
GODIXNIK NA SOFI�SKI� UNIVERSITET
”
SV. KLIMENT OHRIDSKI“

FAKULTET PO MATEMATIKA I INFORMATIKA
Tom 106

ANNUAL OF SOFIA UNIVERSITY
”
ST. KLIMENT OHRIDSKI“

FACULTY OF MATHEMATICS AND INFORMATICS

Volume 106

NEURAL NETWORKS FOR FACILITY LOCATION PROBLEMS

VLADISLAV HARALAMPIEV

This paper presents a new self-organizing neural network approach for solving graph-

based facility location problems. It is designed to have small amount of parameters
and to not need much tuning. We test our approach on several groups of problems and

show that it consistently finds good feasible solutions.

Keywords: Neural networks, facility location, combinatorial optimization.

2010 Math. Subject Classification: 62M45, 90C27.

1. INTRODUCTION

Facility location problems are a large class of optimization problems, modelling
the search for optimal placement of facilities to minimize costs. Many of these
problems are known to be NP-hard to solve exactly. In this paper, we investigate
the possibility to use neural networks for solving two graph variants of facility
location problems.

There are two main neural approaches for solving difficult combinatorial op-
timization problems — Hopfield networks [7] and variations of Kohonen’s Self-
Organizing Feature Map [8]. Unfortunately, both of these approaches have prob-
lems. Hopfield’s method has a tendency to settle in poor local minima, often not
representing a feasible solution, and it is difficult to select appropriate parameters
leading to a good solution. The problems, associated with Hopfield’s approach, are
well documented [11]. Vast majority of Self-Organizing Feature Maps, on the other
hand, are based on the Elastic Net method [4]. This method relies on the fact
that the ’elastic band’ moves in Euclidean space, and distances between vertices

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 3–10. 3

are measured in the same space. This greatly limits the set of problems suitable
for the method. In fact, most of the applications of Self-Organizing Feature Maps
are to the Travelling Salesman Problem [5].

We propose a new neural network architecture for graph variants of facility
location problems, inspired by the self-organizing approach to optimization. The
network is designed to always find a feasible solution and to have small amount
of parameters. It is often believed that involved mathematical instruments are
more powerful than any heuristics, based on physical or biological analogies (see
the preface in [1]). Our goal is not to outperform methods, designed for solving
specific facility location problems, but to develop a robust neural network approach
for facility location that needs minimal work with the specifics of the problem.
This is important in practice, when we need to find acceptable solution with small
investment. The proposed neural network is tested on several groups of problems
and achieves good results, most of the time exactly solving the input instances.

2. GRAPH-BASED FACILITY LOCATION PROBLEMS

Let G(V,E) be a connected, undirected and weighted graph with vertex set
V and edge set E. We will denote the distance between two vertices u,w ∈ V
as dist(u,w). The two facility location problems we are interested in are called
MiniSum and MiniMax. Good survey of the types of facility location problems
is [3]. Intuitively, MiniSum models the placement of several warehouse facilities,
where the goal is to minimize the average travel distance. MiniMax models the
placement of fire stations, in which case we want to minimize the maximum time
of travel to every vertex.

Definition 1 (p−MiniSum problem). Find a subset u1, u2, . . . , up of p ver-
tices from V that minimizes

∑
w∈V mini∈{1,...,p} dist(w, ui).

Definition 2 (p−MiniMax problem). Find a subset u1, u2, . . . , up of p ver-
tices from V that minimizes maxw∈V mini∈{1,...,p} dist(w, ui).

The neural network we develop will only solve the p−MiniSum problem. The
following reduction is used for solving p−MiniMax.

Theorem 1 (p − MiniMax to p − MiniSum reduction). Solving a p −
MiniMax problem with any required positive precision ε can be reduced to solv-
ing a sequence of p−MiniSum problems.

