv+c €m(E)}
for some a;, b;, ¢; € C. The fundamental group

’iTl(TZ‘) = {t € (C‘bzt'f‘ﬂ'l(E) = —ait-i-ﬂ'l(E) = 7T1(E)} = ai_lm(E) Obi_lm(E).

If T is an arithmetic lattice then the elliptic curve E has complex multiplication
by an imaginary quadratic number field K = Q(v/—d), d € N. As a result, I is
commensurable with the full Picard modular group SUs1(O_4) over the integers
ring O_y4 of Q(v/—d). Such T are called Picard modular groups. Moreover, all
T; are defined over K. For simplicity, we assume that 71(F) = O_g4, in order
to have maximal endomorphism ring End(E) = O_4. Since K = Q(v/—d) is
the fraction field of O_g4, one can choose a;,b; € O_yq. Thus, m (T;) 2 O_g4,
a;m (E) + b7 (E) C O_g4 and T; has minimal fundamental group 71(7;) = O_4
exactly when a;m (F) + b;m(E) = 71 (E) = O_4. In particular, if K is of class
number 1, then all the smooth elliptic curves T; C A = C?/ (O_4 x O_,), defined
over K = Q(v/—d), have minimal fundamental groups 71(7;) = O_4. From now
on, we do not restrict the class number of K = Q(v/—d), but confine only to smooth
irreducible elliptic curves T; with minimal fundamental groups 7 (7;) = m (E) =
O_g4. If b; # 0, then

T = {(bit + m1(E), —a;t — by 'c; + m(E)) |t € C} C T,
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Moreover, the complete pre-image of T i(l) in the universal cover A = C2 of A is
m1(T;)-invariant family of complex lines. Therefore, Ti(l) is an elliptic curve and
coincides with T;.

The notations from the next lemma will be used throughout:

Lemma 1. Let Ts = {(u + O_g,v + O_y4) |asu + bsv + ¢s € Oy} and Dy =
{(u+0_g,v+0_4q) |asu+bsv+cs+pus € O_g} for 1 < s <3 be elliptic curves with
minimal fundamental groups m (Ts) = m1(Ds) = O_q on A = (C/O_4) x (C/O_4)
and

@ ay a2 as
Aij = det ( bl bJ ) , A :=det by by b3
v c1 Cy 3

Then for any even permutation {i,j,1} of {1,2,3} there hold the following:

(i) the intersection number is T;. T; = Ng(ﬂ) (Aij), where Ng(m) :Q(v—d) —
Q stands for the norm;

(i) ,NT; C Dy if and only if € O—q — Ai_le and both Ai_lejl and
Ai_leli belong to End(E) = O_y4;
(iii) TiNTy,NT3 =0 if and only if A Z A1950_g+ Ao3O_g+ A3:0_4.

Proof. (1) If T;NT; = 0, then the liftings of T}, T} to the universal cover A=C?
of A are discrete families of mutually parallel lines. In such a case, we say briefly
that T; and T} are parallel. That allows to choose a; = a;, b; = b; and to calculate

NS(M)(AU) = NS(M)(O) =0 =T;.T;. When T; NT; # (), one can move the
origin 64 = (0g,0r) € A in T; N T; and represent

T, = {(bit+(’)_d, —a;it+0_y) |t € (C}, T; = {(u—i—(’)_d,v—i—(’)_d) |aju+ij S O_d}.
Then the intersection is
iNT; = {(bit 4+ O_g4,—a;t + Ofd) | Aijt c0_4C C} ~

(AG'O_a)/(b;10_aNa; ' O_g) = (A 0_4) JO_4~ O_4/Ai;;O_q.

For an arbitrary lattice A C C, let us denote by F(A) a A-fundamental domain on
C. As far as F(A;;0_q) is the O_4/A;;O_g4-orbit of F(O_g), the index equals

vol]-'(Aij(’)_d) _ VOI}—(|AZ‘]‘|O_d)

— AZ — = =
[0-a: A0l Vol F(O_y) Vol F(O_y)

=4y = NgV D (Ay).

(ii) The intersection T; N T consists of the 71 (A)-equivalence classes of the
solutions (u,v) € C? of
a;u+bjv =M\ — ¢
a;u + bj’U =)y — Cj
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for arbitrary Ay, A € m1(E) = O_4. A point
(A:Jl (biCj - bjci) + Az_jl(bj)\l - bi)\g), Ai_jl(ajci — aicj) + Ai_jl(ai)\g - aj)\l))
belongs to the lifting of D; if and only if

_Ai_leﬂ)‘l - Ai—leli)Q + Ai_jl(ciAﬂ +¢jAu) + o+
= —AZ AN — A A + AT A+ e m(B) = 0y

for VA1, A2 € m1(E). That, in turn, is equivalent to Ai_le—l—m € m(F) = O_q and
A AL A AL € End(E) = 0_y.

(iii) For arbitrary A1, A2, A3 € m1(E) = O_4, the linear system

aiu+biv=XA\ — 1
asth + bav = Ay — Co
asu + b3v = A3 — c3

has no solutions exactly when

al b1 /\1 — C1
det as by My —co = A3 A1 + Az1 g + A3 — A 75 0.
as bg )\3 — C3

Lemma 1 is proved. i

The non-arithmetic lattices I' C SUs; correspond to abelian surfaces A =
E x E, whose elliptic factors E' have minimal endomorphism rings End(E) = Z.
Then the liftings of the elliptic curves T; C A with 71(7;) = m1(E) to the universal
cover A = C? of A are given by a;u + b;v +¢; € 1 (E) with a;,b; € Z. As a result,

the intersection numbers T;.T; = NS(M) (A;;) are comparatively large and there

h
are very few chances for construction of a multi-elliptic divisor T'= > C A, subject
i=1
to (1.1). This is a sort of a motivation for restricting our attention to the arithmetic
case.

