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1. INTRODUCTION

The aim of this paper is to prove a seven-dimensional version of the main
result established in [22]. Namely, we give a sharp lower bound of the first non-
zero eigenvalue of the sub-Laplacian on a compact seven-dimensional quaternionic
contact (abbr. QC) manifold, assuming some condition on the qc-Ricci tensor,
torsion tensor and its derivatives. We pay attention to the fact that a similar result
has been established in our resent paper [23], in which it is concerned the so called
P-function and its non-negativity for any eigenfunction.

The problem concerning the sharp estimation of the first eigenvalue of the
sub-Laplacian arises from the classical Lichnerowicz’ theorem [33], giving a sharp
lower bound of the first eigenvalue of the (Riemannian) Laplacian on a compact
Riemannian manifold, assuming some a-priori estimate on the Ricci tensor. More
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precisely, it was shown in [33] that for every compact Riemannian manifold ( , !)
of dimension " for which the a-priori estimate

#$%(&,' ) ≥ ("− 1)!(&,' ) (1.1)

holds true, the first positive eigenvalue (1 of the Laplacian satisfies the sharp esti-
mate

(1 ≥ ". (1.2)

The above estimate is sharp in the sense that the equality is attained on the round
unit "-dimensional sphere ) (1).

In a natural way, a similar question arises in the sub-Riemannian geometry.
Recently, a number of Lichnerowicz-type results have been established in the CR
case. All of them are provoked by the Greenleaf’s work [17], in which it is obtained
a Lichnerowicz-type result for a (2"+ 1)-dimensional CR manifold, " ≥ 3. Subse-
quently, the above result was extended to the case " = 2 in [34], where the authors
have used Greenleaf’s method. Another, more restrictive result can be found in
[1]. In the quaternionic contact geometry a sharp estimate of the first eigenvalue of
the sub-Laplacian is established in [22] for the (4"+3)-dimensional QC manifolds,
" ≥ 2.

The situation is more delicate in the lowest dimensions in the CR geometry
and the QC geometry. The reason that this happens is that in the low-dimensional
geometries appear some additional difficulties, which require a different geometric
analysis, see [18, 20] for the QC case. In the CR, as well as in the QC low-
dimensional geometries it is necessary to be involved some different methods in
comparison with these in the bigger dimensions. An exception to the rule is the
conformal flatness problem, where there are no differences between the seven and
the bigger dimensional cases in the QC geometry, in contrast to the CR geometry,
see [6, 12, 30, 25]. In the three-dimensional CR geometry a sharp estimate is
obtained in [13], where, in contrast to the higher dimensions, the author involves the
CR-Paneitz operator and imposes the additional assumption for its non-negativity
(some related results in the CR geometry appear in [7, 8, 9, 10] and [11]). In
the seven-dimensional QC geometry a similar result has been established in [23],
where the authors introduce a non-linear * operator, motivated by the Paneitz
operators, which appear in the Riemannian and the CR geometries. Precisely, the
next theorem holds.

Theorem 1.1. [23] Let ( , !,ℚ) be a compact quaternionic contact manifold
of dimension seven. Suppose there is a positive constant +0 such that the qc-Ricci
tensor #$% and the torsion tensor , 0 satisfy the Lichnerowicz type inequality

#$%(&,&) + 6, 0(&,&) ≥ +0!(&,&) (1.3)

for every horizontal vector field &. If, in addition, the -−function of any eigen-
function of the sub-Laplacian is non-negative, then for any eigenvalue ( of the
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sub-Laplacian △ we have the inequality

( ≥ 1

3
+0. (1.4)

Another proof of the main result in [22] is given in [23] via the (established)
non-negativity of the - -function in the higher dimensions.

Another Lichnerowicz-type result in the 3D CR geometry is proved in [34],
where the Ricci tensor, the torsion tensor and some its covariant derivatives partake
in the a-priori condition. The main result of the present paper is namely a QC
analog of the upper result.

Our main result follows.

Theorem 1.2. Let ( , !,ℚ) be a seven-dimensional compact quaternionic con-
tact manifold. Suppose there exists a positive constant +0 such that the qc-Ricci
tensor #$% and the torsion tensor , 0 satisfy the Lichnerowicz type inequality

#$%(&,&)− 2, 0(&,&)− 36

+0
.(&) ≥ +0!(&,&) (1.5)

for any horizontal vector field &, where

.(&)
def
=

3
∑

!=1

[1

6
(/!&)2) + 2∣, (0!, &)∣2 − 2

9
/!&
(

(∇" ,
0)(1#, /!&)

)

+
1

6
/!&
(

(∇" , )(0$, 1#, /%&)− (∇" , )(0%, 1#, /$&)
)

− (∇&!, )(0!, &,&)
]

.

Then for the first nonzero eigenvalue ( of the sub-Laplacian the next sharp estimate
holds true

( ≥ 1

3
+0. (1.6)

The torsion tensor , 0, the QC-Ricci tensor #$% and the normalized QC-scalar
curvature ) are defined in (2.6) and (2.11). See Convention 1.4 for the summation
rules in the definition of the function .(&).

Another natural question that arises from the Riemannian geometry is study-
ing the case of equality in the estimate (1.6) of Theorem 1.2. The corresponding
problem in the Riemannian case was considered by Obata [36]. More precisely, as
a consequence of his general result it can be stated that the equality in (1.2) is
attained if and only if the Riemannian manifold ( , !) is isometrical to the unit
sphere ) (1) endowed with the round metric, as (1.1) holds. This result has pro-
voked a similar question in the sub-Riemannian geometry and in particular in the
CR geometry, where the problem is successfully solved, see [28, 29, 35].

