ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" $\Phi {\rm AKYЛТЕТ~ ПО~ MATEMATUKA~ II~ III H \Phi OPMATUKA}$ ${\rm Tom~ 101}$

ANNUAL OF SOFIA UNIVERSITY "ST. KLIMENT OHRIDSKI" $\label{eq:faculty} \text{FACULTY OF MATHEMATICS AND INFORMATICS}$ Volume 101

ON INFINITE DIMENSIONAL HOMOGENEOUS SPACE

GEORGE MICHAEL

In this paper we show that if G is a locally compact group with H closed and $H \leq G$ such that $\dim G/H < \infty$, then G/H contains a copy of $I^{\omega_0(G/H)}$, where $\omega_0(G/H) =$ weight of a connected component of G/H, except perhaps when $\aleph_0 \leq \omega_0(G/H) \leq 2^{\aleph_0}$ [13].

 ${\bf Keywords:}$ Weight and local weight, homogeneous spaces of locally compact groups, Tychonoff cube

2000 Math. Subject Classification: 22A05

1. INTRODUCTION

In this paper we investigate the existence of Tychonoff cubes of maximal weight in homogeneous spaces of locally compact groups of infinite covering dimension. We show that if G is a locally compact group with H closed G such that $G/H = \infty$, then G contains a copy of $I^{\omega_0(G/H)}$, where $\omega_0(G/H)$ = weight of a connected component of G/H except perhaps when $\aleph_0 \leq \omega_0(G/H) \leq 2^{\aleph_0}$ [13]. This result, except for the last exceptional case, was observed before [9, 16]. The proof for the locally compact case in [9, Theorem 4.2] is incorrect. The elegant proof in [16] contains a gap, we fix that proof here.

Throughout this paper we fix the following notations. If G is a locally compact group, G/G_0 compact, then $G = \lim_{\leftarrow} G_j$, G_j 's finite dimensional Lie groups, $j \in J$ [14, p. 175]. Let $p_j : G \to G_j$ be the canonical map for all $j \in J$. We may assume that ker p_j is compact for all $j \in J$, hence $G = \lim_{\leftarrow} G/\ker p_j$.

The rest of this paper is divided into two sections. In Section 2 we collect some basic lemmas that are needed to establish our result. In Section 3 we prove our main theorem, Theorem 3.1.

2. SOME BASIC LEMMAS

Lemma 2.1. (see [9, Lemma 2.1]) Let X be a topological space such that $X = \lim_{\leftarrow} \{X_i : i \in J\}$, where $\{X_i : i \in J\}$ is an inverse family of topological spaces, I cofimal $\subseteq J$. Then $\omega(X) \leq \max\{\operatorname{Card}(I), \ \omega(X_i) : i \in I\}$, where $\omega(*) = weight of the topological space *.$

Proof. Let B_i be a basis of X_i , $\operatorname{Card}(B_i) = \omega(X_i)$ for all $i \in I$. Then $\{p_i^{-1}(B_i) : i \in I\}$ is a basis of X, where $p_i : X \to X_i$ is the canonical map and

$$\operatorname{Card}\left(\left\{p_{i}^{-1}(B_{i}) : i \in I\right\}\right) \leq \sum_{i \in I} \operatorname{Card}\left(B_{i}\right) \leq \max\left\{\operatorname{Card}\left(I\right), \operatorname{Card}\left(B_{i}\right) : i \in I\right\}$$

Lemma 2.2. (generalizes [7, Theorem 8]) Let G be a locally compact group, G/G_0 compact, H closed, non-open $\leq G$. Then:

- (i) $\omega(G/H) = 1.\omega(G/H)$ (= local weight of G/H);
- (ii) $\omega(G/H) = \omega(G \cap \{gHg^{-1} : g \in G\};$
- (iii) (generalizes [9, Corollary 2.4 ii]) If G is connected and Y compact totally disconnected normal $\leq G$, then $\omega(G/H) = \omega(G/HY)$.

