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1. INTRODUCTION

There are a lot of attempts to find a measure of the complexity of a given
structure. Richter [8] has defined a degree of a structure as the least  -degree
(if it exists) of all bijective total enumerations of the structure. Then it has been
introduced a spectrum of a structure according to  -degrees, using only bijective
total enumerations, too. There are a lot of investigations that show some sufficient
conditions for a structure to have a least enumeration [1] and [11], and another with
complicated structures without degree [8, 7, 2, 6]. They use the equality among the
predicates of the structure. Soskov [12, 11] has generalized the notion of spectrum
of a structure, using not only bijective enumeration, but all total ones. In that
definition enumeration degrees are considered. This gives a possibility to consider
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not only totally defined structures, but partially defined, as well. Soskov [11] has
generalized a spectrum of a partial structure, defining a partial spectrum, using
partial enumerations.

Here we consider partial structures with unary functions and predicates, calling
them unary. Since the equality and the inequality are not unary, they are not
among the predicates of the structure. We consider such structures because they
are simple enough, and as we will see, they are rich enough. For unary structures
we find necessary and sufficient conditions for possessing least enumerations w.r.t.
to e-degrees. As a corollary we obtain similar conditions w.r.t. to T-degrees.

In Section 2 we introduce the main definitions and preliminary results. In
Section 3 we introduce a type and ∃-type of an element of a unary partial structure.
Roughly speaking, a type (∃-type) of such an element is the set of all codes of
open (existential) formulas, which are true on that element in that structure. A
characterization of all unary structures, which admits least enumerations in the
terms of a universal set of all types (∃-types) is given. We show that a unary
partial structure admits a least enumeration if and only if there exist sequence of
finite elements such that the ∃-type of that sequence is the least upper bound of
all ∃-types of the structure and there exists a computable sequence of enumeration
operators, such that the sequence of these enumeration operators applied to the
upper bound ”describes” all types of the elements of the structure. As a corollary
we characterize the structures which admit effective enumerations. In this section
we show that it is not possible to have a spectrum of a unary partial structure with
denumerably many minimal elements.

In Section 4 we prove that a partial spectrum of a unary partial structure is
upward closed for all partial enumerations. We show that for every set of !-degrees
there is a structure with a set of types which ”almost” coincides with the set of
!-degrees, ! ∈ {",  }. Here we show several interesting examples, some of them
concerning the so called quasi-degrees [11]. For example, we show that there are
structures which don’t have degrees, but they have quasi-degrees.

2. PRELIMINARIES

In this paper we use # to denote the set of all natural numbers; $%&('),
()*(') and + to denote respectively the domain, the range and the graph of the
function ' ; ⟨'⟩ or ⟨+ ⟩ to denote the set {⟨,1, . . . , ,!, -⟩∣(,1, . . . , ,!, -) ∈ + },
where ⟨., . . . , .⟩ is some fixed coding function for all finite sequences of natural
numbers.

We shall recall some definitions from [10, 3].
Let  = ⟨.; /1, . . . , /!;(1, . . . , ("⟩ be a partial structure, where . is an arbi-

trary denumerable set, /1, . . . , /! are partial unary functions in . and (1, . . . , ("

are unary partial predicates on .. We call such structures unary. We identify the
partial predicates with partial mapping taking values in {0, 1}, writing 0 for true
and 1 for false.

52 Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 51–69.



Let ! = ⟨#;01, . . . , 0!;11, . . . , 1"⟩ be a partial structure over the set #. By
⟨!⟩ we denote the set ⟨01⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨0!⟩⊕ ⟨11⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨1"⟩. Let 2 be a recursively
enumerable set. For any set . let

2 (.) = {,∣∃3(⟨3, ,⟩ ∈ 2 ∧ 4v ⊆ .)}. In this case we say 2 is an enu-
meration operator. A sequence of enumeration operators 2#0 ,2#1 , . . . is said to
be computable if there exists a recursive function ℎ such that ℎ(*) = 6! for any
natural *.

Definition 1. Let + be a family of subsets of #. A set 7 ⊆ #2 is said to be
universal for the family + if the following conditions hold:

a) For every fixed " ∈ #, {,1∣(", ,1) ∈ 7} ∈ +;
b) If 8 ∈ +, then there exists " such that 8 = {,1∣(", ,1) ∈ 7}.

Definition 2. Let ℱ be a family of unary partial functions. A binary partial
function F is said to be universal for the family ℱ if the following conditions hold:

a) For every fixed " ∈ #, 9,1.F (", ,1) ∈ ℱ ;
b) If ' ∈ ℱ , then there exists " such that ' = 9,1.F (", ,1).

Definition 3. An enumeration of a structure  is any ordered pair ⟨<,!⟩ where
! = ⟨#;01, . . . , 0!;11, . . . , 1"⟩ is a partial unary structure on # and < is a partial
surjective mapping of # onto . such that the following conditions hold:

(i) $%&(<) ≤$ ⟨!⟩;
(ii) <(0%(,)) ∼= /%(<(,)) for every , ∈ #, 1 ≤ = ≤ *;
(iii) 1&(,) ∼= (&(<(,)) for every , ∈ #, 1 ≤ > ≤ ?.

An enumeration ⟨<,!⟩ is said to be total iff $%&(<) = #.
An enumeration ⟨<,!⟩ is said to be effective iff all functions and predicates in

! are computable.
Degree spectrum [12, 11] of the structure  is the family

DS( ) = {@$(⟨!⟩)∣⟨<,!⟩ is a total enumeration of  }

Partial degree spectrum [11] of a structure  is the family

PDS( ) = {@$(⟨!⟩)∣⟨<,!⟩ is an enumeration of  }.

Let ⟨<0,!0⟩ be an enumeration of the structure  . We say that ⟨<0,!0⟩ is a
least enumeration of  if and only if for every enumeration ⟨<,!⟩ of  , ⟨!0⟩ ≤$

⟨!⟩.
Let ℒ be the first order language corresponding to the structure  , i.e. ℒ

consists of * unary functional symbols f1, . . . , fn and ? unary predicate symbols
T1, . . . ,Tk. We add a new unary predicate symbol T0 which will represent the
unary total predicate (0, where (0(A) = 0 for all A ∈ ..

Let us fix some denumerable set B1, B2, . . . of variables. We shall use capital
letters B,C, D and the same letters by indexes to denote variables.