Proof. Assume we need to solve a p −MiniMax problem with input graph
G(V,E) and the optimal solution has value opt. For a given value c we can check
if opt ≤ c by solving a p −MiniSum problem in a modified version G′ of G. G′

is a fully connected graph with the same vertex set V . For every pair of vertices
u 6= w the weight in G′ of the edge between u and w is one if dist(u,w) ≤ c in G,

4 Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 3–10.

otherwise it is ten. Now, opt ≤ c ⇐⇒ the optimal solution to the p−MiniSum
problem in G′ has value n− p. This is because if opt ≤ c, there is a solution in G′

that only uses edges of weight one (and vice versa).

To solve the original p−MiniMax problem, we can do a binary search on the
value c. This way, we reduced the problem to O(lg(MAX) + |lg(ε)|) instances of
p−MiniSum, where MAX is the maximum distance between two vertices in G.�

Note that the reduction assumes all instances of p−MiniSum are solved cor-
rectly. Our neural approach provides only approximate solutions to p−MiniSum
problems, so the solution we get for p−MiniMax is also approximate. Intuitively,
errors early in the sequence of p−MiniSum problems directly lead to a poor qual-
ity solution for the p −MiniMax problem. But, early in the sequence, the value
opt from the reduction is far from c, which makes much simpler the corresponding
p−MiniSum problem. Another difficulty arises from the way we define distances
in G′. The distances between vertices in this graph do not change smoothly, making
it harder for local search methods to find good solutions.

3. NETWORK ARCHITECTURE

The architecture of the proposed network is shown in Figure 1. There are three
layers, which we call A, B and C.

BA

C

A

B

C

3
2

1

Figure 1. Neural network architecture for facility location problems

Layer A contains |V | nodes, corresponding to the clients (vertices of the graph
G). Layer B contains p nodes, corresponding to the facilities we need to locate.
Layer C contains |V | nodes, corresponding to the locations of the facilities (vertices
of G). Layers A−B and B−C are fully connected. When we talk about outgoing
edges, we assume edges are directed from A to B and from B to C. The weight of
the edge between A3 and B2 (a number between zero and one) shows to what degree

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 3–10. 5

client A3 uses facility B2. The weight of the B2 − C1 edge shows to what degree
facility B2 is located in C1. The interpretation of the other edges is analogous.
For each node in layers A and B, we require that the sum of the weights of the
outgoing edges is one. These weights are initialized randomly. As the algorithm
progresses, for each node one of the outgoing edges starts to dominate and its
weight approaches one. To produce the final solution from the network, we assign
clients to facilities and facilities to locations by following the dominating edges. As
a side note, sometimes, because of symmetries in the graph, several edges start to
dominate for a node (their weights become comparable and much larger than the
weights of the other edges). We observed that in such situations choosing each one
of these edges produces equally good solution. In our experiments, when multiple
edges dominate for a node, we always pick the edge with the smallest index.

4. OPTIMIZATION

The neural network minimizes the function∑
ai∈A

∑
bj∈B

∑
ck∈C

weight(ai, bj) · weight(bj , ck) · dist(ai, ck) (1)

Here weight(ai, bj) represents to what degree client ai uses facility bj , weight(bj , ck)
represents to what degree facility bj is located in ck, and dist(ai, ck) is the distance
in G between the vertices, corresponding to ai and ck. As for each node one of
the outgoing edges starts to dominate and its weight approaches one, this function
becomes equivalent to the MiniSum function.

The optimization starts from a randomly initialized state and consists of a
series of iterations, until the weights converge. In each iteration we go through
all the nodes in layers A and B in random order and update the weights of their
outgoing edges. Assume we are processing node a1 ∈ A. The update consists of
three steps:

• Evaluate. For each facility bj ∈ B calculate the cost of assigning a1 to it,
costj =

∑
ck∈C weight(bj , ck) · dist(a1, ck). After this compute the value

preferj =
minbs∈Bcosts

costj
which is between zero and one. Intuitively, values

closer to one are more preferable for the client.

• