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1. INTRODUCTION

In this paper we investigate the existence of Tychonoff cubes of maximal weight
in homogeneous spaces of locally compact groups of infinite covering dimension. We
show that if  is a locally compact group with ! closed≤  such that  /! =∞,
then  contains a copy of # 0(!/#), where $0( /!) = weight of a connected
component of  /! except perhaps when ℵ0 ≤ $0( /!) ≤ 2ℵ0 [13]. This result,
except for the last exceptional case, was observed before [9, 16]. The proof for the
locally compact case in [9, Theorem 4.2] is incorrect. The elegant proof in [16]
contains a gap, we fix that proof here.

Throughout this paper we fix the following notations. If  is a locally compact
group,  / 0 compact, then  = lim

←
 $ ,  $ ’s finite dimensional Lie groups, % ∈ &

[14, p. 175]. Let '$ :  →  $ be the canonical map for all % ∈ & . We may assume
that ker '$ is compact for all % ∈ & , hence  = lim

←
 /ker '$ .
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The rest of this paper is divided into two sections. In Section 2 we collect some
basic lemmas that are needed to establish our result. In Section 3 we prove our
main theorem, Theorem 3.1.

2. SOME BASIC LEMMAS

Lemma 2.1. (see [9, Lemma 2.1]) Let ( be a topological space such that
( = lim

←
{(% : ) ∈ &}, where {(% : ) ∈ &} is an inverse family of topological

spaces, # cofimal ⊆ & . Then $(() ≤ max{Card (#), $((%) : ) ∈ #}, where $(∗) =
weight of the topological space ∗.

Proof. Let *% be a basis of (%, Card (*%) = $((%) for all ) ∈ #. Then
{'−1

% (*%) : ) ∈ #} is a basis of ( , where '% : ( → (% is the canonical map and

Card ({'−1
% (*%) : ) ∈ #}) ≤

∑

%∈&

Card (*%) ≤ max{Card (#), Card (*%) : ) ∈ #}

(see [1, E III.49, Corollary 3]).

Lemma 2.2. (generalizes [7, Theorem 8]) Let  be a locally compact group,
 / 0 compact, ! closed, non-open ≤  . Then:

(i) $( /!) = 1.$( /!) (= local weight of  /!);

(ii) $( /!) = $( ∩ {+!+−1 : + ∈  };

(iii) (generalizes [9, Corollary 2.4 ii]) If  is connected and , compact totally
disconnected normal ≤  , then $( /!) = $( /!, ).

Proof. Let - = ∩{+!+−1 : + ∈  }. Since  /! = ( /-)/(!/-) and
∩{+(!/-)+−1 : + ∈  /-} = 1, and

 /!, = ( /-)/(!,/-) = ( /-)/(!/-).(-,/-) for , compact normal ≤  ,

we may assume that
∩

{+!+−1 : + ∈ !} = 1. Let ' :  →  /! be the canonical
map.

i. Choose {'(.%) : ) ∈ #} a local basis at ! in  /! such that Card (#) =
1.$( /!) ≥ ℵ0, since ! is non-open, and for each ) ∈ #, let ker '% ⊆ .%. Then
∩

{ker '% : ) ∈ #} ⊆ ! , hence
∩

{ker '% : ) ∈ #} = 1 and

 /! = lim
←
{ /!.

∩

{ker '% : ) ∈ F finite ⊆ #}.

Since  is /-compact, we get $( /!). ∩ {ker '% : ) ∈ F finite ⊆ #}} ≤ ℵ0 and
$( /!) ≤ 1.$( /!), by Lemma 2.1. Hence we have an equality.
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ii. Case 1: ! is compact.