The definition of a term in the language ℒ is the usual: every variable is a
term; if E is a term then fi(E) is a term.
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If E is a term in the language ℒ, then we write E(C1, . . . , C') to denote that
all variables which occur in the term E are among C1, . . . , C'. If )1, . . . , )' are
elements of. and E(C1, . . . , C') is a term, then by EA(C1/)1, . . . , C'/)') we denote
the value of the term E in  over the elements )1, . . . , )', if it exists.

Termal predicate in the language ℒ is defined by the following inductive clauses:

If T ∈ {T0, . . . ,Tk} and E is a term, then T(E) and ¬T(E) are termal predi-
cates.

If Π1 and Π2 are termal predicates, then (Π1&Π2) is a termal predicate.

Let Π(C1, . . . , C') be a termal predicate whose variables are among C1, . . . , C'
and let )1, . . . , )' be elements of .. The value ΠA(C1/)1, . . . , C'/)') of Π over
)1, . . . , )( in  is defined by the following inductive clauses:

If Π = T&(E), 0 ≤ > ≤ ?, then

ΠA(C1/)1, . . . , C'/)') ∼= (&(EA(C1/)1, . . . , C'/)')) .

If Π = ¬Π1, where Π1 is a termal predicate, then

ΠA(C1/)1, . . . , C'/)') ∼= (Π1
A(C1/)1, . . . , C'/)') ∼= 0 ⊃ 1, 0).

If Π = (Π1&Π2), where Π1 and Π2 are termal predicates, then

ΠA(C1/)1, . . . , C'/)')∼=(Π1
A(C1/)1, . . . , C'/)')∼=0⊃Π2

A(C1/)1, . . . , C'/)'), 1).

Formulae of the kind ∃C ′

1 . . . ∃C
′

) (Π), where Π is a termal predicate are called
conditions. Every variable which occurs in Π and is different from C ′

1 , . . . , C
′

) is
called free in the condition ∃C ′

1 . . .∃C
′

) (Π).

Let H = ∃C ′

1 . . . ∃C
′

) (Π) be a condition, all free variables in H be among
C1, . . . , C', and )1, . . . , )' be elements of .. The value HA(C1/)1, . . . , C'/)')
is defined by the equivalence:

 A(!1/#1, . . . , ! /# )∼=0⇐⇒∃%1 . . .∃%!(ΠA(!
′

1/%1, . . . , !
′

! /%!, !1/#1, . . . , ! /# )∼=0).

We assume that some effective codding of all terms, termal predicates and condi-
tions of the language ℒ is fixed. We shall use Ev ,Πv, Hv to denote the corespondent
one with code 3.

Let 8 ⊆ #( × .'. The set 8 is said to be ∃-definable in the structure  
if and only if there exists a recursive function I of ! + 1 variables such that for
all *, ,1, . . . , ,(, H

*(!,,1,...,, ) is a condition with free variables among D1, . . . , D),
C1, . . . , C' and for some fixed elements J1, . . . , J) of . the following equivalence is
true:

(,1, . . . , ,(, )1, . . . , )') ∈ 8 ⇐⇒

∃* ∈ #(H
*(!,,1,...,, )
A

(D1/J1, . . . , D)/J), C1/)1, . . . , C'/)') ∼= 0).
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Let  = ⟨.; /1, . . . , /!;(1, . . . , ("⟩ be a partial structure. We shall give a
generalized version of the normal enumerations [10] and call them normal pseudo-
enumerations.

Define '∗% (K) = ⟨=−1, K⟩, = = 1, . . . , * and setL0 = #∖(()*('∗1 )∪⋅ ⋅ ⋅∪()*('
∗

!)).
It is obvious that L0 is a recursive set and let {p0,p1, . . . } = L0, where pi < pj if
= < >.

Let L1 ⊆ L0. For every partial surjective mapping <0 of L1 onto . we define
partial mapping < of # onto . by the following inductive clauses:

(i) If K ∈ L1, then <(K) ∼= <0(K);

(ii) If K = '∗% (N), <(N)
∼= ) and /%()) ∼= O, then <(K) ∼= O.

Let $1, . . . , $! be partial predicates such that

$%(,) ∼=

{

0, if /%(<(,)) is defined,

undefined, otherwise;

and '1, . . . , '! be partial functions such that

'%(,) ∼=

{

'∗% (,), if $%(,) ∼= 0,

undefined, otherwise.

Let 11, . . . , 1" be the partial predicates defined by the equalities 1&(,)∼=(&(<(,)),
> = 1, . . . , ?.

Let ! be the partial structure ⟨#; '1, . . . , '!;11, . . . , 1"⟩ and !∗ be the partial
structure ⟨#; '∗1 , . . . , '

∗

!;11, . . . , 1"⟩.

Every pair ⟨<,!⟩ which is obtained by the method described above is called
normal pseudo-enumerations of the structure  . The mapping <0 again is called
basis of the enumeration ⟨<,!⟩. It is obvious that <0 completely determines the
normal pseudo-enumeration ⟨<,!⟩. Let us notice that in the general case a normal
pseudo-enumeration ⟨<,!⟩ is not an enumeration at all. Nevertheless, we shall see
that there are cases where they are enumerations and we shall use them.

In the case L1 = L0 normal pseudo-enumerations and normal enumerations
coincide.

Let ⟨<,!⟩ be a normal pseudo-enumeration. We shall reformulate all propo-
sitions for normal enumerations and shall formulate several new ones. The proofs
are analogous to those for normal enumerations in [10] and we shall give proofs
only of those which are different. Let us note that if /1, . . . , /! are total, then the
normal enumeration will be total.

Proposition 1. $%&(<) ≤$ L1 ⊕$1 ⊕ ⋅ ⋅ ⋅ ⊕$!.
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Proof. The result follows from

, ∈ $%&(<) ⇐⇒ , ∈ L1 ∨ ∃,0∃,1 . . .∃,)∃=1 . . . ∃=)(1 ≤ =1, . . . , =) ≤ *

&,0 ∈ L1&,1 = ⟨=1 − 1, ,0⟩& . . .&,) = ⟨=) − 1, ,)−1⟩

&$%1(,0)
∼= 0& . . .&$%!(,)−1) ∼= 0&,) = ,).