Proof. Let $K=\cap\{gHg^{-1}:g\in G\}$. Since G/H=(G/K)/(H/K) and $\cap\{\overline{g}(H/K)\overline{g}^{-1}:\overline{g}\in G/K\}=1$, and

$$G/HY = (G/K)/(HY/K) = (G/K)/(H/K).(KY/K)$$
 for Y compact normal $\leq G$,

we may assume that $\bigcap \{gHg^{-1}: g \in H\} = 1$. Let $p: G \to G/H$ be the canonical map.

i. Choose $\{p(V_i): i \in I\}$ a local basis at H in G/H such that $\operatorname{Card}(I) = 1.\omega(G/H) \geq \aleph_0$, since H is non-open, and for each $i \in I$, let $\ker p_i \subseteq V_i$. Then $\bigcap \{\ker p_i: i \in I\} \subseteq H$, hence $\bigcap \{\ker p_i: i \in I\} = 1$ and

$$G/H = \lim_{\leftarrow} \{G/H. \bigcap \{\ker p_i : i \in F \text{ finite } \subseteq I\}.$$

Since G is σ -compact, we get $\omega(G/H)$. $\cap \{\ker p_i : i \in F \text{ finite } \subseteq I\}\} \leq \aleph_0$ and $\omega(G/H) \leq 1.\omega(G/H)$, by Lemma 2.1. Hence we have an equality.

ii. Case 1: *H* is compact.

Choose $\{U_j : j \in J\}$ a basis of G/H such that $\operatorname{Card}(J) = \omega(G/H)$ and let $\{z_s H : s \in S\}$ be dense $\subseteq G/H$ such that $\operatorname{Card}(S) \leq \omega(G/H)$. For all $z \in G$ let $\varphi_z : G \to G/H$ be defined by $\varphi_z(g) = g.z.H$ for all $g \in G$, then

$$\bigcap \left\{ \varphi_{z_s}^{-1}(\overline{U}_j) \, : \, z_s H \in U_j, \, j \in J \right\} = z_s H z_s^{-1}$$

and

$$\bigcap \{z_s H z_s^{-1} : s \in S\} = \bigcap \{\varphi_{z_s}^{-1}(z_s H) : s \in S\}$$

$$= \bigcap \{\varphi_z^{-1}(z H) : z \in G\} \qquad [2, \text{TGIII.12}, \text{Proposition12}]$$

$$= \bigcap \{z H z^{-1} : z \in G\} = 1.$$

It follows by the compactness of H that the family of finite intersections of $\{\varphi_{z_s}^{-1}(\overline{U}_j): z_sH \in U_j, j \in J, s \in S\}$ is a local basis at $1 \in G$, hence $\omega(G/H) \geq 1.\omega(G) = \omega(G)$, by part i., since G is non-discrete, and we get the desired equality.

Case 2: General case.

Let $\ker q$ be compact normal $\leq G$, $G/\ker q$ Lie group. Then

$$\begin{array}{ll} \omega(G/H) &= 1.\omega(G/H) & \text{by part } i \\ &= 1.\omega(G/(H\cap \ker q)) & \text{by virtue of the fiber bundle} \\ &\qquad \qquad G/(H\cap \ker q) \to G/H \\ &= \omega(G/(H\cap \ker q)) & \text{by part i again} \\ &= \omega(G) & \text{by case 1.} \end{array}$$

iii. We have $Y \leq Z(G)$, $Z(G) \cap H = 1$ and since $HY \cong H \times Y$, we get $(\cap \{gHYg^{-1}: g \in G\})_0 \leq H$, hence $\cap \{gHYg^{-1}: g \in G\}$ is totally disconnected and therefore $\leq Z(G)$. It follows that $\cap \{gHYg^{-1}: g \in G\} = Y$ and

$$1 = \cap \{gHYg^{-1} \, : \, g \in G\}/Y = \cap \{\varphi(g)HY/Y\varphi(g^{-1}) \, : \, g \in G\},$$

where $\varphi: G \to G/Y$ is the canonical map.

Now $\omega(G/H)=\omega(G)$, since $\cap\{gHg^{-1}:g\in G\}=1$ by part ii, and $\omega(G/HY)=\omega(G/Y)$, since $\cap\{\varphi(g)HY/Y\varphi(g^{-1}):g\in G\}=1$ by part ii again. Hence we may assume that H=1.