The corresponding question in the QC geometry is completely resolved for
higher dimensions (2$3 ≥ 11) in [24], but it remains still open in the seven-
dimensional case, except of the 3−Sasakian case [23, Corollary 1.2], where it was
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shown that the minimal possible eigenvalue of the sub-Laplacian is attained only
on the standard unit 3−Sasakian sphere (up to a QC-equivalence).

In [21] the authors describe explicitly the eigenfunctions corresponding to the
first eigenvalue of the sub-Laplacian on the standard unit 3−Sasakian sphere.

In connection with the studying of the equality cases in the estimates (1.4)
and (1.6) we get as a simple consequence from Theorem 1.1 and Theorem 1.2 the
following

Corollary 1.3. Let ( , !,ℚ) be a compact quaternionic contact manifold of
dimension seven and 4 be an arbitrary eigenfunction of the first eigenvalue ( of the
sub-Laplacian. Assume that some of the next a-priori conditions holds:

a) The inequality (1.3) is satisfied and , 0(∇4,∇4) ≥ 0 (resp. , 0(∇4,∇4) ≤ 0).

b) The inequality (1.5) is satisfied and 2, 0(∇4,∇4) − 36
'0
.(∇4) ≥ 0 (resp.

2, 0(∇4,∇4)− 36
'0
.(∇4) ≤ 0).

If, in addition, ( takes its minimal possible value, ( = 1
3+0, then the sharp estimate

) ≤ +0
6

(resp. ) ≥ +0
6
) (1.7)

holds true.

In order to simplify the exposition, we state the following

Convention 1.4. Throughout this paper we shall suppose that:

a) &,', 5, 6 denote horizontal vector fields, i.e. &,', 5, 6 ∈ Γ(7), while ., 8,
*, 9 denote arbitrary vector fields, i.e. .,8,*,9 ∈ Γ(, );

b) {11, . . . , 14 } stands for a local orthonormal basis of the horizontal distribution
7;

c) if two equal vectors from the basis {11, . . . , 14 } appear in a given formula, then
we have summation over them. For example, for a (0,4)-tensor - , the formula
+ = - (1(, 1#, 1#, 1() means + =

∑4 
#,(=1 - (1(, 1#, 1#, 1();

d) the triples ($, <, +) and (=, >, ?) denote cyclic permutations of (1, 2, 3);

e) = is a number from the set {1, 2, 3}, = ∈ {1, 2, 3}.

2. PRELIMINARIES ON THE QUATERNIONIC CONTACT GEOMETRY

The quaternionic contact structures were introduced by O. Biquard [4]. One
can think these are quaternionic analogues of the CR structures. We refer the
reader to [18], [25] and [27] for comprehensive exposition and further results.
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2.1. QUATERNIONIC CONTACT MANIFOLDS AND THE BIQUARD CONNECTION

Definition 2.1. A quaternionic contact (QC) structure on a (4"+ 3)-dimen-
sional manifold  is the data of co-dimension three distribution 7 on  (which
is called horizontal space), locally given as the kernel of a 1-form @ = (@1, @2, @3)
(the contact form) with values in ℝ3, 7 = A1B(@), which satisfy:

1. 7 is equipped with an )C("))C(1)-structure, i.e. there exist a Riemannian
metric ! on 7 and a rank three bundle ℚ consisting of endomorphisms on
7, locally generated by the three almost complex structures /! : 7 → 7,
= = 1, 2, 3, satisfying the quaternionic identities: /21 = /22 = /23 = −$2∣* ,
/1/2 = −/2/1 = /3, and which are Hermitian compatible with the metric:
!(/!⋅, /!⋅) = !(⋅, ⋅);

2. the compatibility conditions

2!(/!&,' ) = 2@!(&,' ), = = 1, 2, 3,

hold.

A manifold  , endowed with a QC structure, is called a quaternionic contact (QC)
manifold, and is denoted by ( , !,ℚ) (or ( , !,ℚ, @)).

Note that given a QC structure generates a 2-sphere bundle D of almost com-
plex structures on 7 , locally given by D = {E/1 + F/2 + %/3∣E2 + F2 + %2 = 1}. As
Biquard shows in [4], given a contact form @ on  determines in a unique way
the metric and the quaternionic structure on the horizontal space 7 (if they exist).
Moreover, the rotation of the contact form and the quaternionic structure (i.e. the
almost complex structures /1, /2 and /3) by the same rotation gives again a contact
form and an almost complex structures, satisfying the above conditions (the metric
is unchanged). Another essential fact is that given a horizontal distribution and
a metric on it determine at most one 2-sphere bundle of associated contact forms
and a corresponding 2-sphere bundle of almost complex structures [4].

Basic (and essential) examples of QCmanifolds are the quaternionic Heisenberg
group G(ℍ) (the flat model), endowed with the corresponding QC structure, and
the 3-Sasakian manifolds, see [27].

On a quaternionic contact manifold with a fixed horizontal distribution 7 and
a metric ! on it there exists a canonical connection, the Biquard connection, defined
in [4]. Precisely, the following theorem holds.

