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The TTE-approach to computability of real functions uses infinitary names of the ar-
gument’s and the function’s values, computability being defined as the existence of
some algorithmic procedure transforming the names of any argument’s value into ones
of the corresponding value of the function. Two ways to avoid using such names are
considered in the present paper. At each of them, the corresponding characterization
of computability of real functions is through the existence of an appropriate recursively
enumerable set establishing some relation between rational approximations of the ar-
gument’s value and rational approximations of the corresponding value of the function.
The characterizations in question are derived from ones for computability of functions
in metric and in topological spaces.
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1. INTRODUCTION

The widely used TTE-approach to computability of real functions (cf. e.g. [6])
uses infinitary names of the argument’s and the function’s values, and computabil-
ity is defined as the existence of some algorithmic procedure transforming all such
names of any argument’s value into ones of the corresponding value of the func-
tion. The standard TTE-computability of real functions1 is a particular instance of

1I.e. the (  ,  )-computability in the sense of [6] of partial functions from ℝ to ℝ, and, more
generally, the (  ,  q)-computability of partial functions from ℝ to ℝq.
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TTE-computability of functions in metric spaces, which, under some assumptions
satisfied in this particular case, was characterized in [4] without using infinitary
names. In the case in question, the corresponding characterization is through the
existence of an appropriate recursively enumerable set establishing some relation
between rational approximations of the argument’s value and rational approxima-
tions of the corresponding value of the function. In [5, Example 3.10], a simpler
similar characterization of the computability of real functions is given, and it is
obtained by using the fact that the standard TTE-computability of real functions
is a particular instance of TTE-computability of functions in topological spaces.2 A
somewhat more systematic consideration of these two characterizations is done in
the present paper by introducing the notions of a metric approximation net and a
topological approximation net for a real function. On the whole, the paper follows
the slides of the author’s talk at the 2013 Spring Scientific Conference of FMI3,
thus some details are omitted.

1.1. TWO CHARACTERIZATIONS OF THE COMPUTABILITY

OF A REAL NUMBER

The two above-mentioned characterizations of computability of a real function
can be regarded as analogs of the ones for the notion of computable real number
which are indicated below.

Theorem 1. For any real number  , the following three conditions are equiva-
lent:

A. The number  is computable.

B. A recursively enumerable set ! of ℚ× ℕ exists such that:

1. ∀(", #) ∈ !

(

∣"−  ∣ <
1

#+ 1

)

.

2. ∀# ∈ ℕ ∃"
(

(", #) ∈ !
)

.

C. The set

{

(", #) ∈ ℚ× ℕ

∣

∣

∣

∣

∣" −  ∣ <
1

#+ 1

}

is recursively enumerable.

The proof of this theorem is straightforward.

Remark 1. Of course, condition C is equivalent to the existence of a recursively
enumerable subset ! of ℚ × ℕ such that

∣" −  ∣ <
1

#+ 1
⇔ (", #) ∈ !

for any " ∈ ℚ and any # ∈ ℕ.

2TTE-computability in the topological case is considered, for instance, in [6, Section 3.2] and
in [1,2,3,7].

3Held in Sofia on March 16, 2013.
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Remark 2. It can be non-constructively proved that Theorem 1 holds also with
“recursive” instead of “recursively enumerable”.

1.2. SOME NOTATIONS, ASSUMPTIONS AND DEFINITIONS

For % = (%1, . . . , % ) ∈ ℝ
 , where & ∈ ℕ+, we set

∥%∥ = max(∣%1∣, . . . , ∣% ∣)

For ' ∈ ℕ, we set (! =
1

'+ 1
.

Throughout the paper, it will be supposed that

), * ∈ ℕ+, + ⊆ ℝ", , : + → ℝ#.

Two definitions follow. The notion introduced in the first one is a particular in-
stance of a notion introduced in [4]. The second definition introduces a similar, but
simpler notion. Some similarity can be observed between the conditions of these
definitions and the conditions B and C in Theorem 1.

Definition 1. A metric approximation net (abbr. m.a.n.) for the function , is
a subset - of ℚ" × ℕ×ℚ# × ℕ such that the following conditions are satisfied for
any . ∈+ :

1. ∀(/,0, ", #)∈-
(

∥/−.∥<($ ⇒ ∥"−,(.)∥<(%
)

.

2. ∀#∈ℕ ∃0∈ℕ ∀/∈ℚ"
(

∥/−.∥<($ ⇒ ∃"
(

(/,0, ", #)∈-
))

.

