
ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ
”
СВ. КЛИМЕНТ ОХРИДСКИ“

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Том 101

ANNUAL OF SOFIA UNIVERSITY
”
ST. KLIMENT OHRIDSKI“

FACULTY OF MATHEMATICS AND INFORMATICS

Volume 101

SOME PROPERTIES OF AN ALGEBRA OF ALL SETS

OF NATURALS E-REDUCIBLE TO A FIXED SET

ANGEL V. DITCHEV

In this paper we consider the algebra   = ⟨!( ) ;!0,!1, . . . ;"#$⟩, where % is an
arbitrary fixed set of natural numbers, !( ) = {&∣& ⊆  && ≤! %}, !0,!1, . . . is
the sequence of all computably enumerable sets, considered as e-operators, and "#$ is
the predicate detecting non-emptiness. It is shown that for any set of natural numbers
% the algebra   has a least enumeration, admits equivalent representation with 3
operators and is finitely generated.

Keywords: Enumeration, enumeration degree, enumeration operator, degree of a
structure, least degree of a structure, algebra.

2010 Math. Subject Classification: 03C50, 03D28, 03D30, 03D45, 03D60, 03D75

1. INTRODUCTION

In attempts to classify the family of all sets of naturals with respect to effective
computability, different kinds of reducibilities have been introduced. In [8] Post first
introduced the so-called ”strong” reducibilities (m-,tt-,. . . ) and later on in [9] – the
Turing reducibility.

Every reducibility defines a pre-order. Thus in a natural way m-degrees, T-
degrees, etc. have been introduced. Enumeration reducibility was introduced in
1959 by Friedberg and Rogers [5]. In [7] embedding of the semi-lattice of Turing
degrees (T-degrees) into the semi-lattice of enumeration degrees (e-degrees) was
found.This fact showed that two semi-lattices are closely related and any result
or question about one of them triggered a question of validity for the other. In
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1966 Sacks [12] and in 1967 Rogers [11] stated the basic question about T-degrees,
namely whether there exist non-trivial automorphisms in the upper semi-lattice
of T-degrees. In case that such non-trivial automorphisms do not exist, we say
that the upper semi-lattice is rigid. The same question was stated for e-degrees,
m-degrees, etc. This question is important because it is connected with definability
in these semi-lattices. For m-degrees it was shown by Shore that there exist 22

ℵ0

automorphisms.
In 1977 Jockusch and Solovay [6] and in 1979 Richter [10] and Epstein [4] proved

that for Turing degrees every automorphism is the identity on the cone above 0(3).
In 1986 Slaman and Woodin [13] improved the above result by showing that every
automorphism is the identity on the cone above 0′′. Using the connections between
both T- and e-jumps, Soskov and Ganchev [15] proved that for e-degrees every
automorphism is the identity on the cone above 0(4).

Since the upper semi-lattice of all e-degrees (e-degrees ≤ a) is defined by
≤  , in this paper for any fixed set of natural numbers  the algebra  ! =
⟨"(!)!;"0,"1, . . . ;#$%⟩ is considered. Here "(!)! = {&∣& ⊆ !&& ≤  } and
"0,"1, . . . is the standard sequence of all computably enumerable (c.e.) sets, con-
sidered as e-operators and #$% is the predicate for ”non-emptiness”. We would
like to mention that the empty set plays a special role and we distinguish it from
the other c.e. sets. We modify slightly the relation ≤ and show that the algebra
 ! has a least enumeration, admits equivalent representation with 3 operators ant
is finitely generated. We use unary partial structures without equality [3, 2].

In Section 2 we give all necessary definitions, notions and propositions con-
cerning normal and least enumerations of unary partial structures. Here we slightly
modify the definitions of e-reducibility and e-operators, concerning the empty set.
In Section 3 we prove our main result: The algebra ! = ⟨"(!)!;"0,"1, . . . ;#$%⟩
admits a least enumeration. Then we prove that this algebra is recursively equiv-
alent to an algebra with only 3 operators, and that the latter algebra is finitely
generated. At the end we see that among all algebras with different enumeration
of all e-operators the standard one has a least enumeration.

2. PRELIMINARIES

In this paper we denote by ! the set of all natural numbers. By '$(()),
*+%()) and ," we denote the domain, the range and the graph of a function ) ,
respectively; ⟨)⟩ or ⟨," ⟩ stands for the set {⟨-1, . . . , -#, .⟩∣(-1, . . . , -#, .) ∈ ,"},
where ⟨., . . . , .⟩ is some fixed coding function for all finite sequences of natural
numbers. We shall use )(-) ↓ to denote that - ∈ '$(()); also we say that )(-)
is conditionally equal to /(-), or that the conditional equality )(-) ∼= /(-) is true
if and only if

()(-) ↓ &/(-) ↓ &)(-) = /(-)) ∨ (¬()(-) ↓)&¬(/(-) ↓)).
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"0, "1,. . . denotes the standard enumeration of all computably enumerable
(c.e.) sets; {0v}v∈$ is an effective coding of the family of all finite subsets of !.

If " is c.e. set, then we write "[#] = {-∣⟨%, -⟩ ∈"}.
If  is an arbitrary subset of !, then by " ( ) we denote the set

" ( ) = {-∣∃1(⟨-, 1⟩ ∈"&0v ∕= ∅&0v ⊆  )}.

Notice that there is a slight deviation from the usual definition of the term
e-operator. It concerns ∅.

We shall say that  is e-reducible to & ( ≤ &) if there exists a c.e. set
" such that  = " (&);  is e-equivalent to & ( ≡ &) if  ≤ &&& ≤  ;
d ( ) = {&∣ ≡ &}. Thus we obtain 0 — the family of all non-empty c.e. sets
and -1 = {∅}.

For two arbitrary sets  and & of naturals, set

 ⊕& := {2-∣- ∈  } ∪ {2-+ 1∣- ∈ &}.

If  0,  1,. . . is a sequence of sets of naturals, the notation ⊕%∈$ % stands for the
set {⟨2, -⟩∣- ∈  %}.

We recall some definitions from [14, 1].

Let ! = ⟨&; 31, . . . , 3#;*1, . . . , *&⟩ be a partial structure, where & is an arbi-
trary denumerable set, 31, . . . , 3# are partial unary functions in & and *1, . . . , *&

are unary partial predicates on &. We allow any of the sequences 31, . . . , 3# and
*1, . . . , *& to be infinite, as well. We call such structures unary. We identify the
partial predicates with partial mapping taking values in {0, 1}, writing 0 for true
and 1 for false.

Let " = ⟨!;41, . . . , 4#;51, . . . , 5&⟩ be a partial structure over the set !. By
⟨"⟩ we denote the set ⟨41⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨4#⟩ ⊕ ⟨51⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨5&⟩ (in the case the when
the set of functions or predicates is infinite we shall use the corresponding infinite
version of

⊕

).

Definition 1. An enumeration of a structure ! is any ordered pair ⟨6,"⟩,
where " = ⟨!;41, . . . , 4#;51, . . . , 5&⟩ is a partial unary structure on ! and 6 is a
partial surjective mapping of ! onto & such that the following conditions hold:

(i) '$((6) ≤ ⟨"⟩;

(ii) 6(4%(-)) ∼= 3%(6(-)) for every - ∈ !, 1 ≤ 2 ≤ %;

(iii) 5'(-) ∼= *'(6(-)) for every - ∈ !, 1 ≤ 7 ≤ 8.

An enumeration ⟨6,"⟩ is said to be total if '$((6) = !.

Let  ⊆ &. The set  is called admissible in the enumeration ⟨6,"⟩ if and
only if there exists a set " of naturals such that " ≤ ⟨"⟩ and for every - ∈ !,
- ∈" ⇐⇒ 6(-) ∈  .
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A partial multiple-valued (p.m.v) function 3 is called admissible in the enu-
meration ⟨6,"⟩ if there exists a set " ⊆ !2 such that " ≤ ⟨"⟩ and for every
- ∈ ! and 9 ∈ &, the following equivalence is true:

9 ∈ 3(6(-)) ⇐⇒ ∃.((-, .) ∈"&6(.) = 9).

The above definition can be reformulated as follows: A p.m.v function 3 is
called admissible in the enumeration ⟨6,"⟩ if there exists a p.m.v function 4 in !
such that ⟨,(⟩ ≤ ⟨"⟩ and for every - ∈ !, 6(4(-)) = 3(6(-)).

A set  or p.m.v function 3 is called ∀-admissible in ! if it is admissible in
every enumeration ⟨6,"⟩ of !.

Let ⟨60,"0⟩ be an enumeration of the structure !. We say that ⟨60,"0⟩ is a
least enumeration of ! if for every enumeration ⟨6,"⟩ of !, ⟨"0⟩ ≤ ⟨"⟩.

