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The logarithmic-canonical bundle Ω2

 ′
( ′) of a smooth toroidal compactification !′ =

( /Γ)′ of a ball quotient  /Γ is known to be sufficiently ample over the Baily-Borel

compactification !̂ =  ̂/Γ. The present work develops criteria for a subspace V ⊆

#0(!′,Ω2

 ′
( ′)) to be normally generated over !̂, i.e., to determine a regular immer-

sive projective morphism of !̂ with normal image. These are applied to a specific
example !′

1
= ( /Γ1)′ over the Gauss numbers. The first section organizes some pre-

liminaries. The second one provides two sufficient conditions for the normal generation
of a subspace V ⊆ #0(!′,Ω2

 ′
( ′)).
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1. PRELIMINARIES

Throughout, let  = { = ( 1,  2) ∈ ℂ2 ∣ ∣ 1∣2+ ∣ 2∣2 < 1} = "#2,1/"(#2×#1)
be the complex two dimensional ball and Γ ⊂ "#2,1 be a lattice, acting freely on  .
The compact  /Γ are of general type. The non-compact  /Γ admit smooth toroidal
compactification ( /Γ)′ by a disjoint union % ′ = ∪ℎ

"=1%
′
" of smooth irreducible

elliptic curves % ′" . From now on, we concentrate on &′ = ( /Γ)′ with abelian
minimal model &. In such a case, the lattice Γ, the ball quotient  /Γ and its
compactifications are said to be co-abelian.
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The contraction ' : &′ → & of the rational (−1)-curves on &′ restricts to
a biregular morphism ' : % ′" → '(% ′" ) = %", as far as an abelian surface & does
not support rational curves. In such a way, ' produces the multi-elliptic divisor

% = '(% ′) =
ℎ∑

"=1

%" ⊂ &, i.e., a divisor with smooth elliptic irreducible components

%". According to Kobayashi hyperbolicity of  /Γ, any irreducible component of the
exceptional divisor of ' intersects % ′ in at least two points. Therefore ' : &′ → & is
the blow-up of & at the singular locus % sing =

∑
1≤"<$≤ℎ

%" ∩ %$ of % . Holzapfel has

shown in [5] that the blow-up &′ of an abelian surface & at the singular locus % sing =
∑

1≤"<$≤ℎ

%" ∩%$ of a multi-elliptic divisor % =
ℎ∑

"=1

%" is the toroidal compactification

&′ = ( /Γ)′ of a smooth ball quotient  /Γ if and only if & = (×( is the Cartesian
square of an elliptic curve ( and

ℎ∑

"=1

card(%" ∩ % sing) = 4card(% sing). (1.1)

In order to describe the smooth irreducible elliptic curves %" on & and their in-
tersections, let us note that the inclusions %" ⊂ & = ( × ( are morphisms of
abelian varieties. Consequently, they lift to affine linear maps of the corresponding
universal covers and

%" = {()+ *1((), + + *1(()) ∣ ,")+ -"+ + ." ∈ *1(()}

for some ,", -", ." ∈ ℂ. The fundamental group

*1(%") = {/ ∈ ℂ ∣ -"/+ *1(() = −,"/+ *1(() = *1(()} = ,−1" *1(() ∩ -−1" *1(().

If Γ is an arithmetic lattice then the elliptic curve ( has complex multiplication
by an imaginary quadratic number field 0 = ℚ(

√
−1), 1 ∈ ℕ. As a result, Γ is

commensurable with the full Picard modular group "#2,1(+−%) over the integers
ring +−% of ℚ(

√
−1). Such Γ are called Picard modular groups. Moreover, all

%" are defined over 0. For simplicity, we assume that *1(() = +−%, in order
to have maximal endomorphism ring (21(() = +−%. Since 0 = ℚ(

√
−1) is

the fraction field of +−%, one can choose ,", -" ∈ +−%. Thus, *1(%") ⊇ +−%,
,"*1(() + -"*1(() ⊆ +−% and %" has minimal fundamental group *1(%") = +−%

exactly when ,"*1(() + -"*1(() = *1(() = +−%. In particular, if 0 is of class
number 1, then all the smooth elliptic curves %" ⊂ & = ℂ2/ (+−% ×+−%), defined
over 0 = ℚ(

√
−1), have minimal fundamental groups *1(%") = +−%. From now

on, we do not restrict the class number of 0 = ℚ(
√
−1), but confine only to smooth

irreducible elliptic curves %" with minimal fundamental groups *1(%") = *1(() =
+−%. If -" ∕= 0, then

%
(1)
" = {(-"/+ *1((),−,"/− -−1" ." + *1(()) ∣ / ∈ ℂ} ⊆ %".
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Moreover, the complete pre-image of %
(1)
" in the universal cover &̃ = ℂ2 of & is

*1(%")-invariant family of complex lines. Therefore, %
(1)
" is an elliptic curve and

coincides with %".

The notations from the next lemma will be used throughout:

Lemma 1. Let %& = {() + +−%, + + +−%) ∣ ,&) + -&+ + .& ∈ +%} and 3& =
{()++−%, +++−%) ∣ ,&)+-&++.&+4& ∈ +−%} for 1 ≤ 5 ≤ 3 be elliptic curves with
minimal fundamental groups *1(%&) = *1(3&) = +−% on & = (ℂ/+−%)× (ℂ/+−%)
and

Δ"$ := det

(
," ,$

-" -$

)
, Δ := det

⎛
⎝

,1 ,2 ,3
-1 -2 -3
.1 .2 .3

⎞
⎠ .

Then for any even permutation {6, 7, 8} of {1, 2, 3} there hold the following:

(i) the intersection number is %".%$ = 9
ℚ(
√
−%)

ℚ (Δ"$), where 9
ℚ(
√
−%)

ℚ :ℚ(
√
−1) →

ℚ stands for the norm;

(ii) %" ∩ %$ ⊂ 3' if and only if 4' ∈ +−% − Δ−1"$ Δ and both Δ−1"$ Δ$' and

Δ−1"$ Δ'" belong to (21(() = +−%;

(iii) %1 ∩ %2 ∩ %3 = ∅ if and only if Δ ∕∈ Δ12+−% +Δ23+−% +Δ31+−%.

Proof. (i) If %"∩%$ = ∅, then the liftings of %", %$ to the universal cover &̃ = ℂ2

of & are discrete families of mutually parallel lines. In such a case, we say briefly
that %" and %$ are parallel. That allows to choose ,$ = ,", -$ = -" and to calculate

9
ℚ(
√
−%)

ℚ (Δ"$) = 9
ℚ(
√
−%)

ℚ (0) = 0 = %".%$ . When %" ∩ %$ ∕= ∅, one can move the
origin <̌( = (<̌) , <̌)) ∈ & in %" ∩ %$ and represent

%" = {(-"/++−%,−,"/++−%) ∣ / ∈ ℂ}, %$ = {()++−%, +++−%) ∣ ,$)+-$+ ∈ +−%}.

Then the intersection is

%" ∩ %$ = {(-"/++−%,−,"/++−%) ∣Δ"$/ ∈ +−% ⊂ ℂ} ≃

(Δ−1"$ +−%)/(-
−1
" +−% ∩ ,−1" +−%) =

(
Δ−1"$ +−%

)
/+−% ≃ +−%/Δ"$+−%.