□

Corollary 1. If L1 ≤$ ⟨!⟩, then $%&(<) ≤$ ⟨!⟩.

Proposition 2. For every 1 ≤ = ≤ * and - ∈ $%&(<), <('%(-)) ∼= /%(<(-)).

Corollary 2. Let E(C ) be a term, and - ∈ $%&(<). Then

<(E (C/-)) ∼= EA(C/<(-)).

Corollary 3. If L1 ≤$ ⟨!⟩, then the normal pseudo-enumeration ⟨<,!⟩ is an
enumeration of the structure  .

Proposition 3. There exists an effective way for every , in # to define - ∈ L0

and a term E(C ) such that , = E ∗(C/-).

We call a term E(B%) standard for , if , = E ∗(B%/pi) for some pi ∈ L .

Proposition 4. There exists an effective way for every , in # to define an
element pi and a standard term E(B%) such that , = E ∗(B%/pi).

Proposition 5. Let E(C ) be a term, - ∈ #, ⟨<,!⟩ be a normal pseudo-
enumeration and E ∗(C/-) ∈ $%&(<). Then E (C/-) ∼= E ∗(C/-).

If ⟨<,!⟩ is a normal pseudo-enumeration, then we shall use the notation

(. := ∪"
&=1{⟨>, ,, 6⟩∣1&(,) = 6} ∪ ∪!

&=1{⟨> + ?, ,, 6⟩∣$&(,) = 6}.

It is clear that for every 2 ⊆ #, 2 ≤$ (. if and only if 2 ≤$ ⟨!⟩, i.e.
(. ≡$ ⟨!⟩.

Proposition 6. There exists an effective way for every natural P to define
elements -1, . . . , -' ∈ L0 and a termal predicate Π(C1, . . . , C') such that for every
normal pseudo-enumeration ⟨<,!⟩:

P ∈ (. ⇐⇒ ΠA(C1/<(-1), . . . , C'/<(-')) ∼= 0.

Proposition 7. There exists an effective way for every code 3 of a finite set 4v

to define elements -v1 , . . . , -
v
'"

∈ L0 and a termal predicate Πv(C1, . . . , C'"
) such

that for every normal pseudo-enumeration ⟨<,!⟩:

4v ⊆ (. ⇐⇒ Πv,A(C1/<(-
v
1), . . . , C'"

/<(-v'"
)) ∼= 0.
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Therefore, there exists a recursive function I such that

4v ⊆ (. ⇐⇒ Π
*(v)
A

(C1/<(-
v
1 ), . . . , C'"

/<(-v'"
)) ∼= 0.

We call a termal predicate Π*(v) standard for 3 in the pseudo-enumeration ⟨<,!⟩,
if

4v ⊆ (. ⇐⇒ Π
*(v)
A

(B&1/<(pj1), . . . , B&#"
/<(pjmv

)) ∼= 0.

Proposition 8. There exists a recursive function I such that for every code 3
of the finite set 4v to define elements pj1 , . . . ,pjmv

and a standard termal predicate

Π*(v)(B&1 , . . . , B&#"
) such that for every normal pseudo-enumeration ⟨<,!⟩:

4v ⊆ (. ⇐⇒ Π
*(v)
A

(B&1/<(pj1), . . . , B&#"
/<(pjmv

)) ∼= 0.

Lemmas 1 and 2 and Proposition 9 below have analogous proofs, therefore we
shall give only the proof of Proposition 9.

Lemma 1. Let ⟨<,!⟩ be a normal pseudo-enumeration, E(C ) be a term and
0(-1) ∼= E (C/-1). Then ⟨+/⟩ ≤$ (..

Lemma 2. Let ⟨<,!⟩ be a normal pseudo-enumeration, Ev(B() be a term
with code 3 and !′ ∈ #. Set 0(3, ⟨,1, . . . , ,(′⟩) ∼= Ev

 
(B(/,(), if ! ≤ !′, and

0(3, ⟨,1, . . . , ,(′⟩) ∼= Ev
 
(B(/,(′), if ! > !′. Then ⟨+/⟩ ≤$ (..

Proposition 9. Let ⟨<,!⟩ be a normal pseudo-enumeration, Πv(B1, . . . , B()
be a termal predicate or a condition with a code 3 and !′ ∈ #. Set

R(3, ⟨,1, . . . , ,(′⟩) ∼=

{

Πv
 
(B1/,1, . . . , B(/,(), if ! ≤ !′,

Πv
 
(B1/,1, . . . , B(′/,(′ , . . . , B(/,(′), if ! > !′.

Then ⟨+0⟩ ≤$ (..

Proof. We shall consider only the case when R1 is obtained from Hv by pro-
jection, i.e. Hv ⇐⇒ ∃B&Π

*1(v), where Π*1(v) is a termal predicate and I1 is a
recursive function. For the sake of simplicity let > = 1. Let us assume that for the
corresponding function R of Π*1(v) we have ⟨+0⟩ ≤$ (.. Then

⟨3, ⟨,2, . . . , ,(′⟩, -⟩ ∈ ⟨+01⟩ ⇐⇒ ∃,1(⟨I1(3), ⟨,1, ,2, . . . , ,(′⟩, -⟩ ∈ ⟨+0⟩)

⇐⇒∃31(⟨⟨I1(3), ⟨,2, . . . , ,(′⟩, -⟩, 31⟩∈2&4v1 ⊆⟨+0⟩),

where

2 ={⟨I1(3), ⟨,2, . . . , ,(′⟩, -⟩, 31⟩∣4v1 ={⟨I1(3), ⟨,1, ,2, . . . , ,(′⟩, -⟩} for some ,1}.

Therefore, ⟨+01⟩ ≤$ ⟨+0⟩ ≤$ (.. □
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3. THE MAIN RESULT

In this section we shall give necessary and sufficient conditions for a given
unary partial structure to admit a least enumeration.

Let  = ⟨.; /1, . . . , /!;(1, . . . , ("⟩ be a unary partial structure. Let Πv be a
termal predicate with variables among B1, . . . , B'.

Type of a sequence O1, . . . , O' of elements of . is called the set

{3∣Πv
A(B1/O1, . . . , B'/O') ∼= 0}.

The type of the sequence O1, . . . , O' will be denoted by [O1, . . . , O']A. The type of
an element ) of . is the type of the sequence ).