Let ℒ be the first order language corresponding to the structure !, i.e. ℒ
consists of % unary functional symbols f1, . . . , fn and 8 unary predicate symbols
T1, . . . ,Tk. We admit any of the sequences f1, . . . , fn andT1, . . . ,Tk to be infinite.
Let us fix some denumerable set <1, <2, . . . of variables. We use capital letters
<,=, > and the same letters indexed to denote variables.

We use the standard definition of a term in the language ℒ: Every variable is
a term; if ? is a term, then fi(?) is a term. If ? is a term in the language ℒ, then
we write ?(=1, . . . , =&) to denote that all variables which occur in the term ? are
among =1, . . . , =&.

Termal predicate in the language ℒ is defined by the following inductive clauses:

1) If T ∈ {T0, . . . ,Tk} and ? is a term, then T(?) and ¬T(?) are termal
predicates.

2) If Π1 and Π2 are termal predicates, then (Π1&Π2) is a termal predicate.

Suppose that " is a structure, +1, . . . , +& are elements of & and ?(=1, . . . , =&)
is a term. By ?A(=1/+1, . . . , =&/+&) we denote the value of the term ? in ! over the
elements +1, . . . , +&, if it exists.

Let Π(=1, . . . , =)) be a termal predicate whose variables are among =1, . . . , =)
and +1, . . . , +) be elements of &. The value ΠA(=1/+1, . . . , =)/+)) of Π over
+1, . . . , +* in ! is defined as follows:

If Π=T'(?), 0≤7≤8, then ΠA(=1/+1, . . . , =)/+))∼=*'(?A(=1/+1, . . . , =)/+))).

If Π = ¬Π1, where Π1 is a termal predicate, then

ΠA(=1/+1, . . . , =)/+)) ∼=

⎧



⎨



⎩

1, if Π1
A
(=1/+1, . . . , =)/+)) ∼= 0,

0, if Π1
A
(=1/+1, . . . , =)/+)) ∼= 1,

undefined, otherwise.

If Π = (Π1&Π2), where Π1 and Π2 are termal predicates, then

ΠA(=1/+1, . . . , =)/+))∼=

⎧



⎨



⎩

Π2
A
(=1/+1, . . . , =)/+)), ifΠ1

A
(=1/+1, . . . , =)/+)) ∼= 0,

1, ifΠ1
A
(=1/+1, . . . , =)/+)) ∼= 1,

undefined, otherwise.
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Formulae of the kind ∃= ′1 . . . ∃=
′
+ (Π), where Π is a termal predicate, are called

conditions. Every variable which occurs in Π and is different from = ′1 , . . . , =
′
+ is

called free in the condition ∃= ′1 . . .∃=
′
+ (Π).

Let ∃= ′1 . . . ∃=
′
+ (Π) be a condition, let all free variables in A be among =1, . . . , =),

and +1, . . . , +) be elements of &. The value AA(=1/+1, . . . , =)/+)) is defined by
the equivalence:

AA(=1/+1, . . . , =)/+)) ∼= 0 ⇐⇒

∃91 . . .∃9+(ΠA(=
′
1/91, . . . , =

′
+ /9+, =1/+1, . . . , =)/+)) ∼= 0).

We assume that some effective codding of all terms, termal predicates and
conditions of the language ℒ is fixed. We shall use superscripts to denote the
corresponding codes.

Let  ⊆ !* × &). The set  is said to be ∃-definable (or just definable) in
the structure ! if and only if there exists a recursive function B of C + 1 vari-
ables such that for all %, -1, . . . , -*, A

,(#,.1,...,. ) is a condition with free variables
among >1, . . . , >+, =1, . . . , =) and for some fixed elements 91, . . . , 9+ of & the follow-
ing equivalence is true:

(-1, . . . , -*, +1, . . . , +)) ∈  ⇐⇒

∃% ∈ !(A
,(#,.1,...,. )
A

(>1/91, . . . , >+/9+, =1/+1, . . . , =)/+)) ∼= 0).

If Π is a termal predicate and ? is a term, then ∃= ′1 . . . ∃=
′
+ (Π ⊃ ?) is called a

conditional expression.

Let D = ∃= ′1 . . . ∃=
′
+ (Π ⊃ ?) be a conditional expression with free variables

among <1, . . . , <0, and E1, . . . , E0 ∈ &. Then the value DA(<1/E1, . . . , <0/E0) of
D is the following subset of &:

{ A(!
′

1/p1, . . . , !
′

" /p", $1/%1, . . . , $#/%#)∣ΠA(!
′

1/p1, . . . , !
′

" /p", $1/%1, . . . , $#/%#) ∼= 0}.