For an arbitrary lattice Λ ⊂ ℂ, let us denote by ℱ(Λ) a Λ-fundamental domain on
ℂ. As far as ℱ(Δ"$+−%) is the +−%/Δ"$+−%-orbit of ℱ(+−%), the index equals

[+−% : Δ"$+−%] =
volℱ(Δ"$+−%)

volℱ(+−%)
=

volℱ(∣Δ"$ ∣+−%)

volℱ(+−%)
= ∣Δ"$ ∣2 = 9

ℚ(
√
−%)

ℚ (Δ"$).

(ii) The intersection %" ∩ %$ consists of the *1(&)-equivalence classes of the
solutions (), +) ∈ ℂ2 of ∣∣∣∣

,")+ -"+ = =1 − ."

,$)+ -$+ = =2 − .$
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for arbitrary =1, =2 ∈ *1(() = +−%. A point

(Δ−1"$ (-".$ − -$.") + Δ−1"$ (-$=1 − -"=2), Δ
−1
"$ (,$." − ,".$) + Δ−1"$ (,"=2 − ,$=1))

belongs to the lifting of 3' if and only if

−Δ−1"$ Δ$'=1 −Δ−1"$ Δ'"=2 +Δ−1"$ (."Δ$' + .$Δ'") + .' + 4'

= −Δ−1"$ Δ$'=1 −Δ−1"$ Δ'"=2 +Δ−1"$ Δ+ 4' ∈ *1(() = +−%

for ∀=1, =2 ∈ *1((). That, in turn, is equivalent to Δ−1"$ Δ+4' ∈ *1(() = +−% and

Δ−1"$ Δ$',Δ
−1
"$ Δ'" ∈ (21(() = +−%.

(iii) For arbitrary =1, =2, =3 ∈ *1(() = +−%, the linear system

∣∣∣∣∣∣

,1)+ -1+ = =1 − .1
,2)+ -2+ = =2 − .2
,3)+ -3+ = =3 − .3

has no solutions exactly when

det

⎛
⎝

,1 -1 =1 − .1
,2 -2 =2 − .2
,3 -3 =3 − .3

⎞
⎠ = Δ23=1 +Δ31=2 +Δ12=3 −Δ ∕= 0.

Lemma 1 is proved. □

The non-arithmetic lattices Γ ⊂ "#2,1 correspond to abelian surfaces & =
( × (, whose elliptic factors ( have minimal endomorphism rings (21(() = ℤ.
Then the liftings of the elliptic curves %" ⊂ & with *1(%") = *1(() to the universal
cover &̃ = ℂ2 of & are given by ,")+ -"+ + ." ∈ *1(() with ,", -" ∈ ℤ. As a result,

the intersection numbers %".%$ = 9
ℚ(
√
−%)

ℚ (Δ"$) are comparatively large and there

are very few chances for construction of a multi-elliptic divisor % =
ℎ∑

"=1

⊂ &, subject

to (1.1). This is a sort of a motivation for restricting our attention to the arithmetic
case.

The smooth irreducible elliptic curves % ′" ⊂ &′ contract to the Γ-orbits >" =
Γ(?) ∈ ∂Γ /Γ of the Γ-rational boundary points ? ∈ ∂Γ . These >" are called

cusps. The resulting Baily-Borel compactification &̂ =  ̂/Γ = ( /Γ) ∪ (∂Γ /Γ) is
a normal projective surface.

Definition 2. Let Γ be a Picard modular group, A ∈ Γ and B,.(A) = ∂(+1,+2)
∂(,1,,2)

be the Jacobian matrix of A = (A1, A2) :  →  ⊂ ℂ2. The global holomorphic
functions C :  → ℂ with transformation law

A∗(C)( ) = CA( ) = [det B,.(A)]
−-

C( ) for ∀A ∈ Γ, ∀ ∈  

22 Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 19–41.



are called Γ-modular forms of weight 2.

The Γ-modular forms of weight 2 constitute a ℂ-linear space, which is denoted
by [Γ, 2].

Definition 3. A Γ-modular form C ∈ [Γ, 2] is cuspidal if C(>") = 0 at all the
cusps >" ∈ ∂Γ /Γ.

The cuspidal Γ-modular forms of weight 2 form the subspace [Γ, 2]cusp of [Γ, 2].

For any natural number 2 there is a ℂ-linear embedding

7- : D0( ,+ ) −→ D0
(
 ,
(
Ω2
 

)⊗-
)

7-(C)( ) = C( )(1 1 ∧ 1 2)
⊗-

of the global holomorphic functions on the ball in the global holomorphic sections

of the 2-th pluri-canonical bundle
(
Ω2
 

)⊗-
. It restricts to an isomorphism

7- : [Γ, 2] −→ D0
(
 ,
(
Ω2
 

)⊗-
)Γ

of the Γ-modular forms of weight 2 with the Γ-invariant holomorphic sections of
(
Ω2
 

)⊗-
. Note that the subspace D0

(
 ,
(
Ω2
 

)⊗-
)Γ

of D0

(
 /Γ,

(
Ω2
 /Γ

)⊗-
)

acts

on &̂ =  ̂/Γ, extending over the cusps ∂Γ /Γ of codimension 2 in &̂.

The tensor product Ω2
(′(% ′) = Ω2

(′ ⊗ℂ +(′(% ′) is called logarithmic canonical
bundle of&′, while Ω2

(′(% ′)⊗- are referred to as logarithmic pluri-canonical bundles.
Hemperly has observed in [3] that

7-[Γ, 2] = D0
(
 ,
(
Ω2
 

)⊗-
)Γ

= D0
(
&′,Ω2

(′(% ′)⊗-
)

as long as the holomorphic sections from these spaces have one and the same coordi-
nate transformation law. A classical result of Baily-Borel establishes that Ω2

(′(% ′)

is sufficiently ample on &̂. The present article provides sufficient conditions for the
ampleness of Ω2

(′(% ′) on &̂.

Note that the canonical bundle

0(′ = '∗0( ++(′(E) = '∗+( ++(′(E) = +(′(E)

is associated with the exceptional divisor E = '−1(% sing) of ' : &′ → &. If 5
is a global meromorphic section of Ω2

(′ and / is a global meromorphic section of
+(′(% ′), then the tensoring

(5⊗ℂ /)
⊗(−-)

: D0
(
&′,Ω2

(′(% ′)⊗-
)
−→ ℒ(′(2(E+ % ′))

is a ℂ-linear isomorphism with

ℒ(′(2(E+ % ′)) = {F ∈ Mer(&′) ∣ (F) + 2(E + % ′) ≥ 0}.
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The isomorphism '∗ : Mer(&) → Mer(&′) of the meromorphic function fields in-
duces a linear isomorphism

('∗)−1 : ℒ(′(2(E + % ′)) −→ ℒ((2%, 2%
sing),

where G/ : Div(&) → ℤ stands for the multiplicity at a point ? ∈ & and

ℒ((2%, 2%
sing) = {F ∈ Mer(&) ∣ (F) + 2% ≥ 0, G/(F) + 2 ≥ 0 for ∀? ∈ % sing}.

The linear isomorphisms

H- := ('∗)−1(5⊗ℂ /)⊗(−-) : 7-[Γ, 2] −→ ℒ((2%, 2%
sing)

are called transfers of modular forms of weight 2 to abelian functions.