Choose {0$ : % ∈ &} a basis of  /! such that Card (&) = $( /!) and let
{1'! : 2 ∈ 3} be dense ⊆  /! such that Card (3) ≤ $( /!). For all 1 ∈  let
4( :  →  /! be defined by 4((+) = +.1.! for all + ∈  , then

∩

{4−1
( (0 $) : 1'! ∈ 0$, % ∈ &} = 1'!1

−1
'

and
∩

{1'!1
−1
' : 2 ∈ 3} =

∩

{4−1
( (1'!) : 2 ∈ 3}

=
∩

{4−1
( (1!) : 1 ∈  } [2,TGIII.12,Proposition12]

=
∩

{1!1−1 : 1 ∈  } = 1.

It follows by the compactness of ! that the family of finite intersections of
{4−1

( (0 $) : 1'! ∈ 0$ , % ∈ &, 2 ∈ 3} is a local basis at 1 ∈  , hence $( /!) ≥
1.$( ) = $( ), by part i., since  is non-discrete, and we get the desired equality.

Case 2: General case.

Let ker 5 be compact normal ≤  ,  /ker 5 Lie group. Then

$( /!) = 1.$( /!) by part )

= 1.$( /(! ∩ ker 5)) by virtue of the fiber bundle

 /(! ∩ ker 5)→  /!

= $( /(! ∩ ker 5)) by part i again

= $( ) by case 1.

iii. We have , ≤ 6( ), 6( ) ∩ ! = 1 and since !, ∼= ! × , , we get
(∩{+!, +−1 : + ∈  })0 ≤ ! , hence ∩{+!, +−1 : + ∈  } is totally disconnected
and therefore ≤ 6( ). It follows that ∩{+!, +−1 : + ∈  } = , and

1 = ∩{+!, +−1 : + ∈  }/, = ∩{4(+)!,/, 4(+−1) : + ∈  },

where 4 :  →  /, is the canonical map.

Now $( /!) = $( ), since ∩{+!+−1 : + ∈  } = 1 by part ii, and
$( /!, ) = $( /, ), since ∩{4(+)!,/, 4(+−1) : + ∈  } = 1 by part ii again.
Hence we may assume that ! = 1.

Note that $( /, ) = ℵ0 ⇔ $( ) = ℵ0, so we may assume that $( ) > ℵ0.
Let 8 be a maximal compact ≤  , then

$( ) = $(8) [12, Theorem 13], since $(8) > ℵ0

= $(8/, ) [8, Proposition 12.26]

= $( /, ) [12, Theorem 13].
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The proof of Lemma 2.2 is complete.

Lemma 2.3. ([17, Theorems 18, 19]) Let  be a locally compact group,  / 0

compact, ! closed ≤  ,  /! connected, dim /! < ∞. Let % ∈ & be such that
dim ( /! ker '$) = dim /!, and assume that <1( /! ker '$) is finitely generated.
Then $( /!) ≤ ℵ0.

In particular, a connected locally compact finite dimensional group is of count-
able weight and a compact connected finite dimensional quotient of a locally com-
pact group is of countable weight.

Proof. We have dim! ker '$/! = 0 and ! ker '$/! ∼= ker '$/! ∩ ker '$
compact. It follows that {-/! : ! ≤ - closed ≤ ! ker '$, ∣! ker'$ : -∣ <∞}
is a fundamental system of neighborhoods of ! in ! ker '$ ∩! .

Note that the function {-/! : ! ≤ - closed ≤ ! ker '$, ∣! ker '$ : -∣ <
∞} → {<1( /!) ≤ - ≤ <1( /! ker '$) : ∣<1( /! ker '$) : -∣ < ∞} defined
by -/! → (5))#(<1( /-)) is injective, where 5) :  /- →  /! ker '$ is the
canonical map: if ! ≤ -% closed≤ !ker '$ , ∣! ker'$ : -%∣ < ∞, ) = 1, 2, the
exact sequence

1→ <1( /-1 ∩-2)
(*!1∩!2

)#
−−−−−−−→ <1( /! ker '$)

∂
−→ ! ker '$/-1 ∩-2 → 1

gives ∂−1(-%/-1 ∩-2) = (5)"
)#(<1( /-%). Since <1( /! ker '$) is finitely gen-

erated, {- ≤ <1( /! ker '$) : ∣<1( /! ker '$) : -∣ < ∞} is countable, hence
$( /!) = 1.$( /! by Lemma 2.2 part i) assuming that ! is not open in  
≤ max{ℵ0, 1.$(! ker '$/!)} ≤ ℵ0.