Let 3 be a p.m.v. function in &. Then the function 3 is called definable
in ! if and only if for some c.e. set {Dv}v∈1 of conditional expressions with
free variables among <,>1, . . . , >* and for some fixed elements 91, . . . , 9* of & the
following equivalence is true:

9 ∈ 3(E) ⇐⇒ ∃1(1 ∈ F&9 ∈ Dv
A(>1/91, . . . , >*/9*, </E)).

In [14] Soskov has proved the following result.

Theorem 1. (Soskov [14]) Let 3 be a unary p.m.v. function in B. Then 3 is
∀-admissible in ! if and only if 3 is definable in !.

Define )%(G) = ⟨2− 1, G⟩, 2 = 1, . . . , % and #0 = ! ∖ (*+%()1) ∪ ⋅ ⋅ ⋅ ∪*+%()#)).
It is obvious that #0 is an infinite recursive set and let {p0,p1, . . . } = #0, where
pi < pj if 2 < 7. In the case when the sequence )% is infinite (2 ∈ !) we can ensure
#0 to be infinite by taking for example )%(G) = ⟨2 − 1, G, 0⟩.
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Next we recall the definition and some properties of normal enumerations [14]
for the case of total enumerations. For every surjective mapping 60 of #0 onto &
(called basis) we define a mapping 6 of ! onto & by the following inductive clauses:

(i) If G ∈ #0, then 6(G) = 6
0(G);

(ii) If G = )%(I), then 6(I) = + and 3%(+) = J, then 6(G) = J.

Let 51, . . . , 5& be the partial predicates, defined by 5'(-) ∼= *'(6(-)), 7 =
1, . . . , 8. Denote by " the partial structure ⟨!; )1, . . . , )#;51, . . . , 5&⟩. It is well
known [1, 14] that 6 is well defined and that the basis 60 completely determines
the normal enumeration ⟨6,"⟩.

Let ⟨6,"⟩ be a normal enumeration. We recall some obvious propositions for
normal enumerations. Their proofs are the same as in [14].

Proposition 1. For every 1 ≤ 2 ≤ % and . ∈ !, 6()%(.)) = 3%(6(.)).

Corollary 1. Let ?(= ) be a term and . ∈ !. Then

6(? (=/.)) = ?A(=/6(.)).

Proposition 2. There exists an effective way for every - of ! to find . ∈ #0

and a term ?(= ), such that - = ? (=/.).

If ⟨6,"⟩ is a normal enumeration, we denote the set ∪&'=1{⟨7, -, K⟩∣5'(-) = K}
by *2. In the general case we have to add some additional members, but in our
situation the functions )% are totally defined and no additional terms are needed.
It is clear that for every " ⊆ !, " ≤ *2 if and only if " ≤ ⟨"⟩.

Proposition 3. There exists an effective way for every natural L to find ele-
ments .1, . . . , .) ∈ #0 and a termal predicate Π(=1, . . . , =)) such that for every
normal enumeration ⟨6,"⟩,

L ∈ *2 ⇐⇒ ΠA(=1/6(.1), . . . , =)/6(.))) ∼= 0.

Proposition 4. There exists an effective way for every code 1 of a finite set
0v to find elements .v1 , . . . , .

v
)!
∈ #0 and a termal predicate Πv(=1, . . . , =)!

) such
that for every normal enumeration ⟨6,"⟩,

0v ⊆ *2 ⇐⇒ Πv
A(=1/6(.

v
1), . . . , =)!

/6(.v)!
)) ∼= 0.

To be precise, we have to mention that, for the sake of simplicity, in the above
proposition we have used just Πv instead of Π,(v) with some recursive function B.

Let ! = ⟨&; 31, . . . , 3#;*1, . . . , *&⟩ be a unary partial structure. Type of the
sequence J1, . . . , J) of elements of & is called the set

{1∣Πv
A(<1/J1, . . . , <)/J))∼=0&Πv is a termal predicate with variables ∈{<%}

)
%=1}.
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The type of the sequence J1, . . . , J) is denoted by [J1, . . . , J)]A. The type of an
element + of & is the type of the sequence +.

A condition is called simple if it does not contain free variables and it is in the
form ∃<1Π, where Π is a termal predicate. Let F A0 = {1∣Av

A
∼= 0 & Av be a simple

condition}.

Definition 2. Let < be a family of subsets of !. A set M ⊆ !2 is said to be
universal for the family <, if the following conditions hold:

a) For every fixed N ∈ !, {-1∣(N, -1) ∈ M} ∈ <;

b) If  ∈ <, then there exists N such that  = {-1∣(N, -1) ∈ M}.