For any C ∈ [Γ, 1], note that C(>") ∕= 0 if and only if %" ⊂ (H171(C))∞. Observe
also that H171[Γ, 1]cusp = {F ∈ ℒ((%, %

sing) ∣ (F)∞ = ∅} = ℂ and fix the cuspidal
form I0 = (H171)

−1(1) of weight 1.

Towards the construction of abelian functions F ∈ ℒ((%, %
sing), let us recall

from [7] that any elliptic function J : ( → ℙ1 can be represented as

J( ) = K0

1∏

"=1

L( − M")

L( − N")
, (1.2)

where

L( ) =  
∏

2∈31())∖{0}

(
1−  

=

) z
 
+ 1
2
( z )

2

is the Weierstrass L-function, M", N", K0 ∈ ℂ and
1∑

"=1

M" ≡
1∑

"=1

N"(mod *1(()). The

points of ( = ℂ/*1(() are of the form , = , + *1(() for some , ∈ ℂ. The
elliptic function (1.2) takes all the values from ℙ1 with one and a same multiplicity
O. Moreover, if J−1(P) = {?"(P) ∈ ( ∣ 1 ≤ 6 ≤ O} for some P ∈ ℂ ⊂ ℙ1, then
1∑

"=1

?"(P) =
1∑

"=1

N". Observe that L : ℂ→ ℂ is a non-periodic entire function, but its

divisor (L)ℂ = *1(() on ℂ is *1(()-invariant. That enables to define the divisor
(L)) = <̌) of L on (. In global holomorphic coordinates (), +) ∈ ℂ2, the divisor

(L(,")+ -"+ + ."))ℂ2 = {(), +) ∈ ℂ2 ∣ ,")+ -"+ + ." ∈ *1(() = +−%}

is the complete pre-image of %" in the universal cover &̃ = ℂ2 of &. That allows to
define the divisor

(L(,")+ -"+ + .")) = (L(,")+ -"+ + ."))( = %".
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Let F ∈ ℒ((% ) be an abelian function with pole divisor (F)∞ =
1∑

"=1

%", after

an eventual permutation of the irreducible components of % . Then

F∞ :=

1∏

"=1

L(,")+ -"+ + .") and F0 := FF∞ (1.3)

are (non-periodic) entire functions on ℂ2. Let Q = 4′

4 be Weierstrass’ Q-function,
I : *1(() → ℂ be the ℤ-linear homomorphism, satisfying Q( + =) = Q( ) + I(=)
for all  ∈ ℂ, = ∈ *1(() and

R(=) =

{
1 for = ∈ 2*1((),

−1 for = ∈ *1(() ∖ 2*1(().

Recall from [6] the *1(()-transformation law

L( + =)

L( )
= R(=)S5(2)(,+ 

2
) for ∀= ∈ *1((), ∀ ∈ ℂ.

Under the assumption (1.3), the *1(&)-periodicity of F is equivalent to

F0()+ =, +)

F0(), +)
=

F∞()+ =, +)

F∞(), +)
=

1∏

"=1

R(,"=)S
5(6!2)

(

6!7+8!v+9!+
"! 

2

)

and

F0(), + + =)

F0(), +)
=

F∞(), + + =)

F∞(), +)
=

1∏

"=1

R(-"=)S
5(8!2)

(

6!7+8!v+9!+
#! 

2

)

for ∀= ∈ *1(() = +−%, ∀(), +) ∈ ℂ2. We choose

F0(), +) =
1∏

"=1

L(,")+ -"+ + ." + 4")

and reduce the *1(&)-periodicity of F to

1=
F()+=, +)

F(), +)
=S

$
∑

!=1

5(6!2):!
, 1=

F(), ++=)

F(), +)
=S

$
∑

!=1

5(8!2):! ∀= ∈ +−%, ∀(), +) ∈ ℂ2.

Let us mention that Holzapfel has studied F ∈ ℒ((% ) of the above form with at
most three non-parallel irreducible components of (F)∞, intersecting pairwise in
single points. The next lemma provides a sufficient (but not necessary) condition
for *1(&)-periodicity of a L-quotient, whose pole divisor has an arbitrary number
of irreducible components with arbitrary intersection numbers.
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Lemma 4. If

1∑

"=1

,"4" =

1∑

"=1

,"4" =

1∑

"=1

-"4" =

1∑

"=1

-"4" = 0 , (1.4)

then the L-quotient

F(), +) =

1∏

"=1

L(,")+ -"+ + ." + 4")

L(,")+ -"+ + .")
(1.5)

is +−% ×+−% -periodic.

Proof. Let us recall from [1] that the integers ring of an imaginary quadratic
number field ℚ(

√
−1) is of the form +−% = ℤ+ 2Tℤ for

2T =

{ √
−1 for −1 ∕≡ 1(mod 4),

−1+
√
−%

2 for −1 ≡ 1(mod 4).

Any U ∈ +−% has unique representation U = P+ 2TV with

P =
2TU − 2TU

2T − 2T
∈ ℤ, V =

U − U

2T − 2T
∈ ℤ.

Legendre’s equality
I(2T)− 2TI(1) = 2*

√
−1,

(cf.[6]) implies that

I(U) = UI(1) +
U − U

2T − 2T
2*

√
−1 for ∀U ∈ +−%.

As a result,

1∑

"=1

I(,"=)4" =

(
1∑

"=1

,"4"

)
=I(1) +

(
1∑

"=1

,"4"

)
2*

√
−1=

2T − 2T
−
(

1∑

"=1

,"4"

)
=2*

√
−1

2T − 2T
.

Lemma 4 is proved □

Mutually parallel smooth elliptic curves %1, . . . , %1 admit liftings

%" = {()++−%, + ++−%) ∣ ,1)+ -1+ + ." ∈ +−%}.

For arbitrary 4$ ∈ ℂ with
1∑

"=1

4" = 0, the L-quotient

F(), +) =

1∏

"=1

L(,1)+ -1+ + ." + 4")

L(,1)+ -1+ + .")
(1.6)
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belongs to ℒ((%, %
sing) and has smooth pole divisor (F)∞ =

1∑
"=1

%". Following [4],

we say that (1.6) is a O-fold parallel L-quotient. A L-quotient (1.5) has smooth
pole divisor if and only if it is O-fold parallel.

Definition 5. A special L-quotient of order O is a function of the form (1.5),
which is subject to (1.4), has singular pole divisor (F)∞ and 4" ∕∈ +−% for all
1 ≤ 6 ≤ O.

Lemma 6. If F ∈ ℒ((%, %
sing) is a special L-quotient of order O ≥ 2, then at

any point ? ∈ (F)sing∞ the multiplicity G/(F)∞ satisfies

2 ≤ G/(F)∞ ≤
[
O + 1

2

]
,

where
[

1+1
2

]
is the greatest natural number, non-exceeding 1+1

2 .

In particular, ℒ((%, %
isng) does not contain a special L-quotient of order 2.

Proof. The smoothness of the irreducible components %1, . . . , %1 of (F)∞ results
in (F)sing∞ ⊂ ∑

1≤"<$≤1

(%" ∩ %$) and implies that G/(F)∞ ≥ 2 for all ? ∈ (F)sing∞ .