Definition 2. A topological approximation net (abbr. t.a.n.) for the function ,

is a subset - of ℚ" × ℕ×ℚ# × ℕ such that

∥"− ,(.)∥ < (% ⇔ ∃/ ∃0
(

(/,0, ", #) ∈ -& ∥/− .∥ < ($
)

(1.1)

for all . ∈+ , " ∈ ℚ", # ∈ ℕ.

The two notions are different. The function , can be chosen so that a m.a.n.
for , exists which is not a t.a.n. for it, and a t.a.n. for , exists which is not a m.a.n.
for it.

Example 1. Let ) = * = 1, + = {0}, ,(0) = 0, and let us set

-1 = {(/,0, 0, #) ∣ / ∈ ℚ, 0, # ∈ ℕ},

-2 = {(0,0, ", #) ∣ " ∈ ℚ, 0, # ∈ ℕ, ∣"∣ < (%}.

Then -1 is a m.a.n. for the function , without being a t.a.n. for it, and -2 is a
t.a.n. for the function , without being a m.a.n. for it.
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Remark 3. Definitions 1, 2 imply immediately that, whenever - is a t.a.n. for
the function , , and some subset of - is a m.a.n. for it, the set - is also a m.a.n.
for , .

Despite the difference between the notions of m.a.n. and t.a.n., some essential
properties of them are similar. The next theorem is a particular instance of a result
from [4].

Theorem 2. A m.a.n. for the function , exists if and only if , is continuous.
Then the following set is a m.a.n. for , containing as subsets all such ones:

{

(/,0, ", #) ∈ ℚ" × ℕ×ℚ# × ℕ
∣

∣∀. ∈+
(

∥/− .∥ < ($ ⇒ ∥"− ,(.)∥ < (%
)}

.

It is easily seen that Theorem 2 remains true after replacing m.a.n. with t.a.n.
in its statement.

2. M.A.N., T.A.N. AND STANDARD TTE-COMPUTABILITY
OF REAL FUNCTIONS

From now on, let 1 :ℕ→ℚ" be a computable enumeration of ℚ", and 2 :ℕ→ℚ#

be a computable enumeration of ℚ#. In the terminology of [5], an 1-name of an
element . of ℝ" is any function 3 : ℕ → ℕ such that ∥1(3(0)) − .∥ < ($ for
all 0 ∈ ℕ, and similarly is defined what is a 2-name of an element of ℝ#. The
function , is called (1, 2)-computable if a recursive operator exists which transforms
all 1-names of any . ∈+ into 2-names of ,(.).

Clearly, the (1, 2)-computability of , does not depend of the choice of the
computable enumerations 1 and 2, and it is equivalent to the (4", 4#)-computability
of , .

The next theorem follows immediately from the main theorem in [4].

Theorem 3. The function , is (4", 4#)-computable if and only if a recursively
enumerable m.a.n. for , exists.

In [5], another computability notion was considered besides (1, 2)-computabil-
ity. In the case considered here, it looks as follows. Suppose a computable bijective
mapping of ℕ2 of ℕ is chosen, and let ⟨5, '⟩ denote the image of the pair (5, ') under
this mapping. We consider the indexed base / = {6&}&∈ℕ of the space ℝ" and
the indexed base 0 = {7'}'∈ℕ of the space ℝ#, which are defined by means of the
equalities

6⟨(,$⟩ = {. ∈ ℝ
" ∣ ∥1(8)− .∥ < ($ } ,

7⟨*,%⟩ = { ∈ ℝ
# ∣ ∥2(9)−  ∥ < (% } .

The function , is called (/ ,0)-computable if an enumeration operator exists which,
for any . ∈+ , transforms the set {< ∈ ℕ ∣. ∈ 6&} into the set {= ∈ ℕ ∣ ,(.) ∈ 7'}.
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As seen from [5], standard TTE-computability and (/ ,0)-computability of , are
equivalent.

In the general case studied in [5], some topological spaces X and Y with
countable bases are considered instead of ℝ" and ℝ#, and / = {6&}&∈ℕ, 0 = {7'}'∈ℕ
can be any indexed countable bases of these spaces. Under some assumptions, it
is shown that the (/ ,0)-computability of , is equivalent to the existence of a
recursively enumerable subset > of ℕ2 with the following property:

∀. ∈+ ∀= ∈ ℕ
(

,(.) ∈ 7' ⇔ ∃<
(

(<, =) ∈ > & . ∈ 6&
) )

(2.1)

(this is an improvement of a result from [3]).
The above-mentioned assumptions are satisfied in the case considered here

thanks to the recursive enumerability of the sets

{(/1, /2, () ∈ ℚ
" ×ℚ" ×ℚ ∣ ∥/1 − /2∥ < (},

{("1, "2, () ∈ ℚ
# ×ℚ# ×ℚ ∣ ∥"1 − "2∥ < (}

(these sets are even recursive). In this case, the property (2.1) is obviously equiva-
lent to the following one:

∥2(9)− ,(.)∥ < (% ⇔ ∃8,0 ∈ ℕ
(

(⟨8,0⟩, ⟨9, #⟩) ∈ > & ∥1(8)− .∥ < ($
)

(2.2)

for any . ∈ + and all 9, # ∈ ℕ. Making use of (2.2), one easily gets the following
result.