Theorem 2.2. [O. Biquard, [4]] Let ( , !,ℚ) be a QC manifold of dimension
4"+ 1 > 7 with a fixed horizontal distribution 7 and a metric ! on it. Then there
exist a unique connection ∇ on  with torsion tensor , and a unique supplemen-
tary distribution H to 7 in , , such that the following conditions hold:

1. ∇ preserves the decomposition 7 ⊕ H and the )C("))C(1)-structure on 7,
i.e. ∇! = 0 and ∇I ∈ Γ(ℚ) for any section I ∈ Γ(ℚ);
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2. the restriction of the torsion on 7 is given by , (&,' ) = −[&,' ]∣+ and for
any vector field 0 ∈ Γ(H ) the torsion endomorphism ,&(⋅) := , (0, ⋅)∣* of 7
lies in (=C(")⊕ =C(1))⊥ ⊂ !J(4");

3. the connection on H is generated by the natural identification K of H with the
subspace =C(1) := =CE"{/1, /2, /3} of the endomorphisms on 7, or in other
words, ∇K = 0.

Throughout this paper we shall denote by ∇ only the Biquard connection.
Note that in condition (2) of Theorem 2.2 the inner product < ⋅, ⋅ > of the endo-
morphisms on 7 is given by

< Φ,Ψ >:=

4 
∑

#=1

!(Φ(1#),Ψ(1#)), Φ,Ψ ∈ M"2(7).

In [4] Biquard explicitly describes the supplementary subspace H (the vertical
space) on the QC-manifolds of dimension bigger than seven. Namely, H is lo-
cally generated by the three vector fields 01, 02 and 03 (called Reeb vector fields),
i.e. H = =CE"{01, 02, 03}, satisfying the conditions:

@!(0%) = N!%, (0!┘2@%)∣* = −(0%┘2@!)∣* , (0!┘2@!)∣* = 0, (2.1)

where ┘ means the interior multiplication of a vector field and a differential form.
In the seven dimensional case the Biquard’s theorem is not always true. How-

ever, Duchemin [14] shows that if we assume the existence of the Reeb vector
fields, satisfying conditions (2.1), then Theorem 2.2 holds true. Because of this,
throughout this paper we shall assume that a QC structure in the 7D case satisfies
conditions (2.1).

The Riemannian metric ! on 7 can be extended to a metric on the entire , 
(i.e. to a Riemannian metric on ) by the requirements 7 ⊥ H and !(0!, 0%) = N!%.
Note that the extended metric (which we shall again denote by !) is invariant under
the rotations in H, i.e. the action of the group )O(3) on H, and of course is parallel
with respect to ∇, ∇! = 0.

The fundamental 2-forms P! of the quaternionic structure (ℚ, !) on 7 are
defined in a standard way by

P!(&,' ) := !(/!&,' ), = = 1, 2, 3,

and can be extended to 2-forms on  by the requirement 0┘P! = 0, 0 ∈ Γ(H ).
The covariant derivatives of the quaternionic structure and the Reeb vector

fields with respect to the Biquard connection are given by

∇/, = −Q- ⊗ /' + Q' ⊗ /- , ∇0, = −Q- ⊗ 0' + Q' ⊗ 0- , (2.2)

where Q!, = = 1, 2, 3, are the =C(1)-connection 1-forms of the Biquard connection.
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The orthonormal frame

{11, 12 = /111, 13 = /211, 14 = /311, . . . , 14 = /314 −3, 01, 02, 03}

of , is called a QC-normal frame at a given point C ∈  , if the connection
1-forms of the Biquard connection vanishes at C. The existence of a QC-normal
frame at any point of  is provided by Lemma 4.5 in [18].

2.2. INVARIANT DECOMPOSITIONS OF THE ENDOMORPHISMS OF 7

Any endomorphism Ψ : 7 → 7 of 7 can be decomposed in a unique way
into four )C(")-invariant parts with respect to the quaternionic structure (ℚ, !) as
follows:

Ψ = Ψ+++ +Ψ+−− +Ψ−+− +Ψ−−+,

where Ψ+++ commutes with all three /,, Ψ+−− commutes with /1 and anti-
commutes with the others two, etc. Further, we can regard Ψ as decomposed
into two )C("))C(1)-invariant parts with respect to (ℚ, !), Ψ = Ψ[3]+Ψ[−1], where
Ψ[3] = Ψ+++,Ψ[−1] = Ψ+−− + Ψ−+− + Ψ−−+. Note that in the above decompo-
sition the lower indices [3] and [−1] arise from the fact that Ψ[3] and Ψ[−1] appear
the projections of Ψ on the eigenspaces of the Casimir operator

Υ = /1 ⊗ /1 + /2 ⊗ /2 + /3 ⊗ /3,

corresponding, respectively, to the eigenvalues 3 and −1, see [5].
In the case " = 1 an important fact is that the space of the symmetric en-

domorphisms of 7 , commuting with all three almost complex structures /!, is
one-dimensional. Consequently, the [3]-component Ψ[3] of any symmetric endo-
morphism Ψ of 7 is proportional to the identity operator /2∣* of 7, explicitly,
Ψ[3] = − %.Ψ

4 /2∣* .

2.3. THE TORSION AND THE CURVATURE OF BIQUARD CONNECTION

The torsion tensor , of Biquard connection is defined as usually by

, (.,8) = ∇/8 −∇0.− [.,8].

The corresponding tensor of type (0, 3) via the metric ! is obtained in a standard
way and is denoted by the same letter, , (.,8,*) = !(, (.,8), *). The restriction
of the torsion to the horizontal space 7 has the expression

, (&,' ) = −[&,' ]∣+ = 2

3
∑

!=1

P!(&,' )0!,
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see [27]. For an arbitrary but fixed vertical vector field 0 ∈ Γ(H ) one obtains an
endomorphism ,& on 7, defined by

,&(⋅) := , (0, ⋅)∣* : 7 → 7.