Suppose that G/(F)∞ = G for some 2 ≤ G ≤ O. After an eventual permutation of
%1, . . . , %1, one can assume that ? ∈ %1 ∩ . . . ∩ %; and ? ∕∈ %;+1 + . . .+ %1. Then

G/(F) + 1 = G/(F)0 −G/(F)∞ + 1 = G/(F)0 −G+ 1 ≥ 0

requires the existence of 3;+1, . . . , 32;−1 ⊂ (F)0 =
1∑

"=1

3" with ? ∈ 3;+1 ∩ . . . ∩
32;−1, after a further permutation of 3;+1, . . . , 31. Now 2G − 1 ≤ O implies
that G/(F)∞ = G ≤

[
1+1
2

]
.

In particular, for O = 2 the inequality 2≤G/(F)∞≤
[
3
2

]
cannot be satisfied. □

Proposition 7. If

F(), +) =

3∏

"=1

L(,")+ -"+ + ." + 4")

L(,")+ -"+ + .")
(1.7)

is a special L-quotient from ℒ((%, %
sing), then %1∩%2∩%3 = ∅ and the intersection

numbers %1.%2 = %2.%3 = %3.%1 ∈ ℕ are equal.

Proof. By Lemma 6 there follows G/(F)∞ = 2 for ∀? ∈ (F)sing∞ . In particular,
(F)∞ = %1 + %2 + %3 has no triple point and %1 ∩ %2 ∩ %3 = ∅. Further, for
any ? ∈ %" ∩ %$ the condition G/(F) + 1 ≥ 0 requires that ? ∈ 3', therefore
4' ∈ +−% − Δ−1"$ Δ and Δ−1"$ Δ$',Δ

−1
"$ Δ'" ∈ +−%, according to Lemma 1 (ii). A

cyclic change of the even permutation {6, 7, 8} by {7, 8, 6} and {8, 6, 7} results in
Δ−1$' Δ'",Δ

−1
$' Δ"$ ∈ +−% and, respectively, Δ−1'" Δ"$ ,Δ

−1
'" Δ$' ∈ +−%. Consequently,

Δ−1"$ Δ$',Δ
−1
"$ Δ'" ∈ +∗−%, whereas 9

ℚ(
√
−%)

ℚ (Δ"$) = 9
ℚ(
√
−%)

ℚ (Δ$') = 9
ℚ(
√
−%)

ℚ (Δ'").
Now, by Lemma 1 (i) it follows that %".%$ = %$ .%' = %'.%". □

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 19–41. 27



Definition 8. The divisor %1 + %2 + %3 with three smooth elliptic irreducible
components is called a triangle if %1 ∩ %2 ∩ %3 = ∅ and %1.%2 = %2.%3 = %3.%1 = 1.

Examples of special L-quotients with triangular pole divisors are constructed
by Holzapfel in [4]. We show that any triangular divisor can be realized as a pole
divisor of a special L-quotient F ∈ ℒ((%, %

sing) and provide a general formula for
such F .

Proposition 9. Let %" = {() + +−%, + + +−%) ∣ ,′") + -′"+ + .′" ∈ +−%} with
1 ≤ 6 ≤ 3 be the smooth irreducible elliptic components of a triangle %1 + %2 + %3
and ," = Δ′$',

′
", -" = Δ′$'-

′
", ." = Δ′$'.

′
". Then ,1 + ,2 + ,3 = 0, -1 + -2 + -3 = 0,

Δ−112 Δ ∕∈ +−% and for any U ∈ +−% the function

F(), +) =

3∏

"=1

L(,")+ -"+ + ." −Δ−112 Δ+ U)

L(,")+ -"+ + .")
(1.8)

is a special L-quotient from ℒ((%, %
sing) with pole divisor (F)∞ = %1 + %2 + %3.

Proof. Let +′" =

(
,′"
-′"

)
for 1 ≤ 6 ≤ 3. Expanding along the third row, one

obtains

0 =

∣∣∣∣∣∣

,′1 ,′2 ,′3
-′1 -′2 -′3
,′1 ,′2 ,′3

∣∣∣∣∣∣
= Δ′23,

′
1 +Δ′31,

′
2 +Δ′12,

′
3 = 0,

0 =

∣∣∣∣∣∣

,′1 ,′2 ,′3
-′1 -′2 -′3
-′1 -′2 -′3

∣∣∣∣∣∣
= Δ′23-

′
1 +Δ′31-

′
2 +Δ′12-

′
3 = 0,

and concludes that

+1 + +2 + +3 = Δ′23+
′
1 +Δ′31+

′
2 +Δ′12+

′
3 = 02×1, Δ12 = Δ23 = Δ31. (1.9)

Now, according to Lemma 1 (iii), %1 ∩ %2 ∩ %3 = ∅ is equivalent to Δ ∕∈ Δ12+−%.
Then the condition G/(F)0 ≥ G/(F)∞ − 1 for ∀? ∈ (F)sing∞ reduces to %" ∩ %$ ⊂ 3'

for any even permutation {6, 7, 8} of {1, 2, 3}. Making use of Lemma 1 (ii), one can
choose 41 = 42 = 43 = U −Δ−112 Δ ∕∈ +−%. Then (1.9) implies (1.4) from Lemma 4
and reveals that (1.8) is a special L-quotient from ℒ((%, %

sing). □

Definition 10. The special L-quotients (1.8) from ℒ((%, %
sing) with triangular

pole divisors (F)∞ = %1 + %2 + %3 are called triangular.

For elliptic curves %" = {()++−%, + ++−%) ∣ ,")+ -"+ + ." ∈ +−%}, 1 ≤ 6 ≤ 2
with minimal fundamental groups *1(%") = *1(() = +−% and intersection number
%1.%2 = 1, Lemma 1 (i) implies that

W =

(
,2 -2
,1 -1

)
∈ XE2(+−%).
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As a result, there arises an automorphism

Y : & −→ &,

Y() ++−%, + ++−%) =

[
W

(
)
+

)
+

(
.2
.1

)]<

with Y(%1) = ( × <̌) , Y(%2) = <̌) × (. Making use of L(M ) = ML( ) for ∀M ∈
+∗−%, ∀ ∈ ℂ, one observes that any triangular L-quotient can be reduced by an
automorphism of & to the form

F012(), +) =
L() + ,−10 .0)L(+ + -−10 .0)L(,0)+ -0+)

L())L(+)L(,0)+ -0+ + .0)
(1.10)

with ,0, -0 ∈ +∗−%, .0 ∕∈ +−%.

We are going to describe the complete divisor of a triangular L-quotient.

Definition 11. The divisor 3 =
2∑

"=0

3" −
2∑

"=0

%" with smooth elliptic irreducible

components 3", %$ is called a tetrahedron (cf. Figure 1) if:

T
0

T
1 T2

D

D

D2

0

1

Figure 1: Tetrahedron

(i)
2∑

"=0

%" is a triangle;

(ii) 3" are parallel to %" for all 0 ≤ 6 ≤ 2;

(iii) 30∩31∩32 = 30∩31 = 31∩32 = 32∩30 = {?0} for some point ?0 ∈ &;
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(iv)

(
2∑

"=0

3"

)
∩
(

2∑
"=0

%"

)
=

(
2∑

"=0

%"

)sing
⊂
(

2∑
"=0

3"

)smooth

.