Theorem 2. ([3]) Let ! be a unary partial structure. Then ! admits a least
partial enumeration ⟨60,"0⟩ if and only if there exist elements J1, . . . , J) of & such
that ON/ ([J1]A⊕⋅ ⋅ ⋅⊕ [J)]A⊕F A0 ) is the least upper bound of N-degrees of all ∃-types
of sequences of elements of & and there exists a universal set M of all types, such
that ON/ (M) = ON/ ([J1]A ⊕ ⋅ ⋅ ⋅ ⊕ [J)]A ⊕ F A0 ).

3. THE MAIN RESULT

We shall consider the standard structure  = ⟨"(!);"0,"1, . . . ;#$%⟩, where
"(!) is the family of all subsets of !, "0,"1, . . . is a fixed sequence of all c.e.
sets considered as functions (e-operators) and #$% is the family of all non-empty
sets of naturals. To be more precise, #$% is a partial unary predicate defined as
follows: #$%( ) = 0, if  ∕= ∅ and #$%(∅) ↑.

First we shall consider the structure  ! = ⟨"(!)!;"0,"1, . . . ;#$%⟩, where
"(!)! = {&∣& ⊆ !&& ≤  }, which we call standard as well. Let us mention
that the functions "0,"1, . . . are totally defined as e-operators and we do not use
the equality among the predicates. Let in addition W be the family of all c.e. sets
considered as e-operators.

Let ℒ∗ be the first order language ⟨f0, f1, . . . ;T⟩, containing a countable set
of unary functional symbols f0, f1, . . . and a unary predicate symbol T. We call
! a generalized structure if ! = ⟨&;Θ;*⟩, where & is a denumerable set, Θ –
denumerable set of unary functions on & and * is a unary predicate on &. When
we consider structures with finite functions and finite predicates, the considerations
do not depend on the enumerations of the functions and the predicates. In the case
when we consider denumerable set of functions the situation is different.

Enumeration of a family Θ of functions is any sequence 30, 31, . . . such that
Θ = {30, 31, . . . }. We do not require all members of the sequence 30, 31, . . . to be
different.

Let us fix some enumeration 300 , 3
0
1, . . . of the family Θ and consider the struc-

ture !0 = ⟨&; 300 , 3
0
1, . . . ;*⟩.
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We say that ⟨60,"0⟩ is a least enumeration of the generalized structure !
if for every enumeration 30, 31, . . . of Θ and every enumeration ⟨6,"⟩ of
! = ⟨&; 30, 31, . . . ;*⟩ the inequality ⟨"0⟩ ≤ ⟨"⟩ holds.

Let us consider the structure ! = ⟨"(!)!;"0,"1, . . . ;#$%⟩ for the language
ℒ∗ and define the m.v.f. Φ! : "(!)! ∖ {∅} → "(!)! ∖ {∅} as follows: Φ!(&) =
{A∣A ≤ &&A ∕= ∅} for nonempty &.

Proposition 5. The m.v.f. Φ! is definable in the structure  !.

Proof. Let D# be the conditional expression T(<)&T(fn(<)) ⊃ fn(<). Notice
that the sequence {D#}#∈$ is c.e. and

A ∈ D#
!"(</&) ⇐⇒ #$%(&)&#$%("#(&))&A ="#(&).

Then

A ∈ Φ!(&) ⇐⇒ A ≤ &&A ∕= ∅&& ∕= ∅ ⇐⇒

∃%("#(&) = A&A ∕= ∅&& ∕= ∅) ⇐⇒ ∃%(A ∈ D#
!"(</&)).

Proposition 5 is proved. □

Let P! = {⟨%, -⟩∣- ∈ "#( )}. The following lemma is well-known, its proof
is a simple application of the Q)

# -theorem.

Lemma 1. There exists a recursive function R of two variables such that for all
naturals (,% and a set A of naturals the following equality is true:

")("#(A)) ="3(),#)(A).

Let us fix a function R in Lemma 1 and define the pair ⟨60,"0⟩ as follows:
60(%) = "#( ), "0 = ⟨!;40

0, 4
0
1, . . . ;5

0⟩, where 40
% (-) = R(2, -), 2, - ∈ !,

50(-) ∼= 0 ⇐⇒ ".( ) ∕= ∅ and 50(-) ↑ if ".( ) = ∅.

Lemma 2. The pair ⟨60,"0⟩ is an enumeration of the structure  !.