Let Hv be a condition with free variables among B1, . . . , B'. ∃-type of a
sequence O1, . . . , O' of elements of . is called the set

{3∣Hv(B1/O1, . . . , B'/O') ∼= 0}.

The ∃-type of the sequence O1, . . . , O' is denoted by ∃[O1, . . . , O']A.

∃-type could be defined in any partial structure. In the case of unary structures
we can characterize the ∃-types by types of the elements of . and a fixed set of
natural numbers. A condition is said to be simple if it does not contain free variables
and it is in the form ∃B1Π, where Π is a termal predicate. Let S A0 = {3∣Hv

A
∼=

0 & Hv is a simple condition }. It is easy to see that the following proposition is
true:

Proposition 10. Let  be a unary partial structure. Then for any elements
O1, . . . , O' of ., ∃[O1, . . . , O']A ≡$ [O1]A ⊕ ⋅ ⋅ ⋅ ⊕ [O']A ⊕ S A0 .

Lemma 3. Let  be a unary partial structure with degree a. If there exists an
universal set 7 for the family of all types of elements of ., then there exists an
enumeration of  which is normal pseudo-enumeration with e-degree a.

Proof. Let 7 be a universal set for the family of all types of elements of . with
"-degree a. By 7, we denote the set {3∣(,, 3) ∈ 7}. In fact, for all ,, 7, is a type of
some element. We can assume that for every type t of an element of . there exist
infinitely many , such that t = 7,. Let ⟨<,!⟩ be a normal pseudo-enumeration of
 , defined by a basis <0 satisfying: <0(p,) = ) ⇐⇒ [)]A = 7, and ()*(<0) = ..

Then $%&(<0) = {p,∣∃3((,, 3) ∈ 7)} ≤$ ⟨7⟩ = {⟨,, 3⟩∣(,, 3) ∈ 7}. Accord-
ing to Proposition 9, ⟨7⟩ ≤$ (.. Therefore, ⟨<,!⟩ is an enumeration. Further-
more, ⟨!⟩ ≤$ ⟨7⟩ ≤$ (.. Hence, @"T$((.) = a. □

Proposition 11. Let  be a unary partial structure. There exists a universal
set 7 for the family of all types of elements of . with "-degree a iff there exists
a universal set 71 for the family of all ∃-types of sequences of elements of . with
"-degree a.
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Proof. Let us first assume that there exists a universal set 7 for the family of all
types of elements of. with "-degree a. According to Lemma 3, there exists a normal
pseudo-enumeration ⟨<,!⟩, which is an enumeration of  such that @"T$((.) = a.
Using Proposition 9, one can see in the enumeration ⟨<,!⟩ that the family of all
∃-types of sequences of elements in the structure! has a universal set with degree a
and it is universal set for the family of all ∃-types of sequences of . in the structure
 .

To prove the converse, let 71 be a universal for the set of all ∃-types of sequences
of elements of . with "-degree a. Then the set 7 = {(,, 3)∣(,, 3) ∈ 71&Πv is a
termal predicate with variable B1} is universal for the types [)]A of all elements )
of . and @"T$(7) ≤ a. To ensure that there exists a universal set with degree a,
let us define the set 7 ′ as follows: 7 ′ = 7 ⊕ (8 × 7,0), where 7,0 is a fixed type
of an element of . and 8 is a set of naturals such that @"T$(8) = a. It is obvious
that @"T$(7

′) = a and 7 ′ is a universal set for the set of all types of elements of
.. □

Proposition 12. If ⟨<,!⟩ is an enumeration of the unary partial structure  
with "-degree a, then there exists a universal set 7 for the family of all types of
elements of . with "-degree a.

Proof. Let ⟨<,!⟩ be enumeration of the unary partial structure  with "-degree
a and ⟨!⟩ = ∪!

&=1{⟨>, ,, 6⟩∣'&(,) = 6} ∪ ∪"
&=1{⟨*+ >, ,, 6⟩∣1&(,) = 6}. Define the

set 7 as follows:

(,, 3) ∈ 7 ⇐⇒ ∃P(⟨⟨,, 3⟩, P⟩ ∈ 21&42 ⊆ ⟨!⟩),

where the set 21 is defined as follows:

21={⟨⟨,, 3⟩, P⟩∣Πv=T!$−!(f!$−1
(. . . f!0(B1) . . .))&42={⟨*0, ,, -0⟩, ⟨*1, -0, -1⟩,

. . . , ⟨*"−1, -"−1, -"⟩, ⟨*", -", 0⟩}}

for some *0, . . . , *", -0, . . . , -".
It is obvious that 7 ≤$ ⟨!⟩ and it is easy to see that 7 is a universal set for

the family of all types of all elements of the structure!. Therefore, it is a universal
set for the family of all types of all elements of  . As in the previous proposition,
we may assume that @"T$(7) = a. □

One can easily prove also the following corollaries.

Corollary 4. If ⟨<,!⟩ is an enumeration of the unary partial structure  
with "-degree a, then there exists an enumeration of  which is normal pseudo-
enumeration with "-degree a.

Corollary 5. If the unary partial structure  admits a least enumeration, then
it admits a least enumeration which is normal pseudo-enumeration.
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Corollary 6. Let ⟨<,!⟩ be an enumeration of the unary partial structure  .
Then @"T$(⟨!⟩) is an upper bound of the family of "-degrees of all types (∃-types)
of the elements of ..

Proof. Let @"T$((.) = a. Then, according to Proposition 12, there exists
a universal set 7(71) for the family of all types (∃-types) of  and @"T$(71) =
@"T$(7) = a. It is obvious that for all O1, . . . , O' ∈ ., @"T$([O%]A) ≤$ a, = = 1, . . . ,&
and @"T$(∃[O1, . . . , O']A) ≤$ a. □

Theorem 1. Let ⟨<0,!0⟩ be an enumeration of an arbitrary partial structure
 and there do not exist elements O1, . . . , O' of . such that ⟨!0⟩ ≤$ ∃[O1, . . . , O']A.
Then there is a normal enumeration ⟨<,!⟩ of  such that ⟨!0⟩ ∕≤$ (..

Proof. Let us first mention that this theorem is valid for arbitrary partial
structure and we will not use in the proof that it is unary. We shall define the
normal enumeration ⟨<,!⟩ constructing a basis <0 of L0 onto .. The construction
is step by step. At each step A we define a partial mapping <3 of L0 into . such
that:

(i) <3 ⊆ <3+1;

(ii) $%&(<3) is a finite subset of L0.