Definition 12. An inscribed (ordered) pair of triangles (cf. Figure 2) is a

divisor 3 =
2∑

"=0

3" −
2∑

"=0

%", such that:

(i)
2∑

"=0

3" and
2∑

"=0

%" are triangles;

(ii) 3" are parallel to %" for all 0 ≤ 6 ≤ 2;

(iii)

(
2∑

"=0

3"

)
∩
(

2∑
"=0

%"

)
=

(
2∑

"=0

%"

)sing
⊂
(

2∑
"=0

3"

)smooth

.

‘

D0

T
0

T
1

T2

D

D
2

1

Figure 2: Inscribed (ordered) pair of triangles

An explicit calculation of the singular points of the complete divisor yields the
following

Corollary 13. Let (1.10) with ,0, -0 ∈ +∗−%, .0 ∕∈ +−% be a triangular L-

quotient with complete divisor (F012) =
2∑

"=0

3" −
2∑

"=0

%". Then:

(i) .0 ++−% ∈ (2−tor is a 2-torsion point if and only if (F012) is a tetrahedron;

(ii) .0 ++−% ∕∈ (2−<0= exactly when (F012) is an inscribed pair of triangles.

In either case, the multiplicity G/(F012) = −1 at all ? ∈ (F012)∞ ∩ % sing.
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In [4] Holzapfel introduces the idea for detecting the linear independence of
co-abelian modular forms by the poles of the corresponding transfers to abelian
functions. Instead of his strongly descending divisor condition, we use a natural
complete decreasing flag on [Γ, 1]. That enables to supply a criterion for some
modular forms to constitute a basis of [Γ, 1] and to show that [Γ, 1] has always a
basis of the considered form.

Observe that the subspaces

Z" = 71[Γ, 1]" := {T ∈ 71[Γ, 1] ∣T(>1) = . . . = T(>"−1) = 0}
of Z1 = 71[Γ, 1] form a non-increasing flag

71[Γ, 1] = Z1 ⊇ Z2 ⊇ . . . ⊇ Z;−1 ⊇ Z; ⊇ . . . ⊇ Zℎ ⊇ Zℎ+1 = 71[Γ, 1]cusp.

For any T, T′ ∈ Z" one has T
′(>")T−T(>")T

′ ∈ Z"+1, so that 0 ≤ dimℂ (Z"/Z"+1) ≤ 1
for all 1 ≤ 6 ≤ ℎ. We prove that there is a permutation of the cusps >1, . . . , >ℎ, so
that Z"/Z"+1 ≃ ℂ for 1 ≤ 6 ≤ G and Z;+1 = Z;+2 = . . . = Zℎ+1 = 71[Γ, 1]cusp ≃ ℂ.
If so, then dimℂ[Γ, 1] = G+ 1.

Proposition 14. If the pole divisors of F" ∈ ℒ((%, %
sing) are subject to

%" ⊂ (F")∞ ⊆ %" + %"+1 + . . .+ %ℎ for all 1 ≤ 6 ≤ G,

then T" = H−11 (F") ∈ 71[Γ, 1] with 1 ≤ 6 ≤ G form a basis of a complement of
Z;+1 = 71[Γ, 1];+1.

In particular, if Z;+1 = Zℎ+1 = 71[Γ, 1]cusp, then 71(I0), T1, . . . , T; is a ℂ-
basis of 71[Γ, 1].

Proof. It suffices to show that for arbitrary -1, . . . , -; ∈ ℂ the linear system

;∑

"=1

T"(>$)/" = -$ , 1 ≤ 7 ≤ G (1.11)

has a unique solution (/1, . . . , /;). On one hand, that implies the linear inde-
pendence of T1, . . . , T; over ℂ. On the other hand, for any T ∈ 71[Γ, 1] there is

uniquely determined
;∑

"=1

."T" with T0 = T−
;∑

"=1

."T" ∈ 71[Γ, 1];+1 = Z;+1. In other

words, 71[Γ, 1] = Spanℂ(T1, . . . , T;) ⊕ Z;+1, so that T1, . . . , T; is a basis of the
complement Spanℂ(T1, . . . , T;) of Z;+1.

Towards the existence of a unique solution of (1.11), note that the requirement
%" ⊂ (H1(T"))∞ ⊆ %" + %"+1 + . . . + %ℎ is equivalent to T"(>") ∕= 0 and T"(>1) =
T"(>2) = . . . = T"(>"−1) = 0. Thus, (1.11) is of the form

⎛
⎜⎜⎜⎜⎝

T1(>1) . . . 0 . . . 0

T1(>") . . . T"(>") . . . 0

T1(>;) . . . T"(>;) . . . T;(>;)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

/1
...
/"
...
/;

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

-1
...
-"

...
-;

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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with non-degenerate, lower-triangular coefficient matrix and has unique solution
for all -1, . . . , -; ∈ ℂ.

In the case of Z;+1 = Zℎ+1 = 71[Γ, 1]cusp, note that 71[Γ, 1]cusp = ℂ71(I0) with
H171(I0) = 1 ∈ ℒ((%, %

sing), so that 71(I0), T1, . . . , T; is a ℂ-basis of 71[Γ, 1]. □

The next proposition establishes that 71[Γ, 1] has always a ℂ-basis of the con-
sidered form.

Proposition 15. Let Γ⊂ "#2,1 be a freely acting, co-abelian Picard modular
group and dimℂ[Γ, 1]=G+1. Then there is a permutation {>1,. . . ,>;, >;+1,. . . ,>ℎ}
of the Γ-cusps, such that

Z1/Z2 ≃ Z2/Z3 ≃ ⋅ ⋅ ⋅ ≃ Z;/Z;+1 ≃ ℂ, Z;+1 = Z;+2 = ⋅ ⋅ ⋅ = Zℎ+1 = 71[Γ, 1]cusp.

Any T" ∈ Z" ∖ Z"+1 transfers to H1(T") ∈ ℒ((%, %
sing) with

%" ⊂ (H1(T"))∞ ⊆ %" + %"+1 + ⋅ ⋅ ⋅+ %ℎ for 1 ≤ 6 ≤ G

and 71(I0), T1, . . . , T; is a ℂ-basis of Z1 = 71[Γ, 1].

In particular, if %ℎ−1.%ℎ = 1 then Zℎ−1 = 71[Γ, 1]cusp and dim[Γ, 1] ≤ ℎ− 1.

Proof. If Z1 = Zℎ+1, then there is nothing to be proved. From now on, we
assume that dimZ1/Zℎ+1 = G ∈ ℕ. By induction on 1 ≤ 6 ≤ G, we establish the
existence of T$ ∈ Z$ ∖ Z$+1 for all 1 ≤ 7 ≤ 6. First of all, for any T1 ∈ Z1 ∖ Zℎ+1

there exists a cusp >1 with T1(>1) ∕= 0. Then for an arbitrary permutation of
the remaining cusps, one has T1 ∈ Z1 ∖ Z2. If we have chosen T$ ∈ Z$ ∖ Z$+1 for
1 ≤ 7 ≤ 6 − 1 and Z" ⊉ Zℎ+1, then for an arbitrary T" ∈ Z" ∖ Zℎ+1 there exists
a permutation of {>", >"+1, . . . , >ℎ}, such that T"(>") ∕= 0. Clearly, T" ∈ Z" ∖ Z"+1

and we have obtained a basis 71(I0), T1, . . . , T; of Z1 = 71[Γ, 1]. The conditions
T" ∈ Z" ∖ Z"+1 amount to %" ⊂ (H1(T"))∞ and %$ ' (H1(T"))∞ for all 1 ≤ 7 ≤ 6− 1.