Note that $\omega(G/Y) = \aleph_0 \Leftrightarrow \omega(G) = \aleph_0$, so we may assume that $\omega(G) > \aleph_0$. Let C be a maximal compact $\leq G$, then

$$\begin{array}{ll} \omega(G) &= \omega(C) & [12, \, \text{Theorem 13}], \, \text{ since } \, \omega(C) > \aleph_0 \\ &= \omega(C/Y) & [8, \, \text{Proposition 12.26}] \\ &= \omega(G/Y) & [12, \, \text{Theorem 13}]. \end{array}$$

Lemma 2.3. ([17, Theorems 18, 19]) Let G be a locally compact group, G/G_0 compact, H closed $\leq G$, G/H connected, $\dim G/H < \infty$. Let $j \in J$ be such that $\dim (G/H \ker p_j) = \dim G/H$, and assume that $\pi_1(G/H \ker p_j)$ is finitely generated. Then $\omega(G/H) \leq \aleph_0$.

In particular, a connected locally compact finite dimensional group is of countable weight and a compact connected finite dimensional quotient of a locally compact group is of countable weight.

Proof. We have dim $H \ker p_j/H = 0$ and $H \ker p_j/H \cong \ker p_j/H \cap \ker p_j$ compact. It follows that $\{K/H : H \leq K \text{ closed } \leq H \ker p_j, |H \ker p_j : K| < \infty\}$ is a fundamental system of neighborhoods of H in $H \ker p_j \cap H$.

Note that the function $\{K/H: H \leq K \text{ closed } \leq H \ker p_j, | H \ker p_j: K| < \infty\} \rightarrow \{\pi_1(G/H) \leq K \leq \pi_1(G/H \ker p_j): |\pi_1(G/H \ker p_j): K| < \infty\}$ defined by $K/H \rightarrow (q_K)_\#(\pi_1(G/K))$ is injective, where $q_K: G/K \rightarrow G/H \ker p_j$ is the canonical map: if $H \leq K_i$ closed $\leq H \ker p_j, |H \ker p_j: K_i| < \infty, i = 1, 2$, the exact sequence

$$1 \to \pi_1(G/K_1 \cap K_2) \xrightarrow{(q_{K_1 \cap K_2})_\#} \pi_1(G/H \ker p_j) \xrightarrow{\partial} H \ker p_j/K_1 \cap K_2 \to 1$$

gives $\partial^{-1}(K_i/K_1 \cap K_2) = (q_{K_i})_{\#}(\pi_1(G/K_i)$. Since $\pi_1(G/H \ker p_j)$ is finitely generated, $\{K \leq \pi_1(G/H \ker p_j) : |\pi_1(G/H \ker p_j) : K| < \infty\}$ is countable, hence $\omega(G/H) = 1.\omega(G/H \text{ by Lemma 2.2 part i)}$ assuming that H is not open in $G \leq \max\{\aleph_0, 1.\omega(H \ker p_j/H)\} \leq \aleph_0$.

In particular, if G/H is compact, let G^* be open $\leq G$, G^*/G_0 compact ([2, TGI.84] and [2, TGIII.36]). Note that $G^*/G^* \cap H \cong G^*H/H$ open $\subseteq G/H$ and if $\{a_i: i \in L\}$ is a left transversal of G^* in G, then $G/H = \bigoplus_{i \in L} a_i G^*/G^* \cap H$, so that $G/H = G^*/G^* \cap H$ and we may assume that G/G_0 is compact. Since $G/H \ker p_j$ is a compact manifold, we have $\pi_1(G/H \ker p_j)$ finitely generated, hence $\omega(G/H) \leq \aleph_0$.

Corollary 2.4. (Generalized Wilcox Theorem [11, Theorem 7]) Let G be a connected locally compact group such that for all $x \in G$, $\langle \chi \rangle$ is metrizable. Then G is metrizable if and only if $1.\omega(G) \leq \aleph_0$.

Proof. Let ker p be a compact normal $\leq G$, $G/\ker p$ Lie group. Then $G/(\ker p)_0$ is finite dimensional, hence it is metrizable by Lemma 2.3. Mostert theorem [15] shows that we may assume that G is compact.