The smooth irreducible elliptic curves T; C A’ contract to the I'-orbits k; =

I'(p) € OrB/T of the I'-rational boundary points p € 9rB. These k; are called
cusps. The resulting Baily-Borel compactification A = B/T' = (B/T") U (0rB/T) is
a normal projective surface.
— 6('\/13’72)
T O(z1,22)
be the Jacobian matriz of v = (y1,72) : B — B C C2. The global holomorphic
functions § : B — C with transformation law

Definition 2. Let " be a Picard modular group, v € T' and Jac(7y)

v*(6)(2) = 6v(2) = [det Jac(y)] " 6(z) forVyeT,VzeB
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are called T'-modular forms of weight n.

The I'-modular forms of weight n constitute a C-linear space, which is denoted
by [T, n].

Definition 3. A T'-modular form 6 € [I',n] is cuspidal if 6(k;) = 0 at all the
cusps k; € OrB/T.

The cuspidal T'-modular forms of weight n form the subspace [I', n)cusp of [I', n].
For any natural number n there is a C-linear embedding
ju: H'(B,0s) — H' (B, (03)°")

Gn(8)(2) = 8(2)(dzy A dzg)®"

of the global holomorphic functions on the ball in the global holomorphic sections
of the n-th pluri-canonical bundle (Q%&)@)n. It restricts to an isomorphism

r
ju: [0 — HO (B, (23)")
of the I'-modular forms of weight n with the I'-invariant holomorphic sections of
T Rn
(QIQB)(@”. Note that the subspace H° (B, (Qﬁ)@)n) of HY (B/F, (Q%&/r) ) acts

on A= IBT/\F, extending over the cusps OrB/T" of codimension 2 in A.

The tensor product Q%,(T) = Q%, ®c Oa/(T") is called logarithmic canonical
bundle of A’, while Q2, (T")®" are referred to as logarithmic pluri-canonical bundles.
Hemperly has observed in [3] that

r
jallon) = HO (B, (23)") = HO (4, 03,(T')"")

as long as the holomorphic sections from these spaces have one and the same coordi-
nate transformation law. A classical result of Baily-Borel establishes that 92, (7")

is sufficiently ample on E.AThe present article provides sufficient conditions for the
ampleness of 0%, (T") on A.

Note that the canonical bundle
Ka=§Ka+0a(L)=§0a+0a(L)=0a(L)

is associated with the exceptional divisor L = £~ 1(T5"8) of ¢ : A" — A. If s
is a global meromorphic section of 9%, and ¢ is a global meromorphic section of
Oa/(T"), then the tensoring

(s@ct)® ™ HO (A, Q4 (T)E") — La(n(L +T"))
is a C-linear isomorphism with

La(n(L+T)={f€Me(A)|(f)+n(L+T") >0}
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The isomorphism £* : Mer(A4) — Mer(A’) of the meromorphic function fields in-
duces a linear isomorphism

€)1 La(n(L+T)) — La(nT,nT*"),
where my, : Div(A) — Z stands for the multiplicity at a point p € A and
LA(nT,nT5"8) = {f € Mev(A) | (f) +nT >0, my(f) +n >0 for ¥Vp € T5"8},
The linear isomorphisms
T = () (s @c )™ 1§, [0, n] — La(nT, nT™"8)

are called transfers of modular forms of weight n to abelian functions.

For any d € [I', 1], note that d(x;) # 0 if and only if T; C (7151(J))ec. Observe
also that 711 [0, eusp = {f € La(T,T5718) | (f)oo = 0} = C and fix the cuspidal
form 7, = (1171) (1) of weight 1.

Towards the construction of abelian functions f € LA (T, T*"8), let us recall
from [7] that any elliptic function g : E — P! can be represented as

g(z) = COH @ (1.2)
where

Aem (E)\{0}

k k
is the Weierstrass o-function, «;, 8;,C, € C and > a; = > fi(mod 7 (E)). The
i=1 i=1
points of E = C/mi(E) are of the form @ = a + 7 (E) for some a € C. The
elliptic function (1.2) takes all the values from P! with one and a same multiplicity

k. Moreover, if g7'(z) = {pi(x) € E|1 < i < k} for some z € C C P!, then

k ko

> pi(x) = > B Observe that o : C — C is a non-periodic entire function, but its

i=1 i=1

divisor (0)c = 71 (E) on C is w1 (F)-invariant. That enables to define the divisor

(0)g = 0 of o on E. In global holomorphic coordinates (u,v) € C?, the divisor
(o(aiu+bv+¢;))e2 = {(u,v) € C?|au+bv+c; €T (E) = O0_gq}

is the complete pre-image of T; in the universal cover A = C2? of A. That allows to
define the divisor

(o(a;u+biv+¢)) = (o(au+bv+c¢;))a =T
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k
Let f € L4(T) be an abelian function with pole divisor (f)e = > T;, after
i=1
an eventual permutation of the irreducible components of T". Then

k
Joo i= HU(GﬂH- biv +¢;) and fo:= ffeo (1.3)

i=1

are (non-periodic) entire functions on C2. Let ¢ = %/ be Weierstrass’ {-function,
n : m(F) — C be the Z-linear homomorphism, satisfying {(z + ) = ((z) + n(\)
for all z € C, A € m1(F) and

6()\)_{ 1 for)\€2771(l;7,

)
-1 for Aem(E)\2m(F).
Recall from [6] the 7 (F)-transformation law

o(z+A)

— n(N)(2+3)
o(2) e(Ne for VA em(E),VzeC.