If %ℎ−1.%ℎ = 1, then up to an automorphism of &, one can assume that %ℎ−1 =
( × <̌) and %ℎ = <̌) × (. We claim that ℒ(((( × <̌)) + (<̌) × ()) = ℂ, so
that dimℂ[Γ, 1] = G + 1 ≤ ℎ − 1. Indeed, for an arbitrary \ ∈ ( ∖ <̌) the
restriction F ∣)×> is an elliptic function of order 1. Therefore F ∣)×> ≡ K(\) ∈ ℂ
is a constant. Similarly, F ∣?×) ≡ K′(] ) ∈ ℂ for any ] ∈ ( ∖ <̌) . As a result,
K′(] ) = F(],\) = K(\) for all \ ∈ ( and F ∣( is constant. □

Proposition 16. (Holzapfel [5]) Let us fix the half-periods T1 = 1
2 , T2 = "

2 ,
T3 = T1 + T2 of the lattice *1(() = +−1 = ℤ + 6ℤ, the 2-torsion points \0 :=
0(modℤ+ 6ℤ) ∈ (, \$ := T$(modℤ+ 6ℤ) ∈ ( for 1 ≤ 7 ≤ 3 and \"$ := (\", \$) ∈
&. Consider the elliptic curves

%1 = {()+ *1((), + + *1(()) ∣) − 61+ ∈ *1(()} for 1 ≤ O ≤ 4,

%4+1 = {()+ *1((), + + *1(()) ∣) − T1 ∈ *1(()} for 1 ≤ O ≤ 2,
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%6+1 = {()+ *1((), + + *1(()) ∣ + − T1 ∈ *1(()} for 1 ≤ O ≤ 2.

Then the blow-up of & at the singular points

"1 = \00, "2 = \33, "3 = \11, "4 = \12, "5 = \21, "6 = \22

of %
(6,8)√
−1 =

8∑
1=1

%1 is the toroidal compactification ( /Γ1)
′
of a ball quotient  /Γ1

by a freely acting Picard modular group Γ1 over the Gaussian integers ℤ[6].

The self-intersection matrix W(6, 8) ∈ ℤ6×8 of %
(6,8)√
−1 is defined to have entries

W(6, 8)"$ = 1 for "" ∈ %$ and W(6, 8)"$ = 0 for "" ∕∈ %$. Straightforwardly,

W(6, 8) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 0
1 0 1 0 1 0 0 1
1 0 1 0 0 1 1 0
0 1 0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Q Q

Q

T

T

T

T

T

T

T

T

22

11 12

1

3

4

2

7

6

8

5

Q
11

Figure 3: The incidence relations of %
(6,8)√
−1 and

2∑
"=1

2∑
$=1

\"$ ⊂
(
%
(6,8)√
−1

)sing
.

According to \00, \33 ∈ %1 or ∀1 ≤ O ≤ 4, there are no triangles %" + %$ +

%1 ⊂ %
(6,8)√
−1 with 1 ≤ 6 < 7 ≤ 4, 1 ≤ 6 < 7 < O ≤ 8. Bearing in mind that
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(
%
(6,8)√
−1

)sing
∩
(

8∑
1=5

%1

)
=

2∑
"=1

2∑
$=1

\"$ , one makes use of Figure 3 and recognizes

the triangles %21−1 + %4+; + %6+;, %21 + %4+; + %9−; with 1 ≤ O,G ≤ 2.
An immediate application of Proposition 9 with U = 2T; and, respectively, U =
T3 + T; + (−1)1+1T3−;, yields the following

Corollary 17. The space ℒ(

(
%
(6,8)√
−1 ,
(
%
(6,8)√
−1

)sing)
contains the binary parallel

F56(), +) =
L() − T1 − 41)L() − T2 + 41)

L() − T1)L() − T2)
,

F78(), +) =
L(+ − T1 − 42)L(+ − T2 + 42)

L(+ − T1)L(+ − T2)

and the triangular L-quotients

F21−1,4+;,6+;(), +)

=
L() + (−1)16+ + T3)L(−) + T; + T3)L((−1)1+16+ + (−1)16T; + T3)

L() + (−1)16+)L(−)+ T;)L((−1)1+16+ + (−1)16T;)

F21,4+;,9−;(), +)

=
L() + (−1)1+1+ + T3)L(−) + T; + T3)L((−1)1+ + (−1)1+1T3−; + T3)

L() + (−1)1+1+)L(−) + T;)L((−1)1+ + (−1)1+1T3−;)

with arbitrary 1 ≤ O,G ≤ 2.

Proposition 14 provides the following

Corollary 18. If F/@ and F"$1 are the binary parallel and triangular L-quotients

from the space ℒ(

(
%
(6,8)√
−1 ,
(
%
(6,8)√
−1

)sing)
and   ! = !−11 (" !),  "#$ = !−11 (""#$),

then
 157,  258,  368,  467,  56,  78, #1($%)

is a ℂ-basis of #1[Γ1, 1].

In particular, dimℂ[Γ, 1] = 7.

2. SUFFICIENT CONDITIONS FOR THE NORMAL GENERATION OF A
SPACE OF LOGARITHMIC CANONICAL SECTIONS

Definition 19. A holomorphic line bundle ℰ on an algebraic variety % is suf-
ficiently ample if the holomorphic sections of a sufficiently large tensor power ℰ⊗&

provide a projective embedding of %.
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Definition 20. A holomorphic line bundle ℰ over an algebraic variety % is
globally generated if the global holomorphic sections of ℰ determine a regular pro-
jective morphism.

A subspace & ⊆ '0(%, ℰ) is globally generated if some (and therefore any)
basis of & provides a regular projective morphism % → ℙ(& ).

Definition 21. A holomorphic line bundle ℰ over an algebraic manifold %
is normally generated if ℰ is globally generated and '0(%, ℰ) defines a projective
immersion of % with normal image.

A subspace & ⊆ '0(%, ℰ) is normally generated if it is globally generated and
the morphism % → ℙ(& ) is a projective immersion with normal image.

The normal generation of a sufficiently ample line bundle is a classical topic un-
der study. Various works provide normally generated and non-normally generated
line bundles over curves and abelian varieties. According to [2], if ℰ is a sufficiently
ample line bundle on an abelian variety of dimension (, then ℰ⊗('−1) is normally
generated. In particular, any sufficiently ample line bundle on an abelian surface
is normally generated.

Our aim is to provide sufficient conditions for the normal generation of a sub-
space & ⊆ '0()′,Ω2

(′(* ′)) over the Baily-Borel compactification )̂. That cannot
be derived from the normal generation of a subspace+ ⊆ '0(), ℰ) of holomorphic
sections of a line bundle ℰ → ). Namely, ,∗+ cannot be a normally generated
space of global holomorphic sections of ,∗ℰ , as far as the morphism, associated with
,∗+ is not immersive on the exceptional divisor - = ,−1(* sing) of , : )′ → ).

Corollary 22. Let % be an irreducible normal projective variety % and " : % →
. be a finite, regular, generically injective morphism onto . . Then " : % → . is
a regular immersion with normal image . .