Claim 1. ([11, Lemma 1]) $(\mathbf{R}/\mathbf{Z})^{\omega_1} = \langle \chi \overline{>} \text{ for some } x \in (\mathbf{R}/\mathbf{Z})^{\omega_1}, \text{ where } \omega_1 \text{ is the first uncountable ordinal.}$

Proof of Claim 1. Let $1 \in H$ be a Hamel basis of \mathbf{R} over \mathbf{Q} , so that $\mathbf{R} = \bigoplus_{h \in H} \mathbf{Q}h$ and H is uncountable. Hence there exists $1 \notin \{h_{\alpha} : \alpha < \omega_1\} \subseteq H$. Now [3, TG VII.7, Corollary 2] shows that $x = (h_{\alpha} + \mathbf{Z}) \in (\mathbf{R}/\mathbf{Z})^{\omega_1}$ satisfies our claim.

Case 1: G is abelian.

By [5, Lemma 5.2], there exists a continuous surjective homomorphism $a: G \to (\mathbf{R}/\mathbf{Z})^{\omega(G)}$ and Claim 1 shows that $\omega(G) \leq \aleph_0$.

Case 2: General case.

If $\omega((Z(G))_0) = \omega(G)$, we are done by Case 1, so we may assume that $\omega((Z(G))_0) < \omega(G)$.

By [4, Theorem 4.2] we have $G/Z(G) = \prod_{i \in I} G_i$, where G_i is compact connected

Lie group for all i. Taking a maximal torus in G_i for each $i \in I$, we get that there exists H closed $\leq G$ and a continuous surjective homomorphism a : $H \to (\mathbf{R}/\mathbf{Z})^{\operatorname{Card}(I)}$. Again, as in Case 1, Claim 1 shows that we must have $\operatorname{Card}(I) \leq \aleph_0$. Now $\aleph_0 = \omega(G/Z(G)) = \omega(G)$ [4, Corollary 4.3].

Remark. (generalizes [10]) Let G be a locally compact group, H closed $\leq G$ such that $\operatorname{Card}(G/H) \leq 2^{\aleph_0}$. Then $1.\omega(G/H) \leq \aleph_0$ provided the following cardinal statement holds: $\aleph > \aleph_0 \implies 2^{\aleph} > 2^{\aleph_0}$.

Proof of Remark. Let G^* be open $\leq G$, G^*/G_0 compact ([2, TGI.84] and [2, TGIII.36]), then $G^*/G^* \cap H \cong G^*H/H$ open $\subseteq G/H$ and we may assume that G/G_0 is compact. If $1.\omega(G/H) > \aleph_0$, then

$$\begin{split} 2^{\aleph_0} & \geq \operatorname{Card}\left(G/H\right) \\ & \geq 2^{l.\omega(G/H)} \quad \text{by Čech-Pospíšil theorem [6, Theorem 3.12.11],} \end{split}$$

which would contradict our hypothesis.

3. MAIN THEOREM

Theorem 3.1. ([9, 16]) Let G be a locally compact group, H closed $\leq G$. Then

$$G/H\supseteq\cong \begin{cases} I^{\dim G/H}, & \text{if } \dim G/H<\infty,\\ I^{\omega_0(G/H)}, & \text{if } \dim G/H=\infty, \end{cases}$$

where $\omega_0(G/H) = \text{weight of a connected component of } G/H \text{ except perhaps when } \aleph_0 \leq \omega_0(G/H) \leq 2^{\aleph_0} \text{ and } \dim G/H) = \infty.$ (In this case we can only guarantee that G/H contains a copy of I^{\aleph_0}).

Proof. If dim $G/H < \infty$, let G^* be open $\leq G$, G^*/G_0 compact ([2, TGI.84] and [2, TGIII.36]), then $G^*/G^* \cap H \cong G^*H/H$ open $\subseteq G/H$. Hence dim G/H =

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 71-79.

 $\dim G^*H/H$ and we may assume that G/G_0 is compact. There exists $\ker p$ compact normal $\leq G$, $G/\ker p$ Lie group and $\dim G/H \ker p = \dim G/H$. The fiber bundle $G/H \to G/H \ker p$ proves our assertion in this case.

If $\dim G/H = \infty$, then $\dim G/(G_0H)^-) = 0$ by [2, TGIII.36, Corollary 1], hence $\dim((G_0H)^-/H) = \infty$ and since $\omega_0(G/H) = \omega((G_0H)^-/H)$ ([2, TGIII.36, Corollary 3]), we may assume that G/H is connected.