Under the assumption (1.3), the w1 (A)-periodicity of f is equivalent to

fo;U(Zi\),)v)_fo}u—i—)\v Hfaz ,,(alA)au+bv+c+7 )
o\t
and .
foﬁ”uis t)A) - foof(u&;} t)A) = [ eyt (omsbimsest i)
o\, %S} ) —_

for VA € m1(E) = O_g4, ¥(u,v) € C2. We choose

k
folu,v) = H o(a;u+bv+ ¢ + i)
i=1
and reduce the 71 (A)-periodicity of f to

flu+ ) _eiZifln(aiA)m - flu,v+X) _eiiijln(bm)m
flu,0) T fluw)

Let us mention that Holzapfel has studied f € L£4(T') of the above form with at
most three non-parallel irreducible components of (f).o, intersecting pairwise in
single points. The next lemma provides a sufficient (but not necessary) condition
for 71 (A)-periodicity of a o-quotient, whose pole divisor has an arbitrary number
of irreducible components with arbitrary intersection numbers.

1= YA € O_g, V(u,v) € C2.

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 19-41. 25



Lemma 4. If

k k k k
> aipwi = @pi =Y bipi =Y bipi =0, (1.4)
=1 =1 =1 =1

then the o-quotient

Flu,v) :HU““JFZ’”“Z*“’) (1.5)

bl (aiu+ biv + ¢;)
18 O_q x O_4 -periodic.

Proof. Let us recall from [1] that the integers ring of an imaginary quadratic
number field Q(v/—d) is of the form O_y; = Z + 2wZ for

9 — v—d for —d # 1(mod4),
N _1%‘/:1 for —d = 1(mod 4).
Any v € O_4 has unique representation v = = + 2wy with

20U — 2wy v—vU
=——¢€Z =——¢cZ.
w—2m 0 YT o
Legendre’s equality

n(2w) — 2wn(1) = 27/ —1,

(cf.[6]) implies that

n(v) =vn(l) + _271'\/ 1 for Yv e O_,.
2w —2w
As a result,
k k ~
21/ —1A _ 27/ —1

Z (Z azMz) )\77 (Z Q; z) Y — 9 (Z az‘Mz’) Yo — 9%
1=1 i=1
Lemma 4 is proved U

Mutually parallel smooth elliptic curves T, ..., T} admit liftings

T; = {(u+ O0-g,v+ O—g) |aru+ biv +¢; € O_g}.

k
For arbitrary p; € C with > u; = 0, the o-quotient
i=1

b
Flu) :H0a1u+ 10 + ¢ + i)

1.6
(a1u+ b1v + ¢) (1.6)

i=1
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k
belongs to L£4 (T, T"8) and has smooth pole divisor (f)e = Y. T;. Following [4],
i=1

we say that (1.6) is a k-fold parallel o-quotient. A a—quotier;t (1.5) has smooth
pole divisor if and only if it is k-fold parallel.

Definition 5. A special o-quotient of order k is a function of the form (1.5),
which is subject to (1.4), has singular pole divisor (f)eo and p; ¢ O_q for all
1<i<k.

Lemma 6. If f € La(T,T5"8) is a special o-quotient of order k > 2, then at
any point p € (f)308 the multiplicity my(f)oo satisfies

k+1]

2<mp(feo < { 5

where [%] 1s the greatest natural number, non-exceeding %

In particular, LA (T, T"8) does not contain a special o-quotient of order 2.

Proof. The smoothness of the irreducible components T4, . . ., Tj of (f)eo results
in (f)sine ¢ 3 (T; NTy) and implies that my,(f)oe > 2 for all p € (f)sine.
1<i<j<k

Suppose that my(f)e = m for some 2 < m < k. After an eventual permutation of
Ti,...,Tk, one can assume that pe Ty N ...NT,, and p & Tp,41 + ... + T. Then

mp(f) +1=mp(flo —mp(floc + 1=mp(flo—m+1>0

k

requires the existence of Dyyt1, ..., Dam—1 C (f)o = >, D; withp € D1 N ... N
i=1

Dop—1, after a further permutation of Dy,41,...,Dk. Now 2m — 1 < k implies

that my,(f)e =m < [EEL].
In particular, for k& = 2 the inequality 2 <mp(f)co < [%] cannot be satisfied. [0
Proposition 7. If

3

o(a;u+ bv+ ¢ + ;)
= 1.
f(u,v) }:[1 o(aiu + bv + ¢;) (1.7)

is a special o-quotient from L (T, T*M8), then Ty NToNT3 = ) and the intersection
numbers T1.To = T5. T3 = T3.T7 € N are equal.

Proof. By Lemma 6 there follows m,,(f)e = 2 for Vp € (f)5"8. In particular,
(f)oo = T1 + T> + T3 has no triple point and 73 N 7o N T3 = @. Further, for
any p € T, NT; the condition m,(f)+ 1 > 0 requires that p € Dy, therefore
w € O_g — Ai_le and Ai_lejl,Ai_leli € O_4, according to Lemma 1 (ii). A
cyclic change of the even permutation {i,7,1} by {j,1,7} and {l,4,j} results in
Aj_llAli,Aj_llAij € O_4 and, respectively, Al_ilAij,Al_ilAjl € O_4. Consequently,
A A AN Ay € 07y, whereas NG~ (Ay) = NZY™P(a5) = NgY D (Ay),
Now, by Lemma 1 (i) it follows that T;.7; = T;.T; = T,.T;. O
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Definition 8. The divisor Ty + To + T3 with three smooth elliptic irreducible
components is called a triangle if Ty NToNT3 =0 and Ty T = Ty T3 = T5.71 = 1.