At the end we take <0 = ∪∞

3=0<3.
With the even steps we ensure that <0 is totally defined and that ()*(<0) = .,

and with the odd steps we ensure that ⟨!0⟩ ∕≤$ (..

Let )0, )1,. . . be an arbitrary enumeration of the set B and let 2 = ⟨!0⟩ . We
remind that

2 ≤$ (. ⇐⇒ ∃"∀,(, ∈ 2 ←→ ∃3(⟨,, 3⟩ ∈2$&4v ⊆ (.)) ⇐⇒

∃"∀,(, ∈ 2 ←→ ∃3(⟨,, 3⟩ ∈2$&Π
*(v)
A

(B&1/<(pj1), . . . , B&#"
/<(pjmv

)) ∼= 0))

for some standard termal predicate Π*(v)(B&1 , . . . , B&#"
), some recursive function

I and some pj1 , . . . ,pjmv
. Hence,

2 ∕≤$ (. ⇐⇒

∀"∃,[(, ∈ 2&∀3(⟨,, 3⟩ ∈2$ → Π
*(v)
A

(B&1/<(pj1), . . . , B&#"
/<(pjmv

)) ∕∼= 0))

∨(, ∕∈2&∃3(⟨,, 3⟩ ∈ 2$&Π
*(v)
A

(B&1/<(pj1), . . . , B&#"
/<(pjmv

)) ∼= 0))].

In order that 2 ∕≤$ (. we need to satisfy at least one of the two disjunctive
members. In case we are able to satisfy the second member, we do it and the
construction on that step will be completed. Otherwise we shall see that the first
member will be satisfied automatically.

Step s=-1. $%&(<−1) = ()*(<−1) = ∅.
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Step s=2e. Let , be the least element of L0 such that , ∕∈ $%&(<3−1) and
) be the first element in the sequence )0, )1,. . . , such that ) ∕∈ ()*(<3−1). Set
<3(,) = ) and <3(-) = <3−1(-), for - ∈ $%&(<3−1).

Step s=2e+1. Let $%&(<3−1) = {,0, . . . , ,)} and U% = <3−1(,%), = = 0, . . . , V.
For every , we consider all 3 such that ⟨,, 3⟩ ∈2$.

There exists an effective way to find a standard termal predicate Π*(v)(B&1,. . .,B&#"
)

such that

4v ⊆ (. ⇐⇒ Π
*(v)
A

(B&1/<(pj1), . . . , B&#"
/<(pjmv

)) ∼= 0.

For the sake of simplicity, let us assume that ,0 = p0, . . . , ,) = pl and the list
B0, . . . , B), B)+1, . . . , B)+' coincides with the list B&1 , . . . , B&#"

.
Then 4v ⊆ (. ⇐⇒

Π
*(v)
A

(B0/<(p0), . . . , B)/<(pl), B)+1/<(pl+1), . . . , B)+'/<(pl+m))) ∼= 0.

Let Hv1
A
(B0, . . . , B)) be the condition ∃B)+1 . . .∃B)+'(Π*(v)). We check whether

there exist natural numbers , ∕∈ 2 and 3, such that ⟨,, 3⟩ ∈ 2$ and
Hv1
A
(B0/<3−1(p0), . . . , B)/<3−1(pl)) ∼= 0. If this is the case, we choose the least

such 3 and find O1, . . . , O' such that

Π
*(v)
A

(B0/<3−1(p0), . . . , B)/<3−1(pl), B)+1/O1, . . . , B)+'/O') ∼= 0.

Set <3(pl+j) = O&, > = 1, . . . ,&, <3(-) = <3−1(-), for - ∈ $%&(<3−1). Otherwise,
we do nothing, i.e. set <3 = <3−1.

The construction is completed.

We continue proof of the theorem with a few auxiliary lemmas.

Lemma 4. Let Hv1(B0, . . . , B)) be the condition ∃B)+1 . . .∃B)+'(Π*(v)) on
step A = 2"+1 and there are no natural numbers , ∕∈2 and 3, such that ⟨,, 3⟩ ∈ 2$

and Hv1
A
(B0/<3−1(p0), . . . , B)/<3−1(pl)) ∼= 0.

Then there exists , ∈ 2 such that for every 3 satisfying ⟨,, 3⟩ ∈ 2$ the
conditional inequality

Hv1
A
(B0/<3−1(p0), . . . , B)/<3−1(pl)) ∕∼= 0

holds.

Proof. Let us mention that

∀,(∃3(⟨,, 3⟩ ∈2$&H
v1
A
(B0/<3−1(p0), . . . , B)/<3−1(pl)) ∼= 0) −→ , ∈ 2 ).

If we assume that

∀,(, ∈ 2 −→ ∃3(⟨,, 3⟩ ∈ 2$&H
v1
A
(B0/<3−1(p0), . . . , B)/<3−1(pl)) ∼= 0)),
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then we would obtain that

∀,(, ∈2 ←→ ∃3(⟨,, 3⟩ ∈2$&H
v1
A
(B0/<3−1(p0), . . . , B)/<3−1(pl)) ∼= 0)).

Having in mind that we have obtained 31 effectively from 3, we conclude that
2 ≤$ ∃[<3−1(p0), . . . , <3−1(pl)]A by index ", which contradicts the assumption of
the theorem. □

The following lemma and corollary are obvious.

Lemma 5. <0 is a totally defined on L0 surjective mapping.

Corollary 7. If all functions in the structure  are total, then the normal
enumeration ⟨<,!⟩ is a totally defined surjective mapping.

Let us assume now that ⟨!0⟩ = 2 ≤$ (. by some index ". Then on step
A = 2"+ 1 we have satisfied first or second disjunctive member of the right part of
the non-equivalence 2 ∕≤$ (., which contradicts the assumption. Theorem 1 is
proved. □

The following corollary is obvious.

Corollary 8. Let  be a unary partial structure. If  admits a least enu-
meration ⟨<0,!0⟩, then there exist elements O1, . . . , O' of . such that ⟨!0⟩ ≤$

∃[O1, . . . , O']A.