Let G^* be open $\leq G$, G^*/G_0 compact ([2, TGI.84] and [2, TGIII.36]). Note that if $\{a_j : j \in J\}$ is a complete system of representatives of the double coset decomposition $\{G^*xH : x \in G\}$ of G, then $G/H = \bigoplus_{j \in J} G^*a_jH/H$ and

$$G^*/G^* \cap a_j H a_j^{-1} \cong G^* a_j H/H$$
 open $\subseteq G/H$,

so that $G^*/G^* \cap H \cong G^*H/H = G/H$ and we may further assume that G/G_0 is compact.

Let $K=\cap\{gHg^{-1}:g\in G\}$, then G/H=(G/K)/(H/K) and we may assume in addition that $\cap\{gHg^{-1}:g\in G\}=1$.

Let $\ker p$ be a compact normal $\leq G$ such that $G/\ker p$ be Lie group and suppose that $\omega(H(\ker p)_0/H) < \omega(G/H(\ker p)_0)$. Then

$$1.\omega(H(\ker p)_0/H) < 1.\omega(G/H(\ker p)_0)$$

by Lemma 2.2(i), and the fiber bundle $G/H \to G/H(\ker p)_0$ provided by Mostert theorem [15] shows that $1.\omega(G/H) = 1.\omega(G/H(\ker p)_0)$, hence, by Lemma 2.2(i) again, $\omega(G/H) = \omega(G/H(\ker p)_0)$. The fibration $G/(\ker p)_0 \to G/H(\ker p)_0$ induces a surjective map of the arc components $(G/(\ker p)_0)_a \to (G/H(\ker p)_0)_a$, and since $(G/(\ker p)_0)_a$ is Souslin [7, Theorem 7.2], it follows from the fibration $G \to G/H(\ker p)_0$ that $(G/H(\ker p)_0)_a$ is Souslin and dense in $G/H(\ker p)_0$, so the later space is separable. Therefore

$$\aleph_0 \le \omega(H(\ker p)_0/H) < \omega(G/H(\ker p)_0) = \omega(G/H) \le 2^{\aleph_0}$$

by [6, Theorem 1.5.7], and this is the exceptional case that should be avoided [13], so we may assume that $\omega(G/H(\ker p)_0) \leq \omega(H(\ker p)_0/H)$. Then the same argument as above shows that $\omega(G/H) = \omega(H(\ker p)_0/H)$, and since $(\ker p)_0/H \cap (\ker p)_0 \cong H(\ker p)_0/H$, we may assume further that G is compact connected.

Therefore we reduced our theorem just to the case of G compact connected group, H closed $\leq G$, dim $G/H = \infty$ and $\cap \{gHg^{-1} : g \in G\} = 1$.

Let θ be the minimum ordinal such that $\operatorname{Card} \theta = 1.\omega(G)$ ([1, E III.87, Ex 10]). Let $\{U_{\alpha} : \alpha \in \theta\}$ be a fundamental system of open neighborhoods of $1 \in G$ and for all $\alpha \in \theta$, let $\ker p_{j_{\alpha}} \subseteq U_{\alpha}$. Define a well ordered system of compact normal subgroups of G under inclusion, $\{Y_{\alpha} : \alpha \in \theta\}$, by: $Y_{0} = \ker p_{j_{0}}$, and for $0 < \alpha \in \theta$, $Y_{\alpha} = \cap \{\ker p_{j_{\beta}} : \beta < \alpha\}$ such that G/Y_{0} is a non-trivial Lie group, $\cap \{Y_{\alpha} : \alpha \in \theta\} = 1, Y_{\alpha}/Y_{\alpha+1}$ Lie group. Therefore, we have a well-ordered inverse system $\{G/HY_{\alpha} : \alpha \in \theta\}$ and $G/H = \lim_{\leftarrow} G/HY_{\alpha}$. We have:

- i. G/HY_0 is a non-trivial Euclidean manifold and $\aleph_0 \leq \omega(G/HY_\alpha), \ \alpha \in \theta$;
- ii. the canonical map $\varphi_{\alpha,\alpha+1}: G/HY_{\alpha+1} \to G/HY_{\alpha}$ is a fiber bundle with a compact Euclidean manifold as fiber, $\alpha \in \theta$;
- iii. if $\alpha \in \theta$ has no predecessor, then $G/HY_{\alpha} = \lim_{\leftarrow} \{G/HY_{\beta} : \beta < \alpha\}$.