Proof. "%(60(-)) ="%(".( )) ="3(%,.)( ) = 60(R(2, -)) = 60(4
0
% (-)).

#$%(60(-)) ∼= 0 ⇐⇒ ".( ) ∕= ∅ ⇐⇒ 50(-) ∼= 0. □

Let "! = {%∣∃-(⟨%, -⟩ ∈ P!)} = {%∣"#( ) ∕= ∅} = {%∣50(%) ∼= 0}.

Proposition 6. "! ≡  .

Proof. Let %0 be a fixed element of ! and define the set & by the following
equivalence: ⟨⟨%, -⟩,(⟩ ∈ & ⇐⇒ ⟨%, -⟩ ∈ P!&( = %0. Obviously, & ≤ P! ≡  .
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Therefore, using the Q)
# -theorem we obtain

⟨⟨%, -⟩,(⟩ ∈ & ⇐⇒ ∃1(⟨⟨⟨%, -⟩,(⟩, 1⟩ ∈"0&∅ ∕= 0v ⊆  )

(for some fixed natural +)

⇐⇒ ∃1(⟨⟨(, 1⟩, ⟨%, -⟩⟩ ∈"4&∅ ∕= 0v ⊆  )

(for some fixed natural J)

⇐⇒ ∃1(⟨(, 1⟩ ∈ ",(⟨#,.⟩)&∅ ∕= 0v ⊆  )

(for some fixed recursive function B)

⇐⇒ ( ∈",(⟨#,.⟩)( ).

We will show that P! ≤) "! by recursive function B.
Let us assume ⟨%, -⟩ ∈ P!. Then ⟨⟨%, -⟩, %0⟩ ∈ &, thus %0 ∈ ",(⟨#,.⟩)( ), i.e.

",(⟨#,.⟩)( ) ∕= ∅, hence B(⟨%, -⟩) ∈ "!.
Let us suppose that B(⟨%, -⟩) ∈ "!. Then ∃((( ∈ ",(⟨#,.⟩)( )), thus %0 ∈

",(⟨#,.⟩)( ). Therefore ⟨⟨%, -⟩, %0⟩ ∈ & and ⟨%, -⟩ ∈ P!.
We proved the equivalence ⟨%, -⟩ ∈ P! ⇐⇒ B(⟨%, -⟩) ∈"!, i.e. P! ≤) "!.

Therefore, P! ≤ "!.

Conversely,

% ∈"! ⇐⇒ ∃-(⟨%, -⟩ ∈ P!) ⇐⇒ ∃-(- ∈"#( ))

⇐⇒ ∃-∃1(⟨-, 1⟩ ∈ "#&∅ ∕= 0v ⊆  )

⇐⇒ ∃1(∃-(⟨%, 1⟩ ∈",1(.))&∅ ∕= 0v ⊆  )

⇐⇒ ∃1(⟨%, 1⟩ ∈"0)&∅ ∕= 0v ⊆  ) ⇐⇒ % ∈ "0( )

for some fixed recursive function B1 and a fixed natural +. Hence, "! ≤  . □

Lemma 3. Let ?v be the term with a code 1. There exists a recursive function
B0 such that for any term ?v(<) in the language ℒ∗ with variable < and code 1 the
equality ?v

!"(</ ) =",0(v)( ) holds.

Proof. Decode ?v(<) as a sequence of )%1 , )%2 , . . . , )%# and variable < . Then
consider the composition of the operators "%1 ,"%2 , . . . ,"%# over  and use the
recursive function R. Thus there exists an effective way for any term ?v(<) in the
language ℒ∗ with variable < and code 1 to find a natural number % such that
?v
!"(</ ) ="#( ). □

Lemma 4. [ ]!" ≡) "!.

Proof. Recall that [ ]!" = {1∣?v
!"(</ ) ∕= ∅}. Let B0 be the recursive

function from the previous lemma, then 1 ∈ [ ]!" ⇐⇒ ?v
!"(</ ) ∕= ∅ ⇐⇒

",0(v)( ) ∕= ∅ ⇐⇒ 50(B0(1)) ∼= 0 ⇐⇒ B0(1) ∈"!. Thus, [ ]!" ≤) "!.
Conversely, % ∈ "! ⇐⇒ "#( ) ∕= ∅ ⇐⇒ the term f#(<) with code 1(%)

satisfies (f#(<))
v(#)

!" (</ ) ∕= ∅, i.e. "! ≤) [ ]!" . □
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Theorem 3. The enumeration ⟨60,"0⟩ is the least enumeration of the structure
 

!.

