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1. MAIN RESULTS

Probably the most investigated linear approximating operator is the Bernstein
polynomial, defined for  ∈ ![0, 1] and " ∈ [0, 1] by

#  (") =

 ∑

!=0

 

(
$

%

)
& ,!("), & ,!(") =

(
%

$

)
"!(1− ") −!.

It is known (see [1, Chapter 10, § 7] and [5, Chapter 9]) that there exists %0 ∈ ℕ
such that for all  ∈ ![0, 1] and % ≥ %0 there holds

∥#  −  ∥ ≤ ' (2#( , %
−1/2), (1.1)
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where ∥ ∘ ∥ stands for the uniform norm on the interval [0, 1], ' is an absolute
constant and (2#( , )) is the Ditzian-Totik modulus of smoothness of second order

with step-weight *(") =
√

"(1− "), defined by (see [5, Chapter 1])

(2#( , )) = sup
0<ℎ≤'

∥Δ2ℎ# ∥

and

Δ2ℎ#(() (") =

{
 ("+ ℎ*(")) − 2 (") +  ("− ℎ*(")), "± ℎ*(") ∈ [0, 1],

0, otherwise.

For  ∈ ,!1)*+(0, 1) and % ∈ ℕ we have

∥#  −  ∥ ≤
'

%
∥*2 ′′∥. (1.2)

Moreover, #  cannot tend to  in ![0, 1] faster than %−1 unless  is a linear
function, in which case we have #  =  for all % (see e.g. [1, Chapter 10, § 5]).

One way to modify the Bernstein operator in order to get larger approximation
rate is to form an appropriate linear combination of its iterates. Here we shall
consider the bounded linear operator ℬ,, : ![0, 1]→ ![0, 1], defined by

ℬ,, = - − (- −# )
,,

where - stands for the identity and . ∈ ℕ. Our main objective is to establish the
following upper estimate of the error of ℬ,, .

Theorem 1.1. For  ∈ !2,−2[0, 1] and . ≥ 2, there holds

∥ℬ,,  −  ∥ ≤
'

%,−1

(
(2#(*

2,−2 (2,−2), %−1/2) +
1

%
∥ (2,−2)∥+

1

%
∥ (2)∥

)
.

The value of the constant ' is independent of  and %.

The above implies a sufficient condition on the smoothness of the function,
which yields an approximation order of %−,.

Corollary 1.2. Let  ∈ ![0, 1] and %, . ∈ ℕ as . ≥ 2. Then:

(a) ∥ℬ,,  −  ∥ ≤
'

%,−1/2

(
∥*2,−1 (2,−1)∥+ ∥ (2,−2)∥+ ∥ (2)∥

)
,

 ∈ ,!2,−2)*+ (0, 1);

(b) ∥ℬ,,  −  ∥ ≤
'

%,

(
∥*2, (2,)∥+ ∥ (2,−2)∥+ ∥ (2)∥

)
,  ∈ ,!2,−1)*+ (0, 1).

The value of the constant ' is independent of  and %.
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In order to extend the estimates above for every continuous functions we can
introduce the /-functional

/,( , )) = inf
-∈./2 −1

!"#

{
∥ − 0∥+ )

(
∥*2,0(2,)∥+ ∥0(2,−2)∥+ ∥0(2)∥

)}
.

for  ∈ ![0, 1], ) > 0 and . ∈ ℕ with . ≥ 2. Standard considerations imply the
following Jackson-type inequality from Corollary 1.2 (b).

Theorem 1.3. Let  ∈ ![0, 1] and %, . ∈ ℕ as . ≥ 2. Then

∥ℬ,,  −  ∥ ≤ '/,( , %
−,).

The value of the constant ' is independent of  and %.

Let us note that

/,( , )
2,) ≤ '

(
(2,( , )) + )2,∥ ∥

)
,  ∈ ![0, 1], ) > 0, (1.3)

where (ℓ( , )) is the classical fixed-step modulus of smoothness of order ℓ, defined
by

(ℓ( , )) = sup
0<ℎ≤'

∥Δℓ
ℎ ∥

and Δℓ
ℎ is the ℓth symmetric finite difference

Δℓ
ℎ (") =

⎧
⎨
⎩

ℓ∑

!=0

(−1)!
(
ℓ

$

)
 

(
"+

(
ℓ

2
− $

)
ℎ

)
, "±

ℓℎ

2
∈ [0, 1],

0, otherwise.