Suppose that $\operatorname{Card} \theta > \aleph_0$ and assume that there exists $\alpha \in \theta$ with $\omega(G/HY_\alpha) = \omega(G/H)$. Let $\alpha_0 = \min\{\alpha \in \theta : \omega(G/HY_\alpha) = \omega(G/H)\}$, then α_0 has no predecessor, since otherwise $\alpha_0 = \beta + 1$ and

$$\begin{array}{ll} \omega(G/HY_{\beta}) &= 1.\omega(G/HY_{\beta}) & \text{by Lemma 2.2(i)} \\ &= 1.\omega(G/HY_{\beta+1}) & \text{by condition ii. above} \\ &= \omega(G/HY_{\beta+1}) & \text{by Lemma 2.2(i) again.} \end{array}$$

Furthermore, $\operatorname{Card} \alpha_0 > \aleph_0$, since otherwise $\omega(G/HY_\alpha) = \aleph_0$ for $\alpha < \alpha_0$ and hence $\operatorname{Card} \theta = 1.\omega(G) = \omega(G) = \omega(G/H) = \omega(G/HY_\alpha) = \aleph_0$ by condition iii.

Applying the principle of transfinite induction ([1, E III.18, C59]) using conditions ii. and iii. and Lemmas 2.1 and 2.2, we get $\omega(G/HY_{\alpha}) \leq \max\{\aleph_0, \operatorname{Card} \alpha\}$ for $\alpha < \alpha_0$. Hence

Card
$$\theta = 1.\omega(G) = \omega(G) = \omega(G/H) = \omega(G/HY_{\alpha}) \le \max\{\aleph_0, \operatorname{Card} \alpha_0\} = \operatorname{Card} \alpha_0,$$

and $\alpha_0 = \theta$. Therefore $\aleph_0 \le \omega(G/HY_{\alpha}) < \omega(G/H)$ for all $\alpha \in \theta$, if $\operatorname{Card} \theta > \aleph_0$.

Claim 2. There holds

$$\{\alpha \in \theta : \dim(HY_{\alpha}/HY_{\alpha+1}) > 0\} \ cofinal \subseteq \theta.$$

Proof. Assume the contrary, then there would exist $\gamma \in \theta$ such that for all $\gamma \leq \alpha \in \theta$, $|HY_{\alpha}/HY_{\alpha+1}| < \infty$ and $\dim(HY_{\gamma}/HY_{\beta}) = 0$ for all $\gamma \leq \beta \in \theta$ (since otherwise if $\gamma_0 = \min\{\gamma \leq \beta \in \theta : \dim(HY_{\gamma}/HY_{\beta}) > 0\}$, then γ_0 would have no predecessor and $HY_{\gamma}/HY_{\gamma_0} = \lim_{\leftarrow} \{HY_{\gamma}/HY_{\beta} : \gamma \leq \beta < \gamma_0\}$, hence $\dim(HY_{\gamma}/HY_{\gamma_0}) = 0$, which is absurd.

We have $HY_{\gamma}/H = \lim_{\leftarrow} \{HY_{\gamma}/HY_{\beta} : \gamma \leq \beta \in \theta\}$. Hence $\dim HY_{\gamma}/H = 0$. Since $\dim G/H = \infty$, we must have $\operatorname{Card} \theta > \aleph_0$. We have $(Y_{\gamma})_0 \leq H$. Hence $(Y_{\gamma})_0 = 1$ and Y_{γ} is totally disconnected. Lemma 2.2(iii) shows that $\omega(G/H) = \omega(G/HY_{\gamma})$, which is absurd.