Examples of special o-quotients with triangular pole divisors are constructed
by Holzapfel in [4]. We show that any triangular divisor can be realized as a pole

divisor of a special o-quotient f € L(T,T*"8) and provide a general formula for
such f.

Proposition 9. Let T; = {(u + O_g,v + O_g) | alu + bjv + ¢ € O_4} with
1<i<3 be the smooth irreducible elliptic components of a triangle Ty + T + T3
and a; = A’ , b = A;lb;, = A;lcg. Then a1 +as +az =0, by + by + b3 =0,

AL ‘A ¢ (’)_d and for any v € O_4 the function

ﬁaazu—l—bv+cz—A71A+y)

1.
(aiu+ bjv + ¢;) (1.8)

i=1

is a special o-quotient from L (T, T5"8) with pole divisor (f)eo = T1 + To + Ts.

/
Proof. Let v} = < Z,’ ) for 1 < i < 3. Expanding along the third row, one
obtains

ap ay ag

0= by by by |=A%a)+ A% a5+ Alpas =0,
ay ay aj

ay ahy af
0=1] 0y by by |=Aybh+ Agybh + Albs =0,
1 by b
and concludes that

V1 + V2 + V3 = A’dell + Aélvlz + A/lz’l}é = 02><1, A12 = A23 = Agl. (19)

Now, according to Lemma 1 (iii), 71 N T5 N T35 = () is equivalent to A & A120_,.
Then the condition my,(f)o > my(f)e — 1 for Vp € (f)58 reduces to T; N'T; C D,
for any even permutation {i, 7,1} of {1,2,3}. Making use of Lemma 1 (ii), one can
choose p11 = g = p3 = v — A3 A &€ O_4. Then (1.9) implies (1.4) from Lemma 4
and reveals that (1.8) is a special o-quotient from £ (T, T518). O

Definition 10. The special o-quotients (1.8) from La(T,T*"8) with triangular
pole divisors (f)eo = T1 + T + T3 are called triangular.

For elliptic curves T; = {(u+ O_g,v+ O_g) |a;u+bv+c¢; € O_yq}, 1 <i <2

)
with minimal fundamental groups m1(T;) = m1 (F) = O_q and intersection number
T1.T» =1, Lemma 1 (i) implies that

a1 b1

M= ( az o > € GLo(0_y).
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As a result, there arises an automorphism

p:A— A

SIS

)+(2)]

with ¢(T1) = E X og, ¢(T2) = o0g x E. Making use of o(az) = ao(z) for Va €
Or ;, Vz € C, one observes that any triangular o-quotient can be reduced by an
automorphism of A to the form

ou+0_g,v+0_4) = {M (

o(u+agtco)a(v+ by teg)o(agu 4 bov)
o(u)o(v)o(agu + bov + ¢o)

fora(u,v) = (1.10)

with ag, by € Oid, Co € O_g.
We are going to describe the complete divisor of a triangular o-quotient.
Definition 11. The divisor D = Z D; — Z T; with smooth elliptic irreducible

=0
components D;, T; is called a tetmhedmn (cf Fzgm"e 1) if:

Figure 1: Tetrahedron

2
(i) >°T; is a triangle;
i=0

(ii) D; are parallel to T; for all 0 <14 < 2;

(iii) DoND1NDy = DyNDy = D1NDy = DyNDy = {pg} for some point pg € A;
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Definition 12. An inscribed (ordered) pair of triangles (cf. Figure 2) is a
2 2
divisor D = > D; — > Ty, such that:
i=0 i=0

(i)

(3

(ii) D; are parallel to T; for all 0 < i < 2;

o ()0 ()= (5m) "< (Br)

2 2
D; and Y T; are triangles;
=0 i=0

Figure 2: Inscribed (ordered) pair of triangles

An explicit calculation of the singular points of the complete divisor yields the
following

Corollary 13. Let (1.10) with ap,by € O 4, co € O_q be a triangular o-

2 2
quotient with complete divisor (fo12) = >. D;i — >_ T;. Then:
i=0 i=0

(1) co+ O—4 € Ea_tor is a 2-torsion point if and only if (fo12) is a tetrahedron;

(ii) co+ O—_q & Ea—tor exactly when (fo12) is an inscribed pair of triangles.

In either case, the multiplicity m,(foi12) = —1 at all p € (fo12)eo N T8,
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In [4] Holzapfel introduces the idea for detecting the linear independence of
co-abelian modular forms by the poles of the corresponding transfers to abelian
functions. Instead of his strongly descending divisor condition, we use a natural
complete decreasing flag on [I',1]. That enables to supply a criterion for some
modular forms to constitute a basis of [I', 1] and to show that [T',1] has always a
basis of the considered form.

Observe that the subspaces
Vi=j,1]; :={w e n[[, 1] |w(k) = ... =w(ki—1) =0}
of V1 = j1[I, 1] form a non-increasing flag
A =Vi2Ve2. ... 2V 1 2V 2.0 2 Vi 2 Vi = 1[I, cusp-

For any w,w’ € V; one has ' (k;)w—w(k;)w’ € Vit1, so that 0 < dimg¢ (V;/Vig1) <1
for all 1 <4 < h. We prove that there is a permutation of the cusps k1,...,kp, SO
that V;/Viy1 ~Cforl <i<mand Viypy1 = Vipgo = ... = Vay1 = 1[I, Leusp =~ C.
If so, then dim¢[I', 1] = m + 1.

Proposition 14. If the pole divisors of f; € La(T, TS"®) are subject to
T, C(fi)o CTi+Tit1+...+Tn  foral 1<i<m,
then w; = 1, ' (f;) € 71[l,1] with 1 < i < m form a basis of a complement of
Vm+1 - jl [F, 1]m+1~
In particular, if Vipy1 = Vg1 = 510 Ueusp, then j1(no),wi, ... ,wm is a C-
basis of j1[T', 1].

Proof. Tt suffices to show that for arbitrary by,...,b,, € C the linear system

m
> wilkti=bj, 1<j<m (1.11)
i=1
has a unique solution (¢1,...,%,,). On one hand, that implies the linear inde-
pendence of wy,...,w,, over C. On the other hand, for any w € j1[I', 1] there is
m m
uniquely determined > c;w; with wg =w—>_ cw; € 71|, 1]m+t1 = Vint1. In other
i=1 i=1
words, 71[I', 1] = Spanc(wi, ..., wWm) ® Ving1, so that wy, ... ,wy, is a basis of the
complement Spanc (w1, . ..,wm) of V1.

Towards the existence of a unique solution of (1.11), note that the requirement
T, C ((wi))oo € Ti+ Tig1 + ...+ Ty is equivalent to w;(k;) # 0 and w;(ky1) =

wi(k2) = ... =w;(Ki—1) = 0. Thus, (1.11) is of the form
w1 (K',l) N 0 N 0 t.l b'l
o.)l(lii) N wi(m-) N 0 tz‘ = bz 5
w1(km) oo wilkm) o wWm(Km) t;n b;n
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with non-degenerate, lower-triangular coefficient matrix and has unique solution
for all by,...,b,, € C.

In the case of V41 = Vg1 = j1[I, Ucusp, note that ji[I', 1]cusp = Cj1(1,) with
T1j1(ne) = 1 € LA4(T, T5"8), so that j1(1,),w1, .. .,wn is a C-basis of j1[[',1]. O

The next proposition establishes that ji [T, 1] has always a C-basis of the con-
sidered form.

Proposition 15. Let I' C SUz,; be a freely acting, co-abelian Picard modular
group and dime[T', 1]=m~+1. Then there is a permutation {K1,. .. ,Km, Km-+1s- - - sKh}
of the I'-cusps, such that

Vl/‘/Z =~ ‘/Z/VS e = m/Vm+1 =~ C, Vm+1 = Vm+2 == Vh+1 = jl[ra 1]cusp~
Any w; € V; \ Viy1 transfers to mi(w;) € La(T, T5™8) with
TiC(Tl(wi))oogTi+Ti+1+"'+Th fO’I“ 1<:<m

and j1(No), w1, . -« ,wm 1s a C-basis of V1 = 1[I, 1].
In particular, if Th—1.Typ = 1 then Vi1 = j1[L', Lcusp and dim[[, 1] < h — 1.

Proof. If Vi = Vj41, then there is nothing to be proved. From now on, we
assume that dim V4 /V 41 = m € N. By induction on 1 < i < m, we establish the
existence of w; € V; \ Vj41 for all 1 < j <. First of all, for any w1 € Vi \ Vi
there exists a cusp k1 with wi(k1) # 0. Then for an arbitrary permutation of
the remaining cusps, one has wi € V4 \ Va. If we have chosen w; € V; \ V44 for
1<j<i—1andV; 2 Vihyy, then for an arbitrary w; € V; \ Vj41 there exists
a permutation of {k;, Kit+1,...,Kn}, such that w;(k;) # 0. Clearly, w; € V; \ Viy1
and we have obtained a basis j1(7,),w1,...,wm of V1 = j1[I',1]. The conditions
w; € Vi \ Vig1 amount to T; C (71 (wi))eo and Tj % (T1(w;))oo forall 1 <j <i-—1.

If Ty, 1.7y = 1, then up to an automorphism of A, one can assume that T, 1 =
E x o and T, = o x E. We claim that L5((E x 6g) + (0 x E)) = C, so
that dimg[l,1] = m +1 < h — 1. Indeed, for an arbitrary Q € E \ og the
restriction f|gxq is an elliptic function of order 1. Therefore f|gxg = C(Q) € C
is a constant. Similarly, f|pxg = C'(P) € C for any P € E \ 6g. As a result,
C'(P) = f(P,Q) =C(Q) for all Q € E and f|4 is constant.

O

Proposition 16. (Holzapfel [5]) Let us fix the half-periods w1 = %, Wy = %,
w3 = w1 + wa of the lattice m(E) = O_1 = Z + iZ, the 2-torsion points Qo =
O(modZ+iZ) € E, Q; := wj(mod Z+iZ) € E for 1 < j <3 and Q;; = (Qi,Q;) €
A. Consider the elliptic curves

Ty = {(u+m(E),v+m(E)|u—i*vem(E)} for 1<k<4,

Tirkg ={(u+m(E),v+m(E))|u—w, €m(E)} for 1<k<2
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Torr = {(u+m(E),v+m(E))|v—wr €m(E)} for 1<k<2.

Then the blow-up of A at the singular points

S1==Qo0, S2=0Q33, S3=0Q11, S1=Qi2, S5=~Q2, Sc=C0Qan

T =

8
of T(Gi) = S T} is the toroidal compactification (B/T1)" of a ball quotient B/T;
k=1
by a freely acting Picard modular group T'y over the Gaussian integers Z[i].

The self-intersection matrix M (6, 8) € Zgxs of T\(/Gfgl) is defined to have entries
M(6,8);; =1 for S; € T; and M(6,8);; =0 for S; € T;. Straightforwardly,

1 1 1.1 0 0 O O
1 1 1.1 0 0 O O
01 011 010
M@G8=149 010100 1
1 01 0 01 1 O
01 01 01 01
T
%1 ° 022
T3
.
)
T4
T
T
T
Q
" T 12

2 2 sing
) . . . (6,8) (6,8)
Figure 3: The incidence relations of Tﬁ and i=§ 1j§:1 Qij C (T\/—T> .