The torsion endomorphism ,& is completely trace-free [4], i.e. >B,& = >B(,&∘/!) = 0,
or explicitly

, (0, 1#, 1#) = , (0, 1#, /!1#) = 0. (2.3)

We shall need the identities

, (0,, 0', 0,) = , (0,, 0- , 0,) = 0, (2.4)

see e.g. [27, Eqn. (4.34)]. The torsion endomorphism ,& can be decomposed in a
standard way into a symmetric , 0& and a skew-symmetric F& parts, ,& = , 0& + F&,
and the symmetric part enjoys the properties

, 0&"/, = −/,, 0&" , /2(, 0&2)+−− = /1(,
0
&1
)−+−,

/3(,
0
&3
)−+− = /2(,

0
&2
)−−+, /1(,

0
&1
)−−+ = /3(,

0
&3
)+−−.

(2.5)

For a fixed Reeb vector field 0, the skew-symmetric part F&" of ,&" can be represented
as F&" = /,6, where 6 is a traceless symmetric endomorphism of7, which commutes
with all three almost complex structures /!, = = 1, 2, 3. As a consequence in the
case " = 1 one obtains that the tensor 6 vanishes identically, 6 = 0, (see the end
of Subsection ) and the torsion endomorphism ,& is a symmetric tensor, ,& = ,

0
& .

Ivanov et al. have introduced [18] the two )C("))C(1)-invariant symmetric and
traceless tensors , 0 and 6 on 7, defined by

, 0(&,' ) = !((, 0&1/1 + ,
0
&2
/2 + ,

0
&3
/3)&,' ) and 6(&,' ) = !(6&, ' ). (2.6)

These tensors satisfy the equalities

, 0(&,' ) + , 0(/1&, /1' ) + ,
0(/2&, /2' ) + ,

0(/3&, /3' ) = 0,

6(&,' ) = 6(/1&, /1' ) = 6(/2&, /2' ) = 6(/3&, /3' ).
(2.7)

The symmetric part , 0&! of ,&! enjoys the property [25, Proposition 2.3]

4, 0(0!, /!&,' ) = ,
0(&,' )− , 0(/!&, /!' ), (2.8)

where as usually , 0(0,&, ' ) = !(, 0(0,&), ' )
(

= !(, 0& (&), ' )
)

. As a corollary of

(2.7) and (2.8) we obtain the equality

, (0!, /!&,' ) = ,
0(0!, /!&,' ) + !(/!6/!&,' )

=
1

4

[

, 0(&,' )− , 0(/!&, /!' )
]

− 6(&,' ).
(2.9)
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As a consequence of (2.7) and (2.9) we get

3
∑

!=1

, (0!, /!&,' ) = ,
0(&,' )− 36(&,' ). (2.10)

The curvature tensor # of Biquard connection is defined in a standard way by

#(.,8,*) = ∇/∇0* −∇0∇/* −∇[/,0]*.

The corresponding tensor of type (0, 4) with respect to the metric ! is denoted by
the same letter, #(.,8,*,9) := !(#(.,8,*), 9).

There are several tensors, arising from the curvature tensor, which play crucial
role in the QC geometry. The QC-Ricci tensor #$%, the QC-scalar curvature )%EJ,
the normalized QC-scalar curvature ), the QC-Ricci forms R! and the Ricci-type
tensors S! of the Biquard connection are defined, respectively, by the following
formulas.

#$%(.,8) = #(1(, .,8, 1(), )%EJ = #(1(, 1#, 1#, 1(), 8"("+ 2)) = )%EJ,

R!(.,8) =
1

4"
#(.,8, 1#, /!1#), S!(.,8) =

1

4"
#(1#, .,8, /!1#).

(2.11)

Some significant relations between the upper objects and the torsion tensors are
established in [18] (see also [20, 25]). Namely, the following formulas hold true.

#$%(&,' ) = (2"+ 2), 0(&,' ) + (4"+ 10)6(&,' ) + 2("+ 2))!(&,' ),

S!(&, /!' ) =
2"+ 1

4"
, 0(&,' ) +

1

4"
, 0(/!&, /!' )

+
2"+ 1

2"
6(&,' ) +

)

2
!(&,' ),

, (0,, 0-) = −)0' − [0,, 0- ]∣* , ) = −!(, (01, 02), 03),
!(, (0,, 0-), &) = −R'(/,&, 0,) = −R'(/-&, 0-) = −!([0,, 0- ], &).

(2.12)

In the seven dimensional case (" = 1) the above formulas are valid with 6 = 0.
An important class of QC structures consists of the QC-Einstein structures,

defined as follows.

Definition 2.3. A QC structure is called QC-Einstein, if the horizontal re-
striction of the QC-Ricci tensor is proportional to the metric, i.e.

#$%(&,' ) = 2("+ 2))!(&,' ). (2.13)

A manifold endowed with a QC-Einstein structure is called QC-Einstein man-
ifold. The first equality in (2.12) implies that the QC-Einstein condition (the
equation (2.13)) is equivalent to the vanishing of the torsion endomorphism, i.e.
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, 0 = 6 = 0. An established in [18] result asserts that a QC-Einstein structure of
dimension greater than seven has constant QC-scalar curvature, and the vertical
distribution is integrable. The corresponding result in the seven-dimensional case
was established recently in [19].