Theorem 2. Let  be a unary partial structure. Then  admits a least partial
enumeration ⟨<0,!0⟩ if and only if there exist elements O1, . . . , O' of . such that
@"T$([O1]A⊕⋅ ⋅ ⋅⊕ [O']A⊕S A0 ) is the least upper bound of the "-degrees of all ∃-types
of sequences of elements of . and there exists a universal set 7 of all types, such
that @"T$(7) = @"T$([O1]A ⊕ ⋅ ⋅ ⋅ ⊕ [O']A ⊕ S A0 ).

Proof. Let us assume first that  admits a least enumeration ⟨<0,!0⟩.
According to Corollary 8, there exist O1, . . . , O' in . such that @"T$(∃[O1, . . . , O']A)
is the least upper bound of the "-degrees of all ∃-types of sequences of elements of
.. By Proposition 12, there exists a universal set 7 of types, such that @"T$(7) =
@"T$(⟨!0⟩) = @"T$(∃[O1, . . . , O']A).

Conversely, assume that there exist elements O1, . . . , O' of . such that
@"T$(∃[O1, . . . , O']A) is the least upper bound of the "-degrees of all ∃-types of
sequences of elements of . and there exists a universal set 7 of all types such that
@"T$(7)=@"T$(∃[O1, . . . , O']A).

According to Lemma 3 there exists an enumeration ⟨<0,!0⟩ of  such that
@"T$(⟨!0⟩) = @"T$(∃[O1, . . . , O']A) and ⟨<0,!0⟩ is the least enumeration of the
structure  . □

Let us assume that  is a unary partial structure and there exist elements
O1, . . . , O' of . such that @"T$(∃[O1, . . . , O']A) is the least upper bound of the
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"-degrees of all ∃-types of sequences of elements of . and there exists a univer-
sal set 7 of all types, such that @"T$(7) = @"T$(∃[O1, . . . , O']A) and let us fix
8 = ∃[O1, . . . , O']A. Therefore, there exists an enumeration operator 2# such that
2#(8) = ⟨7⟩, i.e. for all natural ,, P the following equivalence is true:

⟨,, P⟩ ∈ ⟨7⟩ ⇐⇒ ∃3(⟨⟨,, P⟩ 3⟩ ∈2#&4v ⊆ 8).

Using the W'
! -theorem, we can find for a fixed 6 a recursive function ℎ such that

⟨,, P⟩ ∈ ⟨7⟩ ⇐⇒ ∃3(⟨P, 3⟩ ∈2ℎ(,)&4v ⊆ 8) ⇐⇒ P ∈2ℎ(,)(8),

i.e. the sequence 2ℎ(0)(∃[O1, . . . , O']A),2ℎ(1)(∃[O1, . . . , O']A), . . . is the sequence
of all types of the elements of .. The converse is trivial. Thus we obtained the
following

Corollary 9. Let  be a unary partial structure. Then  admits a least par-
tial enumeration ⟨<0,!0⟩ if and only if there exist elements O1, . . . , O' of . and
computable sequence of enumeration operators 2#0 ,2#1 , . . . such that the family
{2#%([O1]A ⊕ ⋅ ⋅ ⋅ ⊕ [O']A ⊕ S A0 )}!∈5 is the family of all types of elements of ..

In order to formulate the corresponding corollaries for the case when the unary
structures are total, we call a type of some element ) the set [)]A ⊕ (# ∖ [)]A), or
equivalently ([)]A×{0})∪ ((# ∖ [)]A)×{1}), which is the graph of the characteristic
function of the set [)]A. Let us remind that a set 8 is total if and only if 8 ≡$

8 ⊕ (# ∖ 8) and that an "-degree is total if it contains a total set. The following
corollaries are obvious and we omit their proofs.

Corollary 10. Let  be a unary total structure. Then  admits a least to-
tal enumeration ⟨<0,!0⟩ if and only if there exist elements O1, . . . , O' of . such
that @"T$([O1]A ⊕ ⋅ ⋅ ⋅ ⊕ [O']A ⊕ S A0 )) is a total "-degree which is the least upper
bound of "-degrees of all ∃-types of sequences of elements of . and there ex-
ists universal function F for the characteristic functions of all types, such that
@"T$(F ) = @"T$([O1]A ⊕ ⋅ ⋅ ⋅ ⊕ [O']A ⊕ S A0 ).

Corollary 11. Let  be a unary total structure. Then  admits a least total
enumeration ⟨<0,!0⟩ if and only if there exist elements O1, . . . , O' of . and com-
putable sequence of recursive operators 2#0 ,2#1 , . . . such that @"T$([O1]A ⊕ ⋅ ⋅ ⋅ ⊕
[O']A ⊕S A0 ) = @"T$(8) for some total set 8 and the function 9*9P.26

#%
(P) is uni-

versal function for the family of the characteristic functions of all types of elements
of  .

Corollary 12. Let  be a unary partial structure. Then  admits an effective
enumeration ⟨<0,!0⟩ if and only if all ∃-types of the elements of . are computably
enumerable and there exists r.e. universal set 7 of all types of elements of  .

The following corollaries are related to [4, 5].
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Corollary 13. Let  be a unary total structure. Then  admits an effective
total enumeration ⟨<0,!0⟩ if and only if all ∃-types of the elements of . are com-
putably enumerable and there exists recursive universal function F of all types of
elements of  .

Corollary 14. Let  be a unary partial structure. Then  admits an effective
enumeration ⟨<0,!0⟩ if and only if all ∃-types of the elements of . are r.e. and
there is a computable sequence of enumeration operators 2#0 ,2#1 , . . . such that
the family {2#%(#)}!∈5 is the family of all types of elements of ..

Analogously to Theorem 1, one can prove the following

Theorem 3. Let for every = = 1, . . . , V, ⟨<%,!%⟩ be an enumeration of an ar-
bitrary partial structure  , and for every = = 1, . . . , V there do not exist elements
O1, . . . , O' of . such that (.&

≤$ ∃[O1, . . . , O']A. Then there is an enumeration
⟨<,!⟩ of  such that for all = = 1, . . . , V, (.&

∕≤$ (..

Theorem 4. Let for every = ∈ #, ⟨<%,!%⟩ be an enumeration of an arbitrary
partial structure  , and for every = ∈ # there do not exist elements O1, . . . , O' of .
such that (.&

≤$ ∃[O1, . . . , O']A. Then there is an enumeration ⟨<,!⟩ of  such
that for all = ∈ #, (.&

∕≤$ (..