In particular, if  /! is compact, let  ∗ be open ≤  ,  ∗/ 0 compact ([2,
TGI.84] and [2, TGIII.36]). Note that  ∗/ ∗ ∩ ! ∼=  ∗!/! open⊆  /! and
if {>% : ) ∈ ?} is a left transversal of  ∗ in  , then  /! = ⊕

%∈,
>% 

∗/ ∗ ∩ ! ,

so that  /! =  ∗/ ∗ ∩ ! and we may assume that  / 0 is compact. Since
 /! ker '$ is a compact manifold, we have <1( /! ker '$) finitely generated, hence
$( /!) ≤ ℵ0.

Corollary 2.4. (Generalized Wilcox Theorem [11, Theorem 7]) Let  be a
connected locally compact group such that for all @ ∈  , < A> is metrizable. Then
 is metrizable if and only if 1.$( ) ≤ ℵ0.

Proof. Let ker ' be a compact normal ≤  ,  /ker ' Lie group. Then  /(ker ')0
is finite dimensional, hence it is metrizable by Lemma 2.3. Mostert theorem [15]
shows that we may assume that  is compact.

Claim 1. ([11, Lemma 1]) (R/Z) 1 =< A> for some @ ∈ (R/Z) 1 , where $1

is the first uncountable ordinal.
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Proof of Claim 1. Let 1 ∈ ! be a Hamel basis ofR overQ, so thatR = ⊕
ℎ∈#

Qℎ

and ! is uncountable. Hence there exists 1 ∕∈ {ℎ. : C < $1} ⊆ ! . Now [3, TG
VII.7, Corollary 2] shows that @ = (ℎ. + Z) ∈ (R/Z) 1 satisfies our claim.

Case 1:  is abelian.

By [5, Lemma 5.2], there exists a continuous surjective homomorphism
a :  → (R/Z) (!) and Claim 1 shows that $( ) ≤ ℵ0.

Case 2: General case.

If $((6( ))0) = $( ), we are done by Case 1, so we may assume that
$((6( ))0) < $( ).

By [4, Theorem 4.2] we have  /6( ) =
∏

%∈&

 %, where  % is compact connected

Lie group for all ). Taking a maximal torus in  % for each ) ∈ #, we get that
there exists ! closed ≤  and a continuous surjective homomorphism a : ! →
(R/Z)Card (&). Again, as in Case 1, Claim 1 shows that we must have Card (#) ≤ ℵ0.
Now ℵ0 = $( /6( )) = $( ) [4, Corollary 4.3].

Remark. (generalizes [10]) Let  be a locally compact group, ! closed ≤  
such that Card ( /!) ≤ 2ℵ0 . Then 1.$( /!) ≤ ℵ0 provided the following cardinal
statement holds: ℵ > ℵ0 ⇒ 2ℵ > 2ℵ0 .

Proof of Remark. Let  ∗ be open ≤  ,  ∗/ 0 compact ([2, TGI.84] and [2,
TGIII.36]), then  ∗/ ∗ ∩ ! ∼=  ∗!/! open⊆  /! and we may assume that
 / 0 is compact. If 1.$( /!) > ℵ0, then

2ℵ0 ≥ Card ( /!)

≥ 2/. (!/#) by Čech–Posṕı̌sil theorem [6, Theorem 3.12.11],

which would contradict our hypothesis.

3. MAIN THEOREM

Theorem 3.1. ([9, 16]) Let  be a locally compact group, ! closed ≤  . Then

 /! ⊇∼=

{

#dim!/# , if dim /! <∞,

# 0(!/#), if dim /! =∞,

where $0( /!) = weight of a connected component of  /! except perhaps when
ℵ0 ≤ $0( /!) ≤ 2ℵ0 and dim /!) = ∞. (In this case we can only guarantee
that  /! contains a copy of #ℵ0).