According to Qoo, @33 € Tj; or V1 < k < 4, there are no triangles T; + T +

TkCT\(f;jl)withlgi<j§4,1§i<j<k§8. Bearing in mind that
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sing 8 2 2
(T\(f;ﬁf) N (kZS Tk> = 2:1 ,Zleij’ one makes use of Figure 3 and recognizes
= i=1j=

the triangles Tog—1 + Tuym + To4m, Lok + Tatm + To—m with 1 < k;m < 2.
An immediate application of Proposition 9 with v = 2w,, and, respectively, v =
w3 + wm + (=1)**lws_,,, yields the following

sing
Corollary 17. The space L4 (T(6’8) (T“l?) ) contains the binary parallel

V=1 \"V/=1
o(u—wi — p1)o(u—ws + )

Js6(u,v) = o(u—wi)o(u —wa) ’
_o(v—wi — p2)o(v —wa + o)

fra(u,v) = o(v— w1)o(v — wa)

and the triangular o-quotients

for—1,44m.64m (U, V)
_o(u+t (=150 + w3)o(—u + wm + w3)o (=) v + (=1 Fiw,, + ws)
o(u+ (—1)*iv)o(—u + wp)o((—1)* 1w + (—1)*iw,,)

fok a4m,0-m (U, v)
_ o(ut (=DM + wi)o(—u + wim + ws)o(=1)*v + (1) ws_m + ws)
o(u+ (1) )o(—u + wm)o((—1)kv 4+ (= 1) ws )

with arbitrary 1 < k,m < 2.

Proposition 14 provides the following

Corollary 18. If f,q and fiji are the binary parallel and triangular o-quotients

from the space L4 (T\(/G;—Sl), (T\(/(S;—Sl))smg) and wpq = 1 (foq), wijk = 11 (fijk),
then
Wis7, Wass, W36s, WaeT, Wse, wrs,  J1(7o)
is a C-basis of j1[I'1,1].
In particular, dimc[[, 1] = 7.

2. SUFFICIENT CONDITIONS FOR THE NORMAL GENERATION OF A
SPACE OF LOGARITHMIC CANONICAL SECTIONS

Definition 19. A holomorphic line bundle £ on an algebraic variety X is suf-
ficiently ample if the holomorphic sections of a sufficiently large tensor power E5™
provide a projective embedding of X .
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Definition 20. A holomorphic line bundle £ over an algebraic variety X is
globally generated if the global holomorphic sections of € determine a regular pro-
jective morphism.

A subspace V. C H°(X,E) is globally generated if some (and therefore any)
basis of V' provides a regular projective morphism X — P(V).

Definition 21. A holomorphic line bundle £ over an algebraic manifold X
is normally generated if £ is globally generated and H°(X,E) defines a projective
immersion of X with normal image.

A subspace V. C H°(X, ) is normally generated if it is globally generated and
the morphism X — P(V) is a projective immersion with normal image.

The normal generation of a sufficiently ample line bundle is a classical topic un-
der study. Various works provide normally generated and non-normally generated
line bundles over curves and abelian varieties. According to [2], if £ is a sufficiently
ample line bundle on an abelian variety of dimension n, then £2(»~1) is normally
generated. In particular, any sufficiently ample line bundle on an abelian surface
is normally generated.

Our aim is to provide sufficient conditions for the normal generation of a sub-
space V. C HO(A’,Q2,(T")) over the Baily-Borel compactification A. That cannot
be derived from the normal generation of a subspace W C H(A, £) of holomorphic
sections of a line bundle £ — A. Namely, £*W cannot be a normally generated
space of global holomorphic sections of £*&, as far as the morphism, associated with
£*W is not immersive on the exceptional divisor L = £~1(T"8) of £ : A’ — A.

Corollary 22. Let X be an irreducible normal projective variety X and f : X —
Y be a finite, reqular, generically injective morphism onto Y. Then f: X — Y is
a regqular immersion with normal image Y .

Proof. If f : X — Y is a regular morphism of degree d € N, then the generic
fiber of f consists of d points, while the exceptional ones are constituted by < d
points. In particular, for d = 1, any regular, generically injective morphism is
bijective onto its image. As a result, f : X — Y is a regular immersion with
normal image. g

Our specific considerations will be based on the following immediate conse-
quence of Corollary 22

Corollary 23. Let X be an irreducible normal projective variety, € — X be e
holomorphic line bundle over X and V C H°(X, &) be a space of global holomorphic
sections of £. If f : X — P(V) is a finite, regqular, generically injective morphism
then V is normally generated.

Lemma 24. A subspace V. C H°(A',Q3%,(T")), containing the cuspidal form
J1(no), is globally generated over A if and only if it salisfies simultaneously the
following two geometric conditions:
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(i) for any irreducible component T; of T there is w; € V with (11(w;))eo D Tis

(ii) for any p € T®8 there exists w, € V with my(m1(wp)) = —1.

Proof. The space V is globally generated over A exactly when for any point
—~ —— h

q € Athereisv, € V withv,(q) #0. If ¢ € (]B%/F)\(LUZ m), then j1(n,)(q) # 0.
i=1

A modular form w; € V does not vanish on the cusp «; if and only if T; C (71 (w;))oo-
A modular form w, € V takes non-zero values on the rational (—1)-curve £ ’1(p)
exactly when the multiplicity m, (1 (wp)) = —1. O

From now on, we say briefly that a modular form w € H?(A',Q%,(T")) is
binary parallel or triangular if its transfer 7 (w) € L4 (T, T"®) is binary parallel
or, respectively, triangular.