Proof. According to Theorem 2, having in mind "! = F !
"

0 , we need to show
that all types of elements & such that & is a set of naturals and & ≤  satisfy
the condition [&]!" ≤ [ ]!" and that there exists a universal set with e-degree
ON/ ( ) for all types [&]!" .

Let & ≤  . Then there exists an e-operator "# such that "#( ) = &.
Therefore, 1 ∈ [&]!" ⇐⇒ the code 11 of the term fn(?

v) belongs to [ ]!" , thus
[&]!" ≤) [ ]!" . Further, using the type [ ]!" , we define the set M! by the
equivalence: (%, 1) ∈ M! ⇐⇒ ∃11(?v1 = fn(?

v)&11 ∈ [ ]!"). Actually, we could
define M! by the equivalence: (%, 1) ∈ M! ⇐⇒ ⟨%, 1⟩ ∈ P!, as well. It is obvious
that M! is universal for the family of all types of the structure  !. □

Let us consider the structure #! = ⟨"(!)!; Φ!⟩. The following definition is
natural, although it is not used because normally we do not consider structures
with p.m.v. functions.

Definition 3. Enumeration of the structure #! is called the pair ⟨6,"⟩, where
6 : ! → "(!)!, " = ⟨!;4⟩ and 4 is a partial m.v.f. in !, such that for all natural
% the equality 6(4(%)) = Φ!(6(%)) holds (here, we mean equality between sets).

Proposition 7. There exists an enumeration ⟨60,"
′⟩ of the structure #! such

that ⟨"′⟩ ≡  .

Proof. Let us recall that 60(%) = "#( ) and define the partial m.v.f. 40 as
follows: ( ∈ 40(%) ⇐⇒ ∃8(50(() ∼= 0&50(%) ∼= 0&R(8, %) = (). It is clear that
⟨,(⟩ ≤  . Then

A ∈ 60(4
0(%)) ⇐⇒ ∃((( ∈ 4(%)&60(() = A) ⇐⇒

∃((∃8(50(() ∼= 0&50(%) ∼= 0&R(8, %) = ()&")( ) = A) ⇐⇒

∃(∃8(")( ) ="&("#( ))&A =")( ) ∕= ∅&"#( ) ∕= ∅) ⇐⇒

∃((")( ) ≤ "#( )&A =")( ) ∕= ∅&"#( ) ∕= ∅) ⇐⇒

∃((A =")( ) ∈ Φ!("#( )) ⇐⇒ A ∈ Φ!(60(%)).

Therefore ⟨60,"
′⟩ is an enumeration of #!.

Further, let us fix some + such that 60(+) =  . Then "#( ) ="#("0( )) =
"3(#,0)( ) and hence

"! = {%∣"#( ) ∕= ∅} ≡ {R(%, +)∣"3(#,0)( ) ∕= ∅}

= {R(%, +)∣50(R(%, +)) ∼= 0} ≡ {R(%, +)∣R(%, +) ∈ 4
0(+)} ≤ ⟨,(⟩ ≡ ⟨"

′⟩ .

Proposition 7 is proved. □

Lemma 5. There exist c.e. sets F [#], % ∈ #, F ′, F [5] such that the effective
sequence of compositions {F [0](F [5])#F ′}#∈$ is recursively isomorphic to the se-
quence {"#}#∈$.
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Proof. Let us notice first that F [0](F [5])#F ′ means the following:

F [0](F [5])0F ′ = F [0]F ′; F [0](F [5])#+1F ′ = ((F [0](F [5])#)F [5])F ′.

Let us denote

F [#]={⟨-, 1⟩∣- ∈ !&0v={⟨%, -⟩}}, F
[5]={⟨⟨%, -⟩, 1⟩∣%, - ∈ !&0v={⟨%+1, -⟩}}.

Further, let F = {⟨%, -⟩∣- ∈"#} and F ′ = {⟨⟨8, -⟩, 1⟩∣⟨8, ⟨-, 1⟩⟩ ∈ F }. Then

- ∈ F [#]F ′(<) ⇐⇒ ∃11(⟨-, 11⟩ ∈ F
[#]&0v1 = {⟨%, -⟩} ⊆ F ′(<))

⇐⇒ ∃11(⟨-, 11⟩ ∈ F
[#]&0v1 = {⟨%, -⟩}&⟨%, -⟩ ∈ F ′(<))

⇐⇒ ∃1(⟨⟨%, -⟩, 1⟩ ∈ F ′&∅ ∕= 0v ⊆ <)