Note that the vanishing of the horizontal restriction of the =C(")-connection
1-forms Q!, = = 1, 2, 3, implies the vanishing of the torsion endomorphism ,& of the
Biquard connection, see [18].

Examples of QC-Einstein manifolds are the 3-Sasakian manifolds, since they
have zero torsion endomorphism. The converse is also true in a local sense, namely,
any QC-Einstein manifold with positive QC-scalar curvature is locally 3-Sasakian
[18] (see [26] for the case of negative QC-scalar curvature).

2.4. THE HORIZONTAL DIVERGENCE THEOREM AND THE SUB-LAPLACIAN

On a QC manifold ( , !,ℚ) of dimension 4"+ 3 the horizontal divergence of
a horizontal 1-form (or a horizontal vector field) P ∈ Λ1(7) is defined by

∇∗P = −>B∣*∇P = −∇P(1#, 1#).

If @ = (@1, @2, @3) is a fixed local contact form of the QC manifold then for an
arbitrary = ∈ {1, 2, 3} the form H TJ1 = @1 ∧ @2 ∧ @3 ∧ P2 ! is locally defined volume
form, which is independent of the choice of = and the local 1-forms @1, @2 and @3.
Consequently, H TJ1 is globally defined volume form on ( , !,ℚ). If the QC manifold
is compact, the integration by parts over  is possible due to the next divergence
formula:

∫

2

(∇∗P) H TJ1 = 0,

see [18], [37].
For a smooth function 4 on  the horizontal Hessian ∇24(⋅, ⋅) : Γ(7) ×

Γ(7)→ Λ0( ) and the sub-Laplacian Δ4 ∈ Λ0( ) are defined in a standard way
by

∇24(&,' ) = (∇324)(' ) and Δ4 = ∇∗24 = −∇24(1#, 1#).

By definition, the horizontal gradient of 4 is the vector field ∇4, s.t.

!(∇4,&) = 24(&), & ∈ Γ(7).

Any (non-zero) smooth function 4 satisfying the equation Δ4 = (4 for some
constant ( is called eigenfunction, corresponding to the eigenvalue ( of Δ. In the
case of compact  the last equation and the divergence formula yield the non-
negativity of the spectrum of the sub-Laplacian.
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3. SOME BASIC IDENTITIES

In this section we list some identities which we shall use in the proof of the
main results. We shall need the following Ricci identities [18, 27]

∇24(&,' )−∇24(',&) = −2
3
∑

!=1

P!(&,' )24(0!),

∇24(&, 0!)−∇24(0!, &) = , (0!, &,∇4),
∇34(0,, &, ' ) = ∇34(&,', 0,)−∇24 (, (0,, &) , ' )−∇24 (&,, (0,, ' ))

− 24 ((∇3, ) (0,, ' ))−#(0,, &, ',∇4).

(3.1)

As a consequence of the first identity in (3.1) we get

!(∇24, P!) = ∇24(1#, /!1#) = −4"24(0!). (3.2)

The next basic formula we shall need is a representation of the curvature tensor
[25, 27]

#(0,, &, ', 5)=−(∇36)(/,', 5)+P-(&,' )R'(/,5, 0,)−P'(&,' )R-(/,5, 0,)
− P-(&,5)R'(/,', 0,) + P'(&,5)R-(/,', 0,)
− P-(', 5)R'(/,&, 0,) + P'(', 5)R-(/,&, 0,)

− 1

4

[

(∇4 ,
0)(/,5,&) + (∇4 ,

0)(5, /,&)
]

+
1

4

[

(∇5,
0)(/,',&) + (∇5,

0)(', /,&)
]

,

(3.3)

where the Ricci 2-forms are given by (see [25] or [27])

6(2"+ 1)R!(0!, &) =(2"+ 1)&()) +
1

2
(∇" ,

0)[(1#, &)− 3(/!1#, /!&)]

− 2(∇" 6)(1#, &),

6(2"+ 1)R,(0- , /'&) =− 6(2"+ 1)R,(0', /-&)

=(2"− 1)(2"+ 1)&())− 4"+ 1

2
(∇" ,

0)(1#, &)

− 3

2
(∇" ,

0)(/,1#, /,&)− 4("+ 1)(∇" 6)(1#, &).

(3.4)

By the well-known formula for the relation between two metric connections,
we obtain the next one in the case of the Biquard connection ∇ and the Levi-Civita
connection ∇6 of the extended Riemannian metric !:

!(∇/8,*)− !(∇6
/8,*) =

1

2

(

, (.,8,*)− , (8,*,.) + , (*,.,8)
)

. (3.5)
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4. PROOF OF THEOREM 1.2

Let ( is the first (non-zero) eigenvalue of the sub-Laplacian and 4 is a smooth
function on  that satisfies the equalities

Δ4 = (4 and

∫

2

42 H TJ1 = 1. (4.1)

Note that the second equality in (4.1) can be always obtained by a suitable constant
rescaling of 4 . The proof of Theorem 1.2 depends on a number of lemmas, which
we formulate and prove below. We start with the following

Lemma 4.1. Let ( , !,ℚ) be a compact quaternionic contact manifold of
dimension seven. Then the following integral inequality holds true

∫

2

[

#$%(∇4,∇4)− 2, 0(∇4,∇4)− 3

4
(∣∇4 ∣2 − 12

3
∑

!=1

(

24(0!)
)2]

H TJ1 ≤ 0. (4.2)

Proof. Following [34], we start with the Bochner-type formula, established in
our previous paper [22, Eqn. (3.3)]