Proposition 25. Let us suppose that the subspace V. C HY(A’,Q%,(T")) con-
tains the cuspidal form j1(n,), two binary parallel forms wis, waa, a triangular woio
with To NT3 N Ty = O and satisfies the following three conditions:

(i) for any i ¢{0,1,...,4} there exists w; € V. with (T1(w;))eo D Ti;
4
(ii) for any p € T®"&\ ( > Tj> there exists w, € V' with my(11(wp)) = —1;
§=0

iii) foranyl <i<j< ere is w;; € V, such that (T1(w;;))eo contains exactly
1<i<j<h thereisw;; €V, such that ; tai tl
one of T; or Tj.

Then V is normally generated.

Proof. In the presence of Corollary 23, it suffices to establish that the projec-
tive morphism f : A — P(V), associated with V is regular, finite and generically
injective. Assumption (i) from the present proposition and (71 (wi;))ee = T; + T},
(11(wo12))o0 = To + T1 + T> imply assumption (i) from Lemma 24. Further, no-
one p € T8 N (Ty + T3) belongs to (11(wi3))o = D1 + D3, as far as Ty, T3, Dy
and D3 are mutually parallel and distinct. Therefore, m,,(71(w13)) = —1. Similarly,
my(T1(wag)) = —1 for p € T8N (Ty+Ty). By Corollary 13, m, (71 (we12)) = —1 for

] 2
all p e T8N (Z Ti). Combining with assumption (ii) from the present proposi-
i=0

tion, one obtains (ii) from Lemma 24. That allows to conclude that f : A — P(V))
is regular.

The assumption (iii) guarantees that f : A — f(A) C P(V) is finite. First of
all, on A\ [L + (0rB/T")] = (B/T') \ L = A\ T, the morphism

(jﬁi) :f”’"g:flf”ﬁ%) =f2405=f24) : (B/T)\L=A\T — C?
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is of degree 4. More precisely, if

o(v = ) (v — 1 + i)
o(v)o(v — cq)

o(u = ) — cs + )
o(u)o(u — c3)

fia(u,v) =

; faa(u,v) =

L (21)

then for any z,y € P! the fiber is

(f13, f) 7 (2, 9) = {(Pi(2), Q; (%)) |1 < i, 5 < 2}

with
Pi(z) + Po(z) =73, Q1(y) + Q2(y) =7a.

The condition (iii) provides the injectiveness of f : orB/T' — f (0rB/I'), which
suffices for f : L — f(L) to be discrete and, therefore, finite. Otherwise, f contracts
some irreducible component ¢~1(p), p € T8 of L. If p € T; N T then k;, k; €
£ 1(p), whereas f(k;) = f(x;). Thus, f: LU (0rB/T) — f (LU (0rB/T)) and,
therefore, f: A — f(A) is a finite regular morphism.

The generic injectiveness of the projective morphism f : A= f (E) follows
from the generic injectiveness of the affine morphism

w13 Wa4q wo12 3
F=- = f13, = = foa, = =f012)3(B/F)\L:A\T—>(C-
(m(no) J1(no) J1(no)
This, in turn, is equivalent to the generic injectiveness of the rational surjective
morphism
F = (f13, fa4, for2) : A — P! x P! x P*.

Let us consider also the rational surjection Fy = (fi3, fas) : A — P* x P! and its
factorization .
A—— P x P! x P!

P { /
Pri2

P! x P!

through F and the projection pris : P! x P! x P! — P! x P! onto the first two factors.
The irreducible components T} and T3 of the triangle To + T + T have intersection
number T77. 75 = 1. That allows to assume that T} = og X E, Ty = E X 0 and
(1.10).

Suppose that F' : A — P! x P! x P! is not generically injective. By F} = prisoF
and deg | = 4, the generic fiber of F' on F; '(x,y) consists of 2 or 4 points. In
either case, for any (z,y) € P! x P! there holds at least one of the following pairs
of relations:

Case (i): for2(P1(), Q2(y)) = for2(Pa(z), Q1(y)),
for2(Pi(2), Q1(y)) = for2(P2(z), Q2(y));
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Case (ii): for2(P1(7), Q2(y)) = for2(P2(z), Q2(y)),
Jor2(Pi(z), Q1(y)) = for2(Pa(z), Q1(y));

Case (iii): for2(P1(x), Q2(y)) = for2(Pi(z), Q1(y)),
Jor2(P2(z), Q2(y)) = for2(Pa(z), Q1(y))-

We claim that the relations from at least one case are satisfied identically on
P! xP!. Otherwise, the locus of either case is a proper analytic subvariety of P! x P!
and their union is also a proper analytic subvariety of P! x P!. The contradiction
implies that for any (x,y) € P! x P! there holds identically at least one of the Cases
(1), (ii) or (iii). Note that (ii) and (iii) are equivalent under the transposition of the
factors of P! x P! and, respectively, of A = E x E.

C3

Cq

Without loss of generality, one can suppose that P;(0c0) = o and Pa(00)
In Case (i), up to a relabeling of Q1(y), Q2(y), one has Q1(c0) = og, Q2(c0)
Then

00 = fo12(0E,08) = fo12(P1(c0), Q1(00)) = for2(P2(00), Q2(00)) = fo12(€3,C1).

However, ¢3 # 0, ¢4 # o and T3 N Ty = {(¢3,¢1)} g Tp reveal that fo12(C3,¢1) #
00, so that Case (i) does not hold identically on A. Similarly, in Case (ii), there
follows

00 = fo12(0m,¢1) = fo12(P1(00), Q2(0)) = for2(FP2(00), Q2(0)) = fo12(C5,¢1).