Proof. If dim /! < ∞, let  ∗ be open ≤  ,  ∗/ 0 compact ([2, TGI.84]
and [2, TGIII.36]), then  ∗/ ∗ ∩! ∼=  ∗!/! open ⊆  /! . Hence dim /! =
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dim ∗!/! and we may assume that  / 0 is compact. There exists ker ' compact
normal ≤  ,  /ker ' Lie group and dim /! ker ' = dim /! . The fiber bundle
 /! →  /! ker ' proves our assertion in this case.

If dim /! = ∞, then dim /( 0!)−) = 0 by [2, TGIII.36, Corollary 1],
hence dim(( 0!)−/!) = ∞ and since $0( /!) = $(( 0!)−/!) ([2, TGIII.36,
Corollary 3]), we may assume that  /! is connected.

Let  ∗ be open ≤  ,  ∗/ 0 compact ([2, TGI.84] and [2, TGIII.36]). Note
that if {>$ : % ∈ &} is a complete system of representatives of the double coset
decomposition { ∗@! : @ ∈  } of  , then  /! = ⊕

$∈1
 ∗>$!/! and

 ∗/ ∗ ∩ >$!>
−1
$
∼=  ∗>$!/! open ⊆  /!,

so that  ∗/ ∗ ∩ ! ∼=  ∗!/! =  /! and we may further assume that  / 0 is
compact.

Let - = ∩{+!+−1 : + ∈  }, then  /! = ( /-)/(!/-) and we may assume
in addition that ∩{+!+−1 : + ∈  } = 1.

Let ker ' be a compact normal≤  such that / ker ' be Lie group and suppose
that $(!(ker ')0/!) < $( /!(ker ')0). Then

1.$(!(ker ')0/!) < 1.$( /!(ker ')0)

by Lemma 2.2(i), and the fiber bundle  /! →  /!(ker ')0 provided by Mostert
theorem [15] shows that 1.$( /!) = 1.$( /!(ker ')0), hence, by Lemma 2.2(i)
again, $( /!) = $( /!(ker ')0). The fibration  /(ker ')0 →  /!(ker ')0 in-
duces a surjective map of the arc components ( /(ker ')0)2 → ( /!(ker ')0)2,
and since ( /(ker ')0)2 is Souslin [7, Theorem 7.2], it follows from the fibration
 →  /!(ker ')0 that ( /!(ker ')0)2 is Souslin and dense in  /!(ker ')0, so the
later space is separable. Therefore

ℵ0 ≤ $(!(ker ')0/!) < $( /!(ker ')0) = $( /!) ≤ 2ℵ0

by [6, Theorem 1.5.7], and this is the exceptional case that should be avoided [13], so
we may assume that $( /!(ker ')0) ≤ $(!(ker ')0/!). Then the same argument
as above shows that $( /!) = $(!(ker ')0/!), and since (ker ')0/! ∩ (ker ')0 ∼=
!(ker ')0/! , we may assume further that  is compact connected.

Therefore we reduced our theorem just to the case of  compact connected
group, ! closed ≤  , dim /! =∞ and ∩{+!+−1 : + ∈  } = 1.

Let D be the minimum ordinal such that Card D = 1.$( ) ([1, E III.87, Ex
10]). Let {0. : C ∈ D} be a fundamental system of open neighborhoods of 1 ∈  
and for all C ∈ D, let ker '$# ⊆ 0.. Define a well ordered system of compact
normal subgroups of  under inclusion, {,. : C ∈ D}, by: ,0 = ker '$0 , and for
0 < C ∈ D, ,. = ∩{ker '$$ : E < C} such that  /,0 is a non-trivial Lie group,
∩{,. : C ∈ D} = 1, ,./,.+1 Lie group. Therefore, we have a well-ordered inverse
system { /!,. : C ∈ D} and  /! = lim

←
 /!,.. We have:
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i.  /!,0 is a non-trivial Euclidean manifold and ℵ0 ≤ $( /!,.), C ∈ D;

ii. the canonical map 4.,.+1 :  /!,.+1 →  /!,. is a fiber bundle with a
compact Euclidean manifold as fiber, C ∈ D;

iii. if C ∈ D has no predecessor, then  /!,. = lim
←
{ /!,4 : E < C}.