⇐⇒ ∃1(⟨-, 1⟩ ∈ F[#]&∅ ∕= 0v ⊆ <) ⇐⇒ - ∈ F[#](<) ,

- ∈ F [#]F [5](<) ⇐⇒ ∃11(⟨-, 11⟩ ∈ F
[#]&0v1 = {⟨%, -⟩} ⊆ F [5](<))

⇐⇒ ∃11(⟨-, 11⟩ ∈ F
[#]&0v1 = {⟨%, -⟩}&⟨%, -⟩ ∈ F [5](<))

⇐⇒ ∃1(⟨⟨%, -⟩, 1⟩ ∈ F [5]&0v = {⟨%+ 1, -⟩} ⊆ <)

⇐⇒ ∃1(⟨-, 1⟩ ∈ F [#+1]&0v = {⟨%+ 1, -⟩} ⊆ <)

⇐⇒ - ∈ F [#+1](<).

We shall prove by induction the equivalence

- ∈ F [0](F [5])#F ′(<) ⇐⇒ - ∈ F[#](<). (∗)

Indeed, - ∈ F [0](F [5])0F ′(<) ⇐⇒ - ∈ F [0]F ′(<) ⇐⇒ - ∈ F[0](<). Let us
assume the equivalence (∗) is true. Then

- ∈ F [0](F [5])#+1F ′(<) ⇐⇒ - ∈ F [#+1]F ′(<) ⇐⇒ - ∈ F[#+1](<). □

The next two corollaries are obvious.

Corollary 2. The structure  ! = ⟨"(!)!;"0,"1, . . . ;#$%⟩ is equivalent to
the structure  ′! = ⟨"(!)!;F [0], F [5], F ′⟩, where F [0], F [5], F ′ is the c.e. sets from
the previous lemma.

Corollary 3. For any set  of naturals the set "(!)! is finitely generated in
the structure  ′! = ⟨"(!)!;F [0], F [5], F ′⟩ by the single element  .

Proposition 8. For any enumeration {F0, F1, . . . } of the family W the struc-
ture M! = ⟨"(!)!;F0, F1, . . . ;#$%⟩ admits a least enumeration ⟨6,"⟩ such that
 ≤ ⟨"⟩.

Proof. Let 60 : #0 → "(!)! be defined as follows: 60(pn) = F#( ). Take
60 as a basis of a normal enumeration ⟨6,"⟩, where " = ⟨!;40, 41, . . . ;5⟩ and
4%(-) is a computable function of both variables 2, -. According to Proposition 2,
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there exists an effective way for any - to find . = pn ∈ #0 and a term ? such that
- = ? (=/.); thus 6(-) = ?A(=/6(.)) = ?A(=/6

0(pn)) = ?A(=/F#( )) = ?
′
A
(=/ ),

where ? ′ = ?(f#(= )).
Let us denote F! = {%∣5(%) ∼= 0}. Then, using the term ? ′ obtained above,

- ∈ F! ⇐⇒ 5(-) ∼= 0 ⇐⇒ 6(-) ∕= ∅ ⇐⇒ ? ′
A
(=/ ) ∕= ∅ ⇐⇒ 1′ ∈ [ ]"" for the

code 1′ of the term ? ′. Thus, having in mind that we can find 1′ effectively from
-, we have proved that F! ≤) [ ]"" .

Analogously, let 1′ ∈ [ ]"" , ?v
′

= ?v
′

(= ) and % be a fixed natural, such that
60(p#) = F#( ) =  , where . = p# ∈ #0. Then ?

v′

A
(=/ ) = 6(?v

′

 
(=/.)) ∕= ∅ and

let - = ?v
′

 
(=/.). Then 5(-) ∼= 0 and - ∈ F!. Therefore, [ ]"" ≤) F!.

Hence, [ ]"" ≡) F! and ⟨"⟩ ≡ [ ]"" ≡ F!. □

Corollary 4. "! ≤ F!.

Proof. Let F%0 = F [0], F%1 = F [5] and F%2 = F ′ and consider the sequence of
terms ?v(#), where ?v(#) = f%0 ∘ f

#
%1
∘ f%2(<). Here, f#%1 means % times the term f%1 .

Then it is easy to check that % ∈ [ ]!" ⇐⇒ 1(%) ∈ [ ]"" . Thus we have proved
that [ ]!" ≤) [ ]"" , hence "! ≤ F!. □

Corollary 5. The enumeration ⟨60,"0⟩ is the least for the generalized structure
 ! = ⟨"(!)!;W;#$%⟩.
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