The inequality (1.3) follows from the embedding inequality

∥ (1)∥ ≤ '
(
∥ ∥+ ∥ (ℓ)∥

)
, 3 = 0, . . . , ℓ, (1.4)

and the well-known result of Johnen (see e.g. [1, Chapter 6, Theorem 2.4])

inf
-∈./ℓ−1[0,1]

{
∥ − 0∥+ )ℓ∥0(ℓ)∥

}
≤ ' (ℓ( , )),  ∈ ![0, 1].

All estimates with the Ditzian-Totik modulus are established for % ≥ %0 with
some absolute constant %0. However, the assertions of Corollary 1.2 and Theo-
rem 1.3 are valid for all % (see Remark 3.6 at the end).

We base our proof of Theorem 1.1 on upper estimates for simultaneous approx-
imation by Bernstein polynomials. They are established in the next section. This
approach lays stronger conditions on the function than necessary but provides us
with a simple proof. We verify Theorem 1.1 (and its corollary) in the third and
final section.
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2. SIMULTANEOUS APPROXIMATION BY BERNSTEIN POLYNOMIALS

There is a simple method for deriving upper estimates for combinations of
iterates of a linear operator by iterating the estimate for the operator (see [4,
Theorem 10.2 and Corollary 10.3]). However, it is not applicable in the case of the
Bernstein operator because it does not commute with the associated differential
operator 40 = *20′′. Another difficulty of a technical character lies with the
fact that ℬ,, is not generally a positive operator. In order to get round the
latter, we shall establish upper estimates that are similar to (1.1) for simultaneous
approximation. This will allow us to get the result about ℬ,, still by a certain
iteration. This approach has a shortcoming. It misses the point that ℬ,, provides
better approximation near the ends of the interval [0, 1] (it interpolates  at 0 and
1). The simultaneous approximation by # does not possess this property.

Our first result concerns the unweighted simultaneous approximation by # .

Theorem 2.1. For  ∈ !2[0, 1] there holds

∥(#  −  )(2)∥ ≤ '

(
(2#( 

(2), %−1/2) + (( (2), %−1) +
1

%
∥ (2)∥

)
.

The value of the constant ' is independent of  and %.

Proof. The assertion is trivial for % < 6. For % ≥ 6 it is known (see [14] or [1,
Chapter 10, (2.3)], [5, p. 125]) that

(#  )
(2)(") =

%!

(%− 6)!

 −2∑

!=0

−→
Δ2
1/  

(
$

%

)
& −2,!("), (2.1)

where
−→
Δ2
ℎ (") = Δ2

ℎ ("+ 6ℎ/2) are the forward differences of order 6.
Now, for % = 6 the above formula immediately implies the assertion of the

theorem. Let % > 6. We set

4̃2,  (") = %2
−→
Δ2
1/  

(
%− 6

%
"

)
, " ∈ [0, 1].

Then by (2.1)

(#  )
(2)(") =

%!

%2(%− 6)!
# −2(4̃2,  )("), " ∈ [0, 1]. (2.2)

Hence ∥∥∥∥
%2(%− 6)!

%!
(#  )

(2) −# −2( 
(2))

∥∥∥∥ ≤ ∥4̃2,  −  (2)∥.

Consequently,

∥(#  −  )(2)∥ ≤

(
%2(%− 6)!

%!
− 1

)
∥(#  )

(2)∥

+ ∥4̃2,  −  (2)∥+ ∥# −2( 
(2))−  (2)∥.

(2.3)
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We shall estimate the three quantities on the right above separately.
First, due to (2.2), we have
(
%2(%− 6)!

%!
− 1

)
∥(#  )

(2)∥ =

(
1−

%!

%2(%− 6)!

)
∥# −2(4̃2,  )∥

≤
'

%
∥4̃2,  ∥ ≤

'

%
∥ (2)∥.

(2.4)

The finite forward difference of order 6 of F ∈ ,!2−1[8, 9] can be represented
in the integral form

−→
Δ2
ℎF (") = ℎ2−1

∫ 2ℎ

0

<2(=/ℎ)F
(2)("+ =) >=, " ∈ [8, 9− 6ℎ], (2.5)

where <2 is the 6-fold convolution of the characteristic function of [0, 1] with itself
(see e.g. [1, p. 45]). Consequently,

4̃2,  (") = %

∫ 2/ 

0

<2(%=) 
(2)

(
%− 6

%
"+ =

)
>=, " ∈ [0, 1],

and

∣4̃2,  (")−  (2)(")∣ ≤ %

∫ 2/ 

0

<2(%=)

∣∣∣∣ 
(2)

(
%− 6

%
"+ =

)
−  (2)(")

∣∣∣∣ >=

≤ ' (( (2), %−1), " ∈ [0, 1].