Suppose that Card D > ℵ0 and assume that there exists C ∈ D with $( /!,.) =
$( /!). Let C0 = min{C ∈ D : $( /!,.) = $( /!)}, then C0 has no predeces-
sor, since otherwise C0 = E + 1 and

$( /!,4) = 1.$( /!,4) by Lemma 2.2(i)

= 1.$( /!,4+1) by condition ii. above

= $( /!,4+1) by Lemma 2.2(i) again.

Furthermore, CardC0 > ℵ0, since otherwise $( /!,.) = ℵ0 for C < C0 and hence
Card D = 1.$( ) = $( ) = $( /!) = $( /!,.) = ℵ0 by condition iii.

Applying the principle of transfinite induction ([1, E III.18, C59]) using con-
ditions ii. and iii. and Lemmas 2.1 and 2.2, we get $( /!,.) ≤ max{ℵ0,CardC}
for C < C0. Hence

Card D = 1.$( ) = $( ) = $( /!) = $( /!,.) ≤ max{ℵ0, CardC0} = CardC0,

and C0 = D. Therefore ℵ0 ≤ $( /!,.) < $( /!) for all C ∈ D, if Card D > ℵ0.

Claim 2. There holds

{C ∈ D : dim(!,./!,.+1) > 0} cofinal ⊆ D .

Proof. Assume the contrary, then there would exist G ∈ D such that for all G ≤
C ∈ D, ∣!,./!,.+1∣ <∞ and dim(!,5/!,4) = 0 for all G≤E∈D (since otherwise
if G0 = min{G ≤ E ∈ D : dim(!,5/!,4) > 0}, then G0 would have no predeces-
sor and !,5/!,50 = lim

←
{!,5/!,4 : G ≤ E < G0}, hence dim(!,5/!,50) = 0,

which is absurd.

We have !,5/! = lim
←
{!,5/!,4 : G ≤ E ∈ D}. Hence dim!,5/! = 0.

Since dim /! = ∞, we must have Card D > ℵ0. We have (,5)0 ≤ ! . Hence
(,5)0 = 1 and ,5 is totally disconnected. Lemma 2.2(iii) shows that $( /!) =
$( /!,5), which is absurd.

Claim 3. There holds

Ord(D (C ∈ D : C = E + 1, ∣!,4/!,4+1∣ <∞}) = D .
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Proof. Since Ord(D (C ∈ D : C = E + 1, ∣!,4/!,4+1∣ < ∞}) ≤ D, it suffices
to show that Card (D (C ∈ D : C = E + 1, ∣!,4/!,4+1∣ < ∞}) = Card D. If
Card D = ℵ0, this is clear from Claim 2. If Card D > ℵ0, then

Card D ≥ Card(D (C ∈ D : C = E + 1, ∣!,4/!,4+1∣ <∞}

≥ Card ({C ∈ D : C has no predecessor }) = Card D ,

since D =
∪

6≥0

{C+ H ∈ D : C has no predecessor } (disjoint union).

By Claims 2 and 3 we may further assume that dim(!,5/!,5+1) > 0 for all
G ∈ D.

An application of the principle of transfinite induction ([1, E III.18, C 59])
shows that for all C ∈ D,  /!,. ⊇ #. such that C ≤ E ∈ D, 4.,4 ∣ : #4 → #.

is equivalent to the projection map onto the first factor by virtue of conditions ii
and iii. We get  /! =  /!,7 ⊇ #

7 as desired since Card D = 1.$( ) = $( ) =
$( /!).
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