Proof. If " : % → . is a regular morphism of degree / ∈ ℕ, then the generic
fiber of " consists of / points, while the exceptional ones are constituted by ≤ /
points. In particular, for / = 1, any regular, generically injective morphism is
bijective onto its image. As a result, " : % → . is a regular immersion with
normal image.

Our specific considerations will be based on the following immediate conse-
quence of Corollary 22

Corollary 23. Let % be an irreducible normal projective variety, ℰ → % be e
holomorphic line bundle over % and & ⊆ '0(%, ℰ) be a space of global holomorphic
sections of ℰ. If " : % → ℙ(& ) is a finite, regular, generically injective morphism
then & is normally generated.

Lemma 24. A subspace & ⊆ '0()′,Ω2
(′(* ′)), containing the cuspidal form

#1($%), is globally generated over )̂ if and only if it satisfies simultaneously the
following two geometric conditions:
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(i) for any irreducible component *" of * there is  " ∈ & with (!1( "))∞ ⊃ *";

(ii) for any 0 ∈ * sing there exists   ∈ & with 1 (!1(  )) = −1.

Proof. The space & is globally generated over )̂ exactly when for any point

2 ∈ )̂ there is 3! ∈ & with 3!(2) ∕= 0. If 2 ∈
(
#̂/Γ

)
∖
(
-∪

ℎ∑
"=1

5"

)
, then #1($%)(2) ∕= 0.

A modular form  " ∈ & does not vanish on the cusp 5" if and only if *" ⊂ (!1( "))∞.
A modular form   ∈ & takes non-zero values on the rational (−1)-curve ,−1(0)
exactly when the multiplicity 1 (!1(  )) = −1. □

From now on, we say briefly that a modular form  ∈ '0()′,Ω2
(′(* ′)) is

binary parallel or triangular if its transfer !1( ) ∈ ℒ((*, *
sing) is binary parallel

or, respectively, triangular.

Proposition 25. Let us suppose that the subspace & ⊆ '0()′,Ω2
(′(* ′)) con-

tains the cuspidal form #1($%), two binary parallel forms  13,  24, a triangular  012
with *0 ∩ *3 ∩ *4 = ∅ and satisfies the following three conditions:

(i) for any 6 ∕∈ {0, 1, . . . , 4} there exists  " ∈ & with (!1( "))∞ ⊃ *";

(ii) for any 0 ∈ * sing ∖
( 4∑
#=0

*#

)
there exists   ∈ & with 1 (!1(  )) = −1;

(iii) for any 1 ≤ 6 < # ≤ ℎ there is  "# ∈ & , such that (!1( "#))∞ contains exactly
one of *" or *#.

Then & is normally generated.

Proof. In the presence of Corollary 23, it suffices to establish that the projec-
tive morphism " : )̂ → ℙ(& ), associated with & is regular, finite and generically
injective. Assumption (i) from the present proposition and (!1( "#))∞ = *" + *# ,
(!1( 012))∞ = *0 + *1 + *2 imply assumption (i) from Lemma 24. Further, no-
one 0 ∈ * sing ∩ (*1 + *3) belongs to (!1( 13))0 = 91 + 93, as far as *1, *3, 91

and 93 are mutually parallel and distinct. Therefore,1 (!1( 13)) = −1. Similarly,
1 (!1( 24)) = −1 for 0 ∈ * sing∩(*2+*4). By Corollary 13, 1 (!1( 012)) = −1 for

all 0 ∈ * sing∩

(
2∑

"=0

*"

)
. Combining with assumption (ii) from the present proposi-

tion, one obtains (ii) from Lemma 24. That allows to conclude that " : )̂→ ℙ(& )
is regular.

The assumption (iii) guarantees that " : )̂ → "()̂) ⊂ ℙ(& ) is finite. First of
all, on )̂ ∖ [-+ (∂Γ#/Γ)] = (#/Γ) ∖ - = ) ∖ * , the morphism

(
 13
#1($%)

= "13 ∘ , = "13,
 24
#1($%)

= "24 ∘ , = "24

)
: (#/Γ) ∖ - = ) ∖ * −→ ℂ2
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is of degree 4. More precisely, if

"13(=, 3) =
>(= − ?1)>(= − @3 + ?1)

>(=)>(= − @3)
, "24(=, 3) =

>(3 − ?2)>(3 − @4 + ?2)

>(3)>(3 − @4)
, (2.1)

then for any A, B ∈ ℙ1 the fiber is

("13, "24)
−1(A, B) = {(C"(A), D#(B)) ∣ 1 ≤ 6, # ≤ 2}

with
C1(A) + C2(A) = @3, D1(B) +D2(B) = @4.

The condition (iii) provides the injectiveness of " : ∂Γ#/Γ → " (∂Γ#/Γ), which
suffices for " : -→ "(-) to be discrete and, therefore, finite. Otherwise, " contracts
some irreducible component ,−1(0), 0 ∈ * sing of -. If 0 ∈ *" ∩ *# then 5", 5# ∈
,−1(0), whereas "(5") = "(5#). Thus, " : - ∪ (∂Γ#/Γ) → " (- ∪ (∂Γ#/Γ)) and,
therefore, " : )̂→ "()̂) is a finite regular morphism.

The generic injectiveness of the projective morphism " : )̂ → "()̂) follows
from the generic injectiveness of the affine morphism

F =

(
 13
#1($%)

= "13,
 24
#1($%)

= "24,
 012
#1($%)

= "012

)
: (#/Γ) ∖ - = ) ∖ * −→ ℂ3.

This, in turn, is equivalent to the generic injectiveness of the rational surjective
morphism

F = ("13, "24, "012) : ) −→ ℙ1 × ℙ1 × ℙ1.

Let us consider also the rational surjection F1 = ("13, "24) : ) → ℙ1 × ℙ1 and its
factorization

) ℙ1 × ℙ1 × ℙ1

ℙ1 × ℙ1
?

*1

 *

!
!
!
!!"

pr12

through F and the projection pr12 : ℙ1×ℙ1×ℙ1 → ℙ1×ℙ1 onto the first two factors.
The irreducible components *1 and *2 of the triangle *0+*1+*2 have intersection
number *1.*2 = 1. That allows to assume that *1 = Ě+ × G, *2 = G × Ě+ and
(1.10).

Suppose that F : )→ ℙ1×ℙ1×ℙ1 is not generically injective. By F1 = pr12∘F
and degF1 = 4, the generic fiber of F on F−11 (A, B) consists of 2 or 4 points. In
either case, for any (A, B) ∈ ℙ1 × ℙ1 there holds at least one of the following pairs
of relations:

Case (i): "012(C1(A), D2(B)) = "012(C2(A), D1(B)),

"012(C1(A), D1(B)) = "012(C2(A), D2(B));
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Case (ii): "012(C1(A), D2(B)) = "012(C2(A), D2(B)),

"012(C1(A), D1(B)) = "012(C2(A), D1(B));

Case (iii): "012(C1(A), D2(B)) = "012(C1(A), D1(B)),

"012(C2(A), D2(B)) = "012(C2(A), D1(B)).

We claim that the relations from at least one case are satisfied identically on
ℙ1×ℙ1. Otherwise, the locus of either case is a proper analytic subvariety of ℙ1×ℙ1

and their union is also a proper analytic subvariety of ℙ1 × ℙ1. The contradiction
implies that for any (A, B) ∈ ℙ1×ℙ1 there holds identically at least one of the Cases
(i), (ii) or (iii). Note that (ii) and (iii) are equivalent under the transposition of the
factors of ℙ1 × ℙ1 and, respectively, of ) = G × G.