(2.6)

Above we have used that ∫ 2

0

<2(=) >= = 1.

Finally, by (1.1) and [5, Theorem 4.1.2] we get that there exists %0 ∈ ℕ such
that for % ≥ %0

∥# −2( 
(2))−  (2)∥ ≤ ' (2#( 

(2), (%− 6)−1/2) ≤ ' (2#( 
(2), %−1/2). (2.7)

Now, (2.3), (2.4), (2.6) and (2.7) imply the assertion of the theorem.

Remark 2.2. Based on Ditzian [3], Jiang and Xie [11] (or see [12, (16)]) gave a
pointwise generalization of

∥∥∥∥
%2(%− 6)!

%!
(#  )

(2) −  (2)
∥∥∥∥ ≤ '
(
(2#( 

(2), %−1/2) + (( (2), %−1)
)
.

Theorem 2.1, the property of the moduli (see [5, Theorem 2.1.1] or [1, Chapter
6, Theorem 6.1])

(2#( , )) ≤ ' )2∥*2 ′′∥,  ∈ ,!1)*+(0, 1),

and (1.4) imply the following estimate for the simultaneous approximation by the
Bernstein polynomials (cf. [7]).
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Corollary 2.3. For  ∈ !2+2[0, 1] and % ∈ ℕ there holds

∥(#  −  )(2)∥ ≤
'

%

(
∥ (2+2)∥+ ∥ (2)∥

)
.

The value of the constant ' is independent of  and %.

Let us mention that Gonska, Heilmann and Raşa [9] established a quantitative
Voronovskaya-type theorem about simultaneous approximation by # . They also
gave an account of other similar results.

Inequalities like the one in Theorem 2.1 but in terms of the classical moduli of
smoothness were earlier established in [8] and [13].

A somewhat neater upper estimate holds in terms of the differential operator
*22(>/>")22.

Theorem 2.4. For  ∈ !22[0, 1] there holds

∥*22(#  −  )(22)∥ ≤ '

(
(2#(*

22 (22), %−1/2) +
1

%
∥ (22)∥

)
.

The value of the constant ' is independent of  and %.

Proof. The assertion is trivial for % < 26. Let % ≥ 26. Using (2.1) we get

*22(")(#  )
(22)(") =

 −2∑

!=2

Δ221/  

(
$

%

)
$! (%− $)!

($ − 6)! (%− $ − 6)!
& ,!(")

= # (42,  )("),

(2.8)

where we have set

42,  (" ,!) = *2, (" ,!)%
22Δ221/  (" ,!), " ,! =

$

%
, $ = 0, 1, . . . , %,

and

*2, (") =

2−1∏

3=0

(
"−

?

%

)(
1− "−

?

%

)
,

as 42,  (" ,!) is defined to be 0 for $ = 0, . . . , 6− 1, %− 6+ 1, . . . , %.

Next, we get by means of (1.1) and (2.8) that for % ≥ %0 with some %0 ∈ ℕ

∥*22(#  −  )(22)∥

≤ ∥# (*
22 (22))− *22 (22)∥+ ∥*22(#  )

(22) −# (*
22 (22))∥

≤ '

(
(2#(*

22 (22), %−1/2) + max
!=0,..., 

∣42,  (" ,!)− *22(" ,!) 
(22)(" ,!)∣

)
.
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For $ = 0 and $ = %, we have 42,  (" ,!) = *22(" ,!) = 0. For $ = 1, . . . , 6 − 1,
%− 6+ 1, . . . , %− 1, 6 ≥ 2, we directly get

∣42,  (" ,!)− *22(" ,!) 
(22)(" ,!)∣ = *22(" ,!)∣ 

(22)(" ,!)∣

≤
'

%2
∥ (22)∥.

Further, for $ = 6, . . . , %− 6 we use the representation (see (2.5))

Δ22ℎ  (") = ℎ22−1
∫ 2ℎ

−2ℎ

<22(=/ℎ+ 6) (22)("+ =) >=

= ℎ22−1
∫ 2ℎ

0

<22(=/ℎ+ 6)[ (22)("+ =) +  (22)("− =)] >=, " ∈ [6ℎ, 1− 6ℎ],

to get for " ∈ [6/%, 1− 6/%]

∣42,  (")− *22(") (22)(")∣ ≤ %

∫ 2/ 

0

<22(%=+ 6)∣Δ25(*
22 (22))(")∣ >=

+ %

∫ 2/ 

−2/ 

<22(%=+ 6)∣*2, (") − *22("+ =)∣ ∣ (22)("+ =)∣ >=

≤ '

(
(2(*22 (22), %−1) +

1

%
∥ (22)∥

)
.