The contradiction implies that F : A — P! x P! x P! is generically injective. [

Here is another sufficient condition for a subspace V. C H(A’,Q2,(T")) to be
normally generated.

Proposition 26. Let V be a subspace of H*(A',Q2%,(T")), containing the cus-
pidal form j1(n,), a binary parallel w3, triangular woia, wess with ToNTINTy =
and satisfying the following three conditions:

(i) for any i & {0,1,...4} there exists w; € V with (11(w;))eo D Ti;
_ 4
(ii) for any p € T8\ ZOTj there exists wy, € V' with my(m1(wp)) = —1;
J=

(iii) for any 1 <i < j < h there is wij € V, such that (T1(wij))eo contains ezactly
one of T; or Tj.

Then V is normally generated.
Proof. As in Proposition 25, first we establish the regularity of the projective

morphism f: A — f(A\)
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Further, f : A — f(A) is finite, as far as the fibers of its restriction on (B/T)\
L = A\ T are contained in the fibers of

w w
(i =f13,£ =f012> cA\T — C2.
71(110) 71(110)
Let fo12(u,v) be of the form (1.10) and fi3 be as in (2.1). Then for any z,y € P!
the fiber
(fi3, for2) "z, y) = {(Pilx), Qij (z, ) |1 < i,j < 2}

with
Pi(z) + Pa(z) =, Qu(z,y) + Qia(z,y) = —aoby ' Pi(z) — by 'eo

consists of at most four points. The reason is that for any fixed P;(z) € E the
elliptic function fo12(P;(x), ) is of order 2. Thus, (fi3, fo12) : A\ T — C2 is finite.
The assumption (iii) implies that f : L U (9rB/I') — f (LU (9rB/I')) is finite, so
that f: A — f(A) is a finite regular morphism.

We derive the generic injectiveness of f : A f (//1\) from the generic injective-
ness of the affine morphism

— Wiz woiz Wa3s ) _ 5
(Jl(no) f13’ jl(no) f0127 jl(?]o) f234) : (B/F) \ L A\T — .

To this end, let us factor the rational surjection Fy = (fi3, fo12) : A — P1 x P!
through the rational surjection F' = (f13, fo12, fo34) : A — P! x P! x P! and the
projection pris : P! x P! x P! — P! x P!, along the commutative diagram

A - plyp! x P!

a2 { /
Pri2

P! x P!
If F' is not generically injective, then at least one of the following three cases holds
identically on P! x P!:
Case (i): faza(Pr(2), Qi2(z,y)) = faza
f234(P1 (), Qui(z,y))
Case (ii): faza(P1(7), Q12(2,y)) = f34(Pe(2), Qa2(,y)),
fa3a(Pr(2), Qui(,y)) = faza(P2(2), Q21(z,y));
Case (iii): fa34(Pr(2), Q2(7,y)) = faza(P1(), Qui(z,y)),
f234(P2(2), Q22(2,y)) = fa34(Pa(x), Q21 (7, y)).

In either case, denote by Pi(00) = 6 and Ps(o0) = €3 the poles of the elliptic
function f13 and note that T3 = Pi(oc0) X E, T3 = P3(c0) x E. Further, let

( x)aQQl
(Pa(z), Q22(

)

8 8

F

)
)

)

~
.

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 19-41. 39



Qi1(00,00) = 0p, so that To = E x Q11(00,00) = E X Q21(00,00). Finally, let
Qi2(00,00) = —aobalpi(oo) — balﬁ, in order to have

{a10} =Ti N'To = {(P1(00), Qr2(c0,0))},

{g30} = T3 NTp = {(P2(00), Q22(00, 00)) }.

Denote also
{q12} = Ti NTz = {(P1(0), Q11(00, 0)) },

{g32} = T3 N Tz = {(P2(0), Q21 (00, 0)) }.

Bearing in mind that (fos4)eo = T2 + T3 + T4, note that fa34(g;;) = oo whenever
{i,7}N{2,3,4} # 0. In the Case (i) one has fa34(q10) = fa34(g32) = 00. If g19 € T5,
then g19 € To N1y NT5, contrary to the assumption that Ty + 77 + T3 is a triangle.
On the other hand, T3 N T} = () guarantees that q19 € T5. Therefore qio € Ty and
qi10 € ToN'Ty N Ty = B. The contradiction rejects the Case (i). If the first relation
of Case (ii) is identical on P* x P!, then f234(q10) = f234(q30) = oo. As in the
Case (i), that leads to an absurd. Finally, fos4(g10) = f234(g12) = oo contradicts
the hypotheses and establishes that F' = (fi3, fo12, fo34) : A — P! x P! x P! is
generically injective. O

An immediate application of Proposition 26 to the example from Proposition 16
yields the following

Corollary 27. In the terms of Proposition 16, the subspace
Vi = Spanc(j1(1o), wse, wis7, Waer, waes, wass) C HO(A], 9,24/1 (T"))
1s normally generated, i.e., determines a reqular projective immersion
f:B/T - P(Vi) =P°
with normal image.

If one applies Proposition 25 to the cuspidal form j1(7,), the binary parallel
wse, wrg and triangular wis7, then one needs to adjoin the triangular ws 4y 09—k,
W3 4+1,64+1, Wa,44m,9—m for some k,I, m € {1,2}. The span of these modular forms is
7-dimensional and depletes the entire [I'1,1]. Tt is clear that the normal generation
of V4 implies the normal generation of HY(A7, Qz24’1 (1) = 1T, 1]
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