Without loss of generality, one can suppose that C1(∞) = Ě+ and C2(∞) = @3.
In Case (i), up to a relabeling of D1(B), D2(B), one has D1(∞) = Ě+ , D2(∞) = @4.
Then

∞ = "012(Ě+ , Ě+) = "012(C1(∞), D1(∞)) = "012(C2(∞), D2(∞)) = "012(@3, @4).

However, @3 ∕= Ě+ , @4 ∕= Ě+ and *3 ∩ *4 = {(@3, @4)} $ *0 reveal that "012(@3, @4) ∕=
∞, so that Case (i) does not hold identically on ). Similarly, in Case (ii), there
follows

∞ = "012(Ě+ , @4) = "012(C1(∞), D2(∞)) = "012(C2(∞), D2(∞)) = "012(@3, @4).

The contradiction implies that F : )→ ℙ1 × ℙ1 × ℙ1 is generically injective. □

Here is another sufficient condition for a subspace & ⊆ '0()′,Ω2
(′(* ′)) to be

normally generated.

Proposition 26. Let & be a subspace of '0()′,Ω2
(′(* ′)), containing the cus-

pidal form #1($%), a binary parallel  13, triangular  012,  234 with *0 ∩*1 ∩*4 = ∅
and satisfying the following three conditions:

(i) for any 6 ∕∈ {0, 1, . . .4} there exists  " ∈ & with (!1( "))∞ ⊃ *";

(ii) for any 0 ∈ * sing ∖

(
4∑

#=0

*#

)
there exists   ∈ & with 1 (!1(  )) = −1;

(iii) for any 1 ≤ 6 < # ≤ ℎ there is  "# ∈ & , such that (!1( "#))∞ contains exactly
one of *" or *#.

Then & is normally generated.

Proof. As in Proposition 25, first we establish the regularity of the projective
morphism " : )̂→ "()̂).
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Further, " : )̂→ "()̂) is finite, as far as the fibers of its restriction on (#/Γ) ∖
- = ) ∖ * are contained in the fibers of

(
 13
#1($%)

= "13,
 012
#1($%)

= "012

)
: ) ∖ * −→ ℂ2.

Let "012(=, 3) be of the form (1.10) and "13 be as in (2.1). Then for any A, B ∈ ℙ1

the fiber
("13, "012)

−1(A, B) = {(C"(A), D"#(A, B)) ∣ 1 ≤ 6, # ≤ 2}

with

C1(A) + C2(A) = @3, D"1(A, B) +D"2(A, B) = −H0I
−1
0 C"(A)− I−10 @0

consists of at most four points. The reason is that for any fixed C"(A) ∈ G the
elliptic function "012(C"(A), ) is of order 2. Thus, ("13, "012) : ) ∖ * → ℂ2 is finite.
The assumption (iii) implies that " : - ∪ (∂Γ#/Γ) → " (- ∪ (∂Γ#/Γ)) is finite, so
that " : )̂→ "()̂) is a finite regular morphism.

We derive the generic injectiveness of " : )̂→ "()̂) from the generic injective-
ness of the affine morphism

F =

(
 13
#1($%)

= "13,
 012
#1($%)

= "012,
 234
#1($%)

= "234

)
: (#/Γ) ∖ - = ) ∖ * −→ ℂ3.

To this end, let us factor the rational surjection F1 = ("13, "012) : ) → ℙ1 × ℙ1

through the rational surjection F = ("13, "012, "234) : ) → ℙ1 × ℙ1 × ℙ1 and the
projection pr12 : ℙ1 × ℙ1 × ℙ1 → ℙ1 × ℙ1, along the commutative diagram

) ℙ1 × ℙ1 × ℙ1

ℙ1 × ℙ1
?

*1

 *

!
!
!
!!"

pr12
.

If F is not generically injective, then at least one of the following three cases holds
identically on ℙ1 × ℙ1:

Case (i): "234(C1(A), D12(A, B)) = "234(C2(A), D21(A, B)),

"234(C1(A), D11(A, B)) = "234(C2(A), D22(A, B));

Case (ii): "234(C1(A), D12(A, B)) = "234(C2(A), D22(A, B)),

"234(C1(A), D11(A, B)) = "234(C2(A), D21(A, B));

Case (iii): "234(C1(A), D12(A, B)) = "234(C1(A), D11(A, B)),

"234(C2(A), D22(A, B)) = "234(C2(A), D21(A, B)).

In either case, denote by C1(∞) = Ě+ and C2(∞) = @3 the poles of the elliptic
function "13 and note that *1 = C1(∞) × G, *3 = C2(∞) × G. Further, let
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D"1(∞,∞) = Ě+ , so that *2 = G × D11(∞,∞) = G × D21(∞,∞). Finally, let
D"2(∞,∞) = −H0I

−1
0 C"(∞)− I−10 @0, in order to have

{210} = *1 ∩ *0 = {(C1(∞), D12(∞,∞))},

{230} = *3 ∩ *0 = {(C2(∞), D22(∞,∞))}.

Denote also

{212} = *1 ∩ *2 = {(C1(∞), D11(∞,∞))},

{232} = *3 ∩ *2 = {(C2(∞), D21(∞,∞))}.

Bearing in mind that ("234)∞ = *2 + *3 + *4, note that "234(2"#) = ∞ whenever
{6, #}∩{2, 3, 4} ∕= ∅. In the Case (i) one has "234(210) = "234(232) =∞. If 210 ∈ *2,
then 210 ∈ *0 ∩ *1 ∩ *2, contrary to the assumption that *0+ *1+ *2 is a triangle.
On the other hand, *3 ∩ *1 = ∅ guarantees that 210 ∕∈ *3. Therefore 210 ∈ *4 and
210 ∈ *0 ∩ *1 ∩ *4 = ∅. The contradiction rejects the Case (i). If the first relation
of Case (ii) is identical on ℙ1 × ℙ1, then "234(210) = "234(230) = ∞. As in the
Case (i), that leads to an absurd. Finally, "234(210) = "234(212) = ∞ contradicts
the hypotheses and establishes that F = ("13, "012, "234) : ) → ℙ1 × ℙ1 × ℙ1 is
generically injective. □

An immediate application of Proposition 26 to the example from Proposition 16
yields the following

Corollary 27. In the terms of Proposition 16, the subspace

&1 = Spanℂ(#1($%),  56,  157,  267,  368,  458) ⊂ '0()′1,Ω
2
(′

1

(* ′))

is normally generated, i.e., determines a regular projective immersion

" : #̂/Γ1 → ℙ(&1) = ℙ5

with normal image.

If one applies Proposition 25 to the cuspidal form #1($%), the binary parallel
 56,  78 and triangular  157, then one needs to adjoin the triangular  2,4+$,9−$,
 3,4+-,6+-,  4,4+&,9−& for some J, K,1 ∈ {1, 2}. The span of these modular forms is
7-dimensional and depletes the entire [Γ1, 1]. It is clear that the normal generation
of &1 implies the normal generation of '

0()′1,Ω
2
(′

1

(* ′)) = #1[Γ1, 1].
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