Proof. We only sketch the proof: At even steps we will ensure the enumeration
⟨<,!⟩ to be total and surjective. At steps of the kind 2⟨", =⟩+ 1 we will ensure, as
in Theorem 1, that (.&

∕≤$ (. by index ". □

Corollary 15. There doesn’t exist a spectrum of a partial structure with denu-
merable minimal elements.

Proof. Obvious. □

4. SOME CONSEQUENCES

As in [12], we can prove that for a unary partial structure  the partial degree
spectrum of  is closed upward with respect to arbitrary "-degrees. As a special
case we shall obtain that the degree spectrum is closed upward with respect to the
total "-degrees, as well.

Proposition 13. Let ⟨<,!⟩ be an enumeration of the unary partial structure
 and @"T$((.) ≤$ 8. Then there exists an enumeration ⟨<0,!0⟩ of  such that
@"T$(⟨!0⟩) = @"T$(8).

Proof. Let ) be an element of . such that at least one function of  is defined
on 8. Define an enumeration ⟨<0,!0⟩ which is a normal pseudo-enumeration as
follows:

<00(pi) ∼=

⎧



⎨



⎩

), if = is even & %
2 ∈ 8,

<( %−1
2 ), if = is odd,

undefined, otherwise.
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It is easy to see that @"T$(⟨!0⟩) = @"T$((. ⊕ (8⊕ [)]A)) = @"T$(8). □

Analogously one can prove

Proposition 14. Let ⟨<,!⟩ be an enumeration of the unary partial structure
 such that /1, . . . , /! are total and @"T$((.) ≤$ 8, where 8 is a total set. Then
there exists a total enumeration ⟨<0,!0⟩ of  such that @"T$(⟨!0⟩) = @"T$(8).

Proposition 15. Let a be an arbitrary "-degree. Then there exists a unary
partial structure  = ⟨.; /1;(1, (2⟩ with total function /1, such that  has a least
enumeration with "-degree a.

Proof. Let 8 be an arbitrary set of natural numbers, such that @"T$(8) = a.
The idea of constructing such structure is the following. We take infinite disjoint
copies of natural numbers with successor functions on all of them. Then on one of
them we take copy of the set 8 and on the remaining infinite copies we ensure the
codes of all existential formulas, which are true in the structure  will be recursive
and all types of those elements in that copies will be finite, hence recursive. Take
. = {)0, )1, . . . , O00, O

0
1, . . . , O

1
0, O

1
1, . . . }, where all )0, )1, . . . , O

0
0, O

0
1, . . . , O

1
0, O

1
1, . . . are

different. Set /1()!) = )!+1, /1(O
%
!) = O%!+1 for all natural =, *; set (1()0) =

(1(O
%
0) = 0 for all natural = while (1()!) and (1(O

%
!) are undefined for all natural

= and positive *. Further,

(2()!) ∼=

{

0, if * ∈ 8,

undefined, otherwise,

and Πv
A
(B&/O

v
0)

∼= 0 for all 3 ∈ # such that the only predicate symbols and variables
which occur in Πv is a termal are T2 and B&. Moreover, let (2 be defined on the
smallest finite subset of {Ov0, O

v
1, . . . } which guarantee that Πv

A
(B1/O

v
0)

∼= 0. Thus,
the types [O&% ]A will be finite sets and will ensure that the set of all ∃-types is
recursive. Indeed, a closed condition of the type ∃B&Π

v is true on the structure  
if and only if Πv = T1(B&)&Πv′ , where Πv′ is an arbitrary termal predicate with
predicate symbol T2 and variable B& .

Since @"T( ) = a it is easy to see that for all positive *
[)!]A ≡$ [)0]A ≡$ {&∣(1()0) = 0 & (2(/

'
1 ()0)) = 0} ≡$ 8. □

Proposition 16. Let a be an arbitrary  -degree. Then there exists unary total
structure  = ⟨.; /1;(1, (2⟩, such that  has a least total enumeration with  -
degree a.

Proof. Let 8 be an arbitrary set of natural numbers, such that @"T7 (8) = a.
The idea is the same as in the previous proposition: we take . and /1 to be the
same as in the previous proposition; take (%()) = 0 whenever (%()) = 0 in the
previous proposition and (%()) = 1 whenever in the previous proposition (%()) is
undefined, = = 1, 2. □

Analogously one can prove the following
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Proposition 17. Let A be a denumerable set of "-( -)degrees. Then there ex-
ists a unary partial(total) structure  = ⟨.; /1;(1, (2⟩ with totally defined function
/1, such that the set of the "-( -)degrees of all types of  coincides with the set
A ∪ {0}.

Proof. We consider only the case of  -degrees. Let A = {)%}%∈8 for some
countable index set X and 8% be an arbitrary set of natural numbers, such that
@"T$(8%) = ai for any = ∈ X. Take  % = ⟨.%; /

%
1;(

%
1, (

%
2⟩ such that @"T$(8%) = ai for

any = ∈ X and all types of elements of .% are finite or )%. Assume that .% ∩.& ∕= ∅
for all =, > ∈ X, = ∕= > and let . = ∪%∈8.%. Then /1()) = /%1()) and (&()) = (%

&())
if ) ∈ .%, = ∈ X and > = 1, 2. Then it is obvious that all type of . form the set
A ∪ {0}. □

This proposition shows how to construct a various structures with or without
degree. At the same time it shows that we can construct structures which contain
different independent structures.

Proposition 18. Let us consider the family of all recursive sets. There exists
a unary total structure  0 = ⟨.; /1;(1, (2⟩, such that the family of all types of
elements of . coincides with the family of copies of all recursive sets (or with the
characteristic functions of copies of all recursive sets).

Proof. Let 80, 81, . . . be a sequence of all recursive sets. As above, for any
recursive set 8% we take an independent copy .% = {)%0, )

%
1, . . . } of the set of natural

numbers and a total function successor /%1 such that /%1()
%
!) = )%!+1 for all =, * ∈ #.

Then we take (%
1()

%
0) = 0 and (%

1()
%
!) = 1 for all positive *;

(%
2()

%
!)

∼=

{

0, if * ∈ 8%,

1, otherwise.