−1

2
△∣∇4 ∣2 =∣∇24 ∣2 − ! (∇(△4),∇4) +#$%(∇4,∇4)

+ 2

3
∑

!=1

, (0!, /!∇4,∇4) + 4

3
∑

!=1

∇24(0!, /!∇4).
(4.3)

Similarly to the case of higher dimensions, this formula is a crucial ingredient of
the proof of the desired estimate. The next basic formula is [23, Eqn. (3.3)]

3
∑

!=1

∇24(0!, /!&) =
1

4"

3
∑

!=1

∇34(/!&, /!1#, 1#)−
3
∑

!=1

, (0!, /!&,∇4). (4.4)

Integrating over  the both sides of (4.4) for " = 1 and & = ∇4 and using the
integral identity

∫

2

3
∑

!=1

∇34(/!∇4, /!1#, 1#)H TJ1 = −16
∫

2

3
∑

!=1

(

24(0!)
)2

H TJ1 (4.5)

and (2.10), we obtain

∫

2

3
∑

!=1

∇24(0!, /!∇4)H TJ1 = −
∫

2

[

4

3
∑

!=1

(

24(0!)
)2

+ , 0(∇4,∇4)
]

H TJ1. (4.6)

It should be pointed out that in our calculations for getting (4.5) we have used
(3.2), an integration by parts and the )C("))C(1)−invariance of the expression
∑3

!=1∇34(/!∇4, /!1#, 1#), which allows us to work in a QC-normal frame.
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Further, we take the next inequalities for the )C("))C(1)-invariant parts of the
horizontal Hessian, [22, Eqs. (4.6) and (4.7)],

∣(∇24)[−1]∣2 ≥ 4"

3
∑

!=1

(

24(0!)
)2

, ∣(∇24)[3]∣2 ≥
1

4"
(△4)2,

which in the seven-dimensional case (" = 1) give the next inequality for the norm
of the horizontal Hessian:

∣∇24 ∣2 = ∣(∇24)[−1]∣2 + ∣(∇24)[3]∣2 ≥ 4

3
∑

!=1

(

24(0!)
)2

+
1

4
(Δ4)2. (4.7)

Taking into account the divergence formula, we get the integral identity

∫

2

(△4)2 H TJ1 = (

∫

2

∣∇4 ∣2 H TJ1. (4.8)

Finally, integrating (4.3) over  and using (2.10), (4.6), (4.7) and (4.8), we
obtain (4.2).

Our next goal is to find a suitable estimate of the term
∫

2

∑3
!=1

(

24(0!)
)2

H TJ1

which appears in (4.2). The aim of the following results is to establish one such
estimate.

Lemma 4.2. [”Vertical Bochner formula”] Let U be a smooth function on a
QC manifold ( , !,ℚ) of dimension 4"+3. Then the following formula holds true:

3
∑

!=1

Δ(0!U)
2 = 2

3
∑

!=1

[

− ∣∇(0!U)∣2 + 2U(0!)0!(ΔU) − 2U(0!)#(0!, 1#, 1#,∇U)

−2U(0!)(∇" , )(0!, 1#,∇U)− 22U(0!)!
(

,&! ,∇2U
)]

.

(4.9)

Proof. First, it should be noted that the tensor ,&! appearing in the last term of
the right-hand side of (4.9) is assumed to be the tensor of type (0, 2), corresponding
to the torsion endmorphism ,&! via !. The left-hand side of the desired equality
(4.9) is an )C("))C(1)-invariant and hence we can carry out our computations in
a QC-normal frame. Using the first and the third Ricci identity in (3.1) and the
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properties of the torsion endomorphism, after some standard calculations we obtain

3
∑

!=1

Δ(0!U)
2 =2

3
∑

!=1

[

− ∣∇(0!U)∣2 + 2U(0!)Δ(0!U)
]

=2

3
∑

!=1

[

− ∣∇(0!U)∣2 − 2U(0!)∇3U(1#, 1#, 0!)
]

=2

3
∑

!=1

[

− ∣∇(0!U)∣2 − 2U(0!)
(

∇3U(0!, 1#, 1#) +∇2U(, (0!, 1#), 1#)

+∇2U(1#, , (0!, 1#)) + 2U((∇" , )(0!, 1#)) +#(0!, 1#, 1#,∇U)
)]

=2

3
∑

!=1

[

− ∣∇(0!U)∣2 + 2U(0!)0!(ΔU) − 2U(0!)#(0!, 1#, 1#,∇U)

− 2U(0!)(∇" , )(0!, 1#,∇U)− 22U(0!)!
(

,&! ,∇2U
)]

,

which completes the proof of Lemma 4.2.

Applying (4.9) to the case of a seven-dimensional QC manifold and an eigen-
function 4 on it, we obtain the next lemma.

Lemma 4.3. On a QC manifold ( , !,ℚ) of dimension seven the following
formula holds true:

3
∑

!=1

Δ(0!4)
2 =2

3
∑

!=1

[

− ∣∇(0!4)∣2 + (
(

24(0!)
)2

− 2

3
24(0!)2)(/!∇4)

− 2

3
24(0!)
(

(∇" ,
0)(0$, 1#, /%∇4)− (∇" ,

0)(0%, 1#, /$∇4)
)

+
8

9
24(0!)(∇" ,

0)(1#, /!∇4)− 224(0!)1#

(

, (0!, 1#,∇4)
)]

.