Claim 3. There holds

$$\operatorname{Ord}(\theta_{\scriptscriptstyle\blacksquare}(\alpha\in\theta\,:\,\alpha=\beta+1,\,|HY_\beta/HY_{\beta+1}|<\infty\})=\theta\,.$$

Proof. Since $\operatorname{Ord}(\theta_{-}(\alpha \in \theta : \alpha = \beta + 1, |HY_{\beta}/HY_{\beta+1}| < \infty)) \leq \theta$, it suffices to show that $\operatorname{Card}(\theta_{-}(\alpha \in \theta : \alpha = \beta + 1, |HY_{\beta}/HY_{\beta+1}| < \infty)) = \operatorname{Card}\theta$. If $\operatorname{Card}\theta = \aleph_0$, this is clear from Claim 2. If $\operatorname{Card}\theta > \aleph_0$, then

$$\operatorname{Card} \theta \ge \operatorname{Card}(\theta_{-}(\alpha \in \theta : \alpha = \beta + 1, |HY_{\beta}/HY_{\beta+1}| < \infty))$$

 $\ge \operatorname{Card}(\{\alpha \in \theta : \alpha \text{ has no predecessor }\}) = \operatorname{Card} \theta,$

since
$$\theta = \bigcup_{n \geq 0} \{ \alpha + n \in \theta : \alpha \text{ has no predecessor } \}$$
 (disjoint union).

By Claims 2 and 3 we may further assume that $\dim(HY_{\gamma}/HY_{\gamma+1}) > 0$ for all $\gamma \in \theta$.

An application of the principle of transfinite induction ([1, E III.18, C 59]) shows that for all $\alpha \in \theta$, $G/HY_{\alpha} \supseteq I^{\alpha}$ such that $\alpha \leq \beta \in \theta$, $\varphi_{\alpha,\beta}|: I^{\beta} \to I^{\alpha}$ is equivalent to the projection map onto the first factor by virtue of conditions ii and iii. We get $G/H = G/HY_{\theta} \supseteq I^{\theta}$ as desired since $\operatorname{Card} \theta = 1.\omega(G) = \omega(G) = \omega(G/H)$.

REFERENCES

- 1. Bourbaki, N.: Théorie des ensembles. Hermann, Paris, 1970.
- 2. Bourbaki, N.: Topologie Générale, Chapters 1–4. Hermann, Paris, 1971.
- 3. Bourbaki, N.: Topologie Générale, Chapters 5-10. Hermann, Paris, 1974.
- 4. Comfort, W. W., L. C. Robertson: Cardinality constraints for pseudocompact and for totally dense subgroups of compact topological groups. *Pacific J. Math.*, **119**, no. 2, 1985, 265–286.
- 5. Comfort, W. W., T. Soundararajan: Pseudocompact group topologies and totally dense subgroups. *Pacific J. Math.*, **100**, no. 1, 1982, 61–84.
- 6. Engelking, R.: General Topology. Berlin, Heldermann, 1989.
- Gleason, A., R. Palais: On a class of transformation groups. Amer. J. Math., 79, 1957, 631–648.
- 8. Hofmann, K. H., S. A. Morris: The Structure Of Compact Groups. de Gruyter, Berlin, 2006.
- 9. Hofmann, K. H., S. A. Morris: Transitive actions of compact groups and topological dimension. *J. Algebra*, **234**, 2000, 454–479.
- Hulanicki, A.: On locally compact topological groups of power of continuum. Fund. Math., 44, 1957, 156–158.
- 11. Itzkowitz, G., T.S. Wu: The structure of locally compact groups and metrizability. *Annals of the New York Academy of Sciences*, **704**, 1993, 164–174.
- 12. Iwasawa, K.: On some types of topological groups. Ann. Math., 50, 1949, 507–558.
- Michael, G.: A counter example in the dimension theory of homogeneous spaces of locally compact groups. J. Lie theory, 18, no. 4, 2008, 915–917.

- 14. Montgomery, D., L. Zippin: Topological Transformation Groups. Interscience publishers, New York, 1955.
- 15. Mostert, P.S.: Sections in principal fiber spaces. Duke Math. J., 23, 1956, 57–72.
- 16. Skljarenko, E. G.: Homogeneous spaces of an infinite number of dimensions. Soviet Math. Dokl., $\bf 2$, 1961, 1569–1571.
- 17. Skljarenko, E. G.: On the topological structure of locally bicompact groups and their quotient spaces. *Amer. Math. Soc. Transl.*, **39**, 1964, 57–82.

Received on July 17, 2012 Accepted on April 8, 2013

George Michael, A. A. Mathematics & Sciences Unit Dhofar University P.O. Box 2509, P.C. 211, Salalah SULTANATE OF OMAN e-mail: adelgeorge1@yahoo.com