Above we have also taken into account the trivial estimate

∣*2, (") − *22("+ =)∣ ≤ ∣*2, (")− *22(")∣ + ∣*22(")− *22("+ =)∣

≤
'

%
+ ' ∣=∣ ≤

'

%
, " ∈ [0, 1], = ∈

[
−
6

%
,
6

%

]
.

To complete the proof of the theorem, we apply [5, Theorem 3.1.1], which gives
that there exists )0 such that

(2(F, )2) ≤ ' (2#(F, )), 0 < ) ≤ )0,

for every F ∈ ![0, 1].

Just as in the unweighted case, but using the embedding inequality (see [6,
Lemma 1])

∥@6+1 (1)∥ ≤ '
(
∥@6 ∥+ ∥@6+ℓ (ℓ)∥

)
, 3 = 0, . . . , ℓ,

where @(") = " and A ∈ ℝ, we derive the following estimate.

Corollary 2.5. For  ∈ ![0, 1] such that  ∈ ,!22+1)*+ (0, 1) and % ∈ ℕ there holds

∥*22(#  −  )(22)∥ ≤
'

%

(
∥*22+2 (22+2)∥+ ∥ (22)∥

)
.

The value of the constant ' is independent of  and %.
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3. PROOF OF THEOREM 1.1

The estimates of the error of ℬ,, can now be quite straightforwardly estab-
lished by means of the results on simultaneous approximation of the previous sec-
tion.

Proof of Theorem 1.1. First, the estimate (1.2) implies

∥ℬ,,  −  ∥ = ∥(# − -), ∥ ≤
'

%
∥*2[(# − -),−1 ]′′∥.

For . = 2 we estimate above the right side of this inequality by means of Theo-
rem 2.4 and get the assertion in this case. For . ≥ 3 we apply instead Corollary
2.5 and arrive at

∥ℬ,,  −  ∥ ≤
'

%2

(
∥*4[(# − -),−2 ](4)∥+ ∥[(# − -),−2 ](2)∥

)
.

Further, we estimate the first term on the right above by Corollary 2.5 and the
second by Corollary 2.3 and continue in this way, applying also (1.4), until we get

∥ℬ,,  −  ∥ ≤
'

%,−1

(
∥*2,−2[(# − -) ](2,−2)∥

+ ∥[(# − -) ](2,−4)∥+ ∥[(# − -) ](2)∥
)
.

Now, the assertion of the theorem follows from Theorem 2.4, Corollary 2.3 and
(1.4).

Proof of Corollary 1.2. Assertion (a) follows from Theorem 1.1 and the prop-
erty (see [5, Theorems 2.1.1 and 4.1.3] or [1, Chapter 6, Theorem 6.1])

(2#( , )) ≤ ' ) ∥* ′∥,  ∈ ,!)*+(0, 1), 0 < ) ≤ )0.

Assertion (b) follows from Theorem 1.1 just as Corollary 2.5 follows from
Theorem 2.4.

Remark 3.6. Let us note that in all estimates with the Ditzian-Totik modulus we
had to assume that % ≥ %0 with some absolute constant %0 since (1.1) was proved
under this restriction and some of the properties of the modulus we used are known
only for ) small enough. However, (1.2) as well as its analogue with %−1/2∥* ′∥ on
the right are valid for all % ∈ ℕ and hence all the corollaries as well as Theorem 1.3
are valid for all %.

NOTE ADDED IN PROOF. After submission I learned of the papers of H.
Gonska and X.-l. Zhou [10], and of Ch. Ding and F. Cao [2], where results that
are similar to and somewhat stronger than Theorem 1.3 were established. The
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techniques used there are different. Also, I learned of a paper by Sevy [15] who
established upper estimates for the unweighted simultaneous approximation by such
combinations of iterates of an operator, following just the same idea like the one
used in the proof of Theorem 1.1. I am thankful to Prof. G. Tachev (University of
Architecture, Civil Engineering and Geodesy, Sofia) for helping me find out those
papers. In a subsequent publication I am going to show how the results proved in
the present paper can be improved to include those in the above-mentioned works
(in the univariate case).
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