Theorem 4. The function , is (4", 4#)-computable if and only if a recursively
enumerable t.a.n. for , exists.

Proof. Cf. Example 3.10 in [5].

2.1. SOME EXAMPLES OF RECURSIVELY ENUMERABLE T.A.N.’S

Example 2. Let ) = * = 1, + = ℝ ∖ {0}, ,(.) =
1

.
for any . ∈+ , and let

- =

{

(/,0, ", #) ∈ ℚ× ℕ×ℚ× ℕ

∣

∣

∣

∣

($ < ∣/∣,

∣

∣

∣

∣

"−
1

/

∣

∣

∣

∣

+
($

∣/∣(∣/∣ − ($)
≤ (%

}

.

We will show that - is a recursively enumerable t.a.n. for , . The recursive enu-
merability of this set is clear (it is even recursive). To prove that - is a t.a.n.
for , , we have to show that, whenever . ∈ ℝ ∖ {0}, " ∈ ℚ and # ∈ ℕ, the inequality
∣

∣

∣

∣

"−
1

.

∣

∣

∣

∣

< (% holds if and only if

($ < ∣/∣,

∣

∣

∣

∣

"−
1

/

∣

∣

∣

∣

+
($

∣/∣(∣/∣ − ($)
≤ (%, ∣/− .∣ < ($ (2.3)
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for some / ∈ ℚ and some 0 ∈ ℕ. Let . ∈ ℝ ∖ {0}, " ∈ ℚ, # ∈ ℕ. If / ∈ ℚ, 0 ∈ ℕ
and the inequalities (2.3) hold, then ∣.∣ > ∣/∣−($ and therefore

∣

∣

∣

∣

"−
1

.

∣

∣

∣

∣

≤

∣

∣

∣

∣

"−
1

/

∣

∣

∣

∣

+
∣.− /∣

∣/∣ ∣.∣
<

∣

∣

∣

∣

"−
1

/

∣

∣

∣

∣

+
($

∣/∣(∣/∣ − ($)
≤ (%.

Suppose now that

∣

∣

∣

∣

"−
1

.

∣

∣

∣

∣

< (%. Then

($ < ∣.∣,

∣

∣

∣

∣

"−
1

.

∣

∣

∣

∣

+
($

∣.∣(∣.∣ − ($)
< (%

for some 0 ∈ ℕ. At such a choice of 0, the inequalities (2.3) will be satisfied by
any rational number /, which is sufficiently close to ..

Remark 4. It can be shown that {(/,0, ", #) ∈ - ∣ /" = 1} is a m.a.n. for , .
Making use of Remark 3, we conclude that - is also a m.a.n. for , .

Example 3. Let ) = * = 1, + = ℝ, ,(.) = cos. for all . ∈ + . For any
8 ∈ ℕ, let -( be the set of all (/,0, ", #) ∈ ℚ×ℕ×ℚ×ℕ satisfying the inequalities

/2 ≤ (28 + 1)(28 + 2), ∣"− @((/)∣+
/2(

2(28)!
+ ($ ≤ (%, (2.4)

where

@((/) = (−1)(
/2(

2(28)!
+
∑

&<(

(−1)&
/2&

(2<)!
.

Let - =
∪∞
(=0

-(. The set - is recursively enumerable. We will show that it is
a t.a.n. for the function , . Indeed, let . ∈ + , " ∈ ℚ, # ∈ ℕ. We will prove
that the equivalence (1.1) holds. Suppose first that (/,0, ", #) ∈ - for some /

and 0 such that ∣/ − .∣ < ($. Then there exists some 8 ∈ ℕ which satisfies the
inequalities (2.4), and, using it, we get

∣"− ,(.)∣ ≤ ∣"− @((/)∣+ ∣@((/)− cos /∣+ ∣ cos /− cos.∣

< ∣"− @((/)∣+
/2(

2(28)!
+ ($ ≤ (% .