Here (%
1 defines ”zeros” and (%

2 defines a copy of the set 8%. Take the structure
 % = ⟨.%; /

%
1;(

%
1, (

%
2⟩ for all = and assume that .% ∩ .& = ∅ for all =, > ∈ #, = ∕= >

and let . = ∪%∈5.%. Then /1()) = /%1()) and (&()) = (%
&()) if ) ∈ .%, = ∈ #

and > = 1, 2. It is obvious that all types of elements of . of the structure  0 =
⟨.; /1;(1, (2⟩ are recursive sets and are copies of all recursive sets. Moreover, the
set S A0 is recursive. Therefore, the least upper bound of all degrees of ∃-types is
0. If we assume that the structure  admits least enumeration, then we would
obtain that the family of all recursive set has a universal recursive set. This is a
contradiction, which shows that we cannot omit the condition with universal set
(function) in Theorem 3. □

Question 1. What is DS( 0)?

The next definition belongs to Soskov [11]. Let 2 be a set of natural numbers.
It is said that @$(2 ) is a quasi-degree of the structure  if for all sets 8 ⊆ #' the
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following equivalence is true:

8 is ∃−definable in  ⇐⇒ 8 ≤$ 2.

Let us mention that this definition is not the original, but it is equivalent to the
original one.

Proposition 19. There exists a class of unary partial structures and sets of
natural numbers 2 such that for all sets 8 ⊆ #' the following equivalence is true:

8 is ∃−definable in  ⇐⇒ 8 ≤$ 2.

Proof. Let  be a unary partial structure such that there exist elements
O1, . . . , O' of . such that @"T$([O1]A ⊕ ⋅ ⋅ ⋅ ⊕ [O']A) is the least upper bound of
"-degrees of all types of elements of . and 2 = [O1]A ⊕ ⋅ ⋅ ⋅ ⊕ [O']A. As in the
previous propositions, take enough copies of natural numbers such that all types of
the new elements to be finite and all (or recursive set of all) simple conditions to
be true on those new elements and denote the new structure by  ′. For the sake
of simplicity let assume that  ′ =  . It is easy to see that  ′ satisfies the required
condition. Indeed, let 8 be ∃-definable in  , i.e. there exists recursive function I of
&+1 variables, having values in the set of all codes of conditions with free variables
among B1, . . . , B) such that for some elements O′1, . . . , O

′

) the following equivalence
is true:

(,1, . . . , ,') ∈ 8 ⇐⇒ ∃* ∈ #(H*(!,,1,...,,#)(B1/O
′

1, . . . , B)/O
′

))
∼= 0).

Let us represent the condition H*(!,,1,...,,#)(B1, . . . , B)) = H*(!,,)(B1, . . . , B)) in
the form Π*1(!,,)(B1)& . . .&Π*!(!,,)(B))&H

*!+1(!,,), where H*!+1(!,,) is a simple
condition and all I1, . . . , I)+1 are recursive. Then, [O′%]A ≤$ 2 and for some 2#& ,
the following equivalence holds:

6 ∈ [O′%]A ⇐⇒ ∃3%(⟨6, 3%⟩ ∈ 2#&&4v& ⊆2 ), = = 1, . . . ,&.

Therefore,

, ∈ 8 ⇐⇒ ∃*(I1(*, ,) ∈ [O′1]A& . . .&I)(*, ,) ∈ [O′)]A&I)+1(*, ,) ∈ S A0 )

⇐⇒ ∃*(I1(*, ,) ∈ [O′1]A& . . .&I)(*, ,) ∈ [O′)]A) ⇐⇒

∃*(∃31(⟨I1(*, ,), 31⟩ ∈2#1&4v1 ⊆2 )& . . .&∃3)(⟨I)(*, ,), 3)⟩ ∈2#!&4v! ⊆2 ))

⇐⇒ ∃3(⟨⟨,⟩, 3⟩ ∈2#&4v ⊆2 ),

where ⟨⟨,⟩, 3⟩ ∈2# ⇐⇒

∃*(∃31(⟨I1(*, ,), 31⟩ ∈2#1)& . . .&∃3)(⟨I)(*, ,), 3)⟩ ∈2#1&4v = 4v1 ∪ ⋅ ⋅ ⋅ ∪ 4v!).

The converse, i.e. if 8 ≤$ 2 , then 8 is ∃-definable in  is obvious. □
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Proposition 20. Let 8 be an arbitrary set of natural numbers with @"T7 (8) =
a and let us consider the family of all recursive in 8 sets. There exists a unary
total structure  a = ⟨.; /1;(1, (2⟩, such that the family of all types of elements
of . coincides with the family of copies of all recursive in 8 sets (or with the
characteristic functions of copies of all recursive in 8 sets).

Proof. Let 80, 81, . . . be the sequence of all recursive in 8 sets. As above,
for any recursive in 8 set 8% we take independent copy of set of natural numbers
.% = {)%0, )

%
1, . . . } and a total function successor /%1 such that /%1()

%
!) = )%!+1 for all

=, * ∈ #. Then take (%
1()

%
0) = 0 and (%

1()
%
!) = 1, for all positive *;

(%
2()

%
!)

∼=

{

0, if * ∈ 8%,

1, otherwise.

Here again (%
1 defines zero and (%

2 defines a copy of the set 8%. Take the structure
 % = ⟨.%; /

%
1;(

%
1, (

%
2⟩ for all = and assume that .% ∩ .& = ∅ for all =, > ∈ #, = ∕= >

and let . = ∪%∈5.%. Then /1()) = /%1()) and (&()) = (%
&()) if ) ∈ .%, = ∈ #

and > = 1, 2. Then it is obvious that all types of elements of . of the structure
 a = ⟨.; /1;(1, (2⟩ are recursive in 8 sets and are copies of all recursive in 8 sets.
Moreover, the set S A0 is recursive. Therefore the least upper bound of all degrees of
∃-types is a. If we assume that the structure  admits a least enumeration, then we
would obtain that the family of all recursive sets in 8 has a universal recursive in
8 set. This is a contradiction, which shows that this structure  a does not admit
a least enumeration. At the same time it satisfies the condition of the previous
proposition. Therefore,  a has quasi-degree a. □

Thus, we proved also the following

Corollary 16. There exists a unary total structures  a = ⟨.; /1;(1, (2⟩, such
that  a has a quasi-degree but does not have a least enumeration.
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