(4.10)

Proof. As in the proof of the previous lemma, we can work in a QC-normal
frame. Using the properties of the torsion tensor, listed in Subsection 2.3, we get

3
∑

!=1

24(0!)(∇" , )(0!, 1#,∇4)

= −1

4

3
∑

!=1

24(0!)
[

(∇" ,
0)(∇4, /!1#) + (∇" ,

0)(/!∇4, 1#)
]

.

(4.11)
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Next we use (3.3) and the properties of the torsion tensor to obtain

3
∑

!=1

24(0!)#(0!, 1#, 1#,∇4)

=

3
∑

!=1

24(0!)
[

− 1

4

(

(∇" ,
0)(/!∇4, 1#) + (∇" ,

0)(∇4, /!1#)
)

− 2P%(1#,∇4)R$(/!1#, 0!) + 2P$(1#,∇4)R%(/!1#, 0!)
]

.

(4.12)

We use representations (3.4) for the Ricci 2-forms that appear in (4.12) to obtain

R$(/!1#, 0!) = −
1

6
2)(/$1#) +

5

36
(∇"#,

0)(1(, /$1#)−
1

12
(∇"#,

0)(/$1(, 1#),

R%(/!1#, 0!) = −
1

6
2)(/%1#) +

5

36
(∇"#,

0)(1(, /%1#)−
1

12
(∇"#,

0)(/%1(, 1#).

(4.13)

Substituting (4.11), (4.12) and (4.13) in the right-hand side of (4.9) and using
the properties of the torsion tensor, we get (4.10) after a number of standard
computations.

An integral equality, which is one of the main instruments for derivation of the

needed sharp estimate for the term
∫

2

∑3
!=1

(

24(0!)
)2

H TJ1 appearing in (4.2), is

given in the next lemma.

Lemma 4.4. On a seven-dimensional compact QC manifold ( , !,ℚ) the
following integral formula holds true:

∫

2

3
∑

!=1

∣∇(0!4)∣2 H TJ1

=

∫

2

3
∑

!=1

[

2∣, (0!,∇4)∣2 +
1

6
(/!∇4)2) −

2

9
/!∇4
(

(∇" ,
0)(1#, /!∇4)

)

+
1

6
/!∇4
(

(∇" , )(0$, 1#, /%∇4)
)

− 1

6
/!∇4
(

(∇" , )(0%, 1#, /$∇4)
)

− (∇&!, )(0!,∇4,∇4) + (
(

24(0!)
)2]

H TJ1.

(4.14)

Proof. We begin with integrating over  the both sides of (4.10). We shall
work as before in a QC-normal frame in view of the )C("))C(1)-invariance of the
tensors under consideration. Having in mind the divergence formula, we shall
simplify some of the terms that appear under the integral.
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Using (3.2) and integration by parts, after some standard calculations we get
the identities

∫

2

3
∑

!=1

24(0!)2)(/!∇4)H TJ1 = −1

4

∫

2

3
∑

!=1

(/!∇4)2) H TJ1, (4.15)

∫

2

3
∑

!=1

24(0!)(∇" ,
0)(1#, /!∇4)H TJ1

= −1

4

∫

2

3
∑

!=1

/!∇4
(

(∇" ,
0)(1#, /!∇4)

)

H TJ1,

(4.16)

∫

2

3
∑

!=1

24(0!)(∇" , )(0$, 1#, /%∇4)H TJ1

= −1

4

∫

2

3
∑

!=1

/!∇4
(

(∇" , )(0$, 1#, /%∇4)
)

H TJ1.

(4.17)

In order to transform the term
∫

2

∑3
!=1 24(0!)1#

(

, (0!, 1#,∇4)
)

H TJ1, let us

introduce some auxiliary notation and facts. We denote by 2$V∇ and 2$V∇
$

the
divergences corresponding to the Biquard connection ∇ and to the Levi-Civita
connection ∇6, respectively. For any vertical vector field 0 on a QC manifold of
dimension 4"+ 3 we have

2$V∇
$

(0) =

4 
∑

#=1

!(∇6
" 
0, 1#) +

3
∑

!=1

!(∇6
&!
0, 0!)

=

4 
∑

#=1

!(∇" 0, 1#) +

3
∑

!=1

!(∇&!0, 0!)

= 2$V∇(0),

(4.18)

where for the second equality we have used (3.5) and the properties of the torsion
tensor (2.3) and (2.4). Since the volume form H TJ1 differs from the Riemannian vol-
ume form 2W6 by a constant multiplier *, H TJ1 = *.2W6 , we get by the Riemannian
divergence formula and (4.18)

∫

2

2$V∇(0)H TJ1 = *

∫

2

2$V∇(0) 2W6 = *

∫

2

2$V∇
$

(0) 2W6 = 0. (4.19)
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We have
∫

2

3
∑

!=1

24(0!)1#

(

, (0!, 1#,∇4)
)

H TJ1

=−
∫

2

3
∑

!=1

∇24(1#, 0!), (0!, 1#,∇4)H TJ1

=−
∫

2

3
∑

!=1

[

, (0!, 1#,∇4), (0!, 1#,∇4)

+∇24(0!, 1#), (0!, 1#,∇4)
]

H TJ1

=−
∫

2

3
∑

!=1

[

∣, (0!,∇4)∣2 − 24(1#)0!
(

, (0!, 1#,∇4)
)]

H TJ1

=

∫

2

3
∑

!=1

[

− ∣, (0!,∇4)∣2 +
1

2
(∇&!, )(0!,∇4,∇4)

]

H TJ1,

(4.20)

where we have used integration by parts for the first equality in the above chain,
next we took into account the second Ricci identity in (3.1) to obtain the second
one, and finally, in order to get the third and the fourth equalities , we have used
(4.19) for the vertical vector field 0 := , (0!,∇4,∇4)0!.