Conversely, let ∣" − ,(.)∣ < (%. Natural numbers 8 and 0 can be chosen which
satisfy the inequalities

.2 < (28 + 1)(28 + 2), ∣" − ,(.)∣+
.2(

(28)!
+ ($ < (%,

and then

/2 < (28 + 1)(28 + 2), ∣"− ,(/)∣+
/2(

(28)!
+ ($ < (%, ∣/− .∣ < ($
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for any rational number / sufficiently close to .. At such a choice of 8, 0 and /,
the quadruple (/,0, ", #) will belong to -(, and therefore also to -, because then

∣"− @((/)∣+
/2(

2(28)!
+ ($ ≤ ∣"− ,(/)∣+ ∣ cos/− @((/)∣+

/2(

2(28)!
+ ($

≤ ∣"− ,(/)∣+
/2(

(28)!
+ ($ < (%.

Remark 5. The same set - is shown in [4] to be a m.a.n. for , .

Example 4. Let ) = * = 1, + = ℝ ∖ ℤ, ,(.) = ⌊.⌋ for any . ∈ + . Then the
recursive set

- =

{(

8 +
1

2
, 1, ", #

)∣

∣

∣

∣

8 ∈ ℤ & " ∈ ℚ & # ∈ ℕ & ∣"− 8∣ < (%

}

is a t.a.s. for , . Indeed, let . ∈ + , " ∈ ℚ, # ∈ ℕ. If (/,0, ", #) ∈ - and

∣/ − .∣ < ($, then / = 8 +
1

2
, ∣" − 8∣ < (% for some integer 8, and ($ =

1

2
, thus

∣

∣

∣

∣

8 +
1

2
− .

∣

∣

∣

∣

<
1

2
, hence ,(.) = 8 and therefore ∣" − ,(.)∣ < (%. Conversely, if

∣"− ,(.)∣ < (% then (/,0, ", #) ∈ - and ∣/− .∣ < ($ for / = ,(.) +
1

2
and 0 = 1.

Remark 6. The set - from Example 4 is not a m.a.n. for , , since condition 2
of Definition 1 is violated.

Example 5. Let ), *,+, , be the same as in Example 4, but - be the set of all
(/,0, ", #) ∈ ℚ× ℕ×ℚ× ℕ which satisfy the inequalities

/+ ($ ≤ ⌊/− ($⌋+ 1, ∣"− ⌊/− ($⌋∣ < (%. (2.5)

This set is recursive too. We will show that it is also a t.a.n. for , . Let . ∈+ , " ∈
ℚ, # ∈ ℕ. If some / ∈ ℚ and 0 ∈ ℕ satisfy the inequalities (2.5) and the inequality
∣/ − .∣ < ($, then ,(.) = ⌊/ − ($⌋ and therefore ∣" − ,(.)∣ < (%. Conversely, if
∣" − ,(.)∣ < (%, then the inequalities (2.5) and the inequality ∣/ − .∣ < ($ can be
satisfied by choosing some 0 ∈ ℕ with . − ($ > ⌊.⌋ and . + ($ < ⌊.⌋ + 1, and
then choosing the rational number / sufficiently close to ..

Remark 7. The set - from Example 5 is a m.a.n. for , , since so is the set
{(/,0, ", #) ∈ - ∣ " = ⌊/− ($⌋}.

REFERENCES

1. Brattka, V.: Computability over topological structures. In: Computability and Mod-
els, (S. B. Cooper and S. S. Goncharov, Eds.). Kluwer Academic Publishers, 2003,
93–136.

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 115–122. 121



2. Grubba, T., K. Weihrauch: On computable metrization. Electron. Notes Theor.
Comput. Sci., 167, 2007, 345–364.

3. Korovina, M., O. Kudinov: Towards computability over effectively enumerable topo-
logical spaces. Electron. Notes Theor. Comput. Sci., 221, 2008, 115–125.

4. Skordev, D.: An epsilon-delta characterization of a certain TTE computability no-
tion. arXiv:1207.7270 [math.LO], 2012.

5. Skordev, D.: Approximation systems for functions in topological and in metric
spaces. In: Selected Papers of the 9th Int. Conf. on Computability and Complexity in
Analysis (CCA) 2012 (http://www.lmcs-online.org/ojs/specialIssues.php?id=55),
Logical Methods in Computer Science, 9(4:15), 2013, 1–21.

6. Weihrauch, K.: Computable Analysis. An Introduction. Springer-Verlag, 2000.

7. Weihrauch, K., T. Grubba: Elementary computable topology. J. Univers. Comput.
Sci., 15, 2009, 1381–1422.

Received on April 12, 2013
In revised form on July 22, 2014

Faculty of Mathematics and Informatics
“St. Kl. Ohridski” University of Sofia
5, J. Bourchier blvd., 1164 Sofia
BULGARIA
e-mail: skordev@fmi.uni-sofia.bg

122 Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 115–122.