Now, substituting (4.15), (4.16), (4.17) and (4.20) in the integrated over  
equality (4.10), we get (4.14).

An important role for obtaining the desired estimate plays the integral equality

∫

2

3
∑

!=1

(

24(0!)
)2

H TJ1 =
1

4

∫

2

3
∑

!=1

24(/!1#)2(0!4)(1#)H TJ1, (4.21)

which follows easily by (3.2) and an integration by parts. We have:

3
∑

!=1

∫

2

(
(

24(0!)
)2

H TJ1 =

3
∑

!=1

∫

2

(

4
24(/!1#)2(0!4)(1#)H TJ1

≤
3
∑

!=1

[

∫

2

(2

16

(

24(/!1#)
)2

H TJ1

]
1

2

[

∫

2

(

2(0!4)(1#)
)2

H TJ1

]
1

2

≤ 1

2

3
∑

!=1

[

∫

2

(2

16

(

24(/!1#)
)2

H TJ1 +

∫

2

(

2(0!4)(1#)
)2

H TJ1

]

=
3(2

32

∫

2

∣∇4 ∣2 H TJ1 +
1

2

3
∑

!=1

∫

2

∣∇(0!4)∣2 H TJ1.

(4.22)

For the above chain we have used (4.21) to obtain the first equality and the Cauchy-
Schwarz inequality for the integral scalar product to get the first inequality. The
second inequality is obtained in an obvious manner.
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Using the notation .(&) from the statement of Theorem 1.2, the equality
(4.14) takes the form

∫

2

3
∑

!=1

∣∇(0!4)∣2 H TJ1 =

∫

2

[

.(∇4) +
3
∑

!=1

(
(

24(0!)
)2]

H TJ1,

which, combined with (4.22), gives the next integral inequality

3
∑

!=1

∫

2

∣∇(0!4)∣2 H TJ1 ≤
∫

2

[

2.(∇4) + 3(2

16
∣∇4 ∣2
]

H TJ1. (4.23)

For any constant F > 0 we have the following chain of relations:

3
∑

!=1

∫

2

(

24(0!)
)2

H TJ1 =
3
∑

!=1

∫

2

√
F

4
24(/!1#)

1√
F
2(0!4)(1#)H TJ1

≤
3
∑

!=1

[ F

16

∫

2

(

24(/!1#)
)2

H TJ1

]
1

2

[1

F

∫

2

(

2(0!4)(1#)
)2

H TJ1

]
1

2

≤ 3F

32

∫

2

∣∇4 ∣2 H TJ1 +
1

2F

3
∑

!=1

∫

2

∣∇(0!4)∣2 H TJ1,

(4.24)

where we have used (4.21) to obtain the equality and the Cauchy-Schwarz inequality
for the integral scalar product to get the first inequality. The second inequality is
obvious. Combining (4.23) and (4.24), we get the next key inequality

3
∑

!=1

∫

2

(

24(0!)
)2

H TJ1 ≤
∫

2

[ 3F

32
∣∇4 ∣2 + 1

F
.(∇4) + 3(2

32F
∣∇4 ∣2
]

H TJ1. (4.25)

Substituting (4.25) in (4.2), we obtain

∫

2

[

#$%(∇4,∇4)−2, 0(∇4,∇4)−12
F
.(∇4)+(−3

4
(−9F

8
−9(

2

8F
)∣∇4 ∣2
]

H TJ1≤0. (4.26)

Taking into account the a-priori condition

#$%(&,&)− 2, 0(&,&)− 12

F
.(&) ≥ +0!(&,&) for any & ∈ Γ(7),

we deduce from (4.26)

∫

2

(

− 3

4
(− 9F

8
− 9(2

8F
+ +0

)

∣∇4 ∣2 H TJ1 ≤ 0.

The last inequality implies

−3

4
(− 9F

8
− 9(2

8F
+ +0 ≤ 0,
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which after choosing F = '0
3 becomes

(3(− +0)(9(+ 5+0) ≥ 0. (4.27)

Since 9(+ 5+0 > 0, the inequality (4.27) gives the estimate

( ≥ +0
3
, (4.28)

which completes the proof of Theorem 1.2.

5. PROOF OF COROLLARY 1.2

In [23, Remark 4.1] the authors give the identity

10, 0(∇4,∇4) + 6)∣∇4 ∣2 = +0∣∇4 ∣2, (5.1)

which holds for the extremal eigenfunction 4 in the case of equality in Theorem 1.1,
i.e. ( = 1

3+0. Assuming the condition a) in Corollary 1.3 and taking account (5.1),
we obtain (1.7).

In a similar way, the case of equality in Theorem 1.2, i.e. ( = 1
3+0, together

with the a-priori condition (1.5) and (4.26) imply the identity

#$%(∇4,∇4)− 2, 0(∇4,∇4)− 36

+0
.(∇4) = +0∣∇4 ∣2,

which holds for the extremal eigenfunction 4 . Using the first formula in (2.12), the
upper identity can be rewritten as

6)∣∇4 ∣2 + 2, 0(∇4,∇4)− 36

+0
.(∇4) = +0∣∇4 ∣2. (5.2)

Now, obviously the assumption of the condition b) in Corollary 1.3 yields the desired
estimate (1.7), which completes the proof of Corollary 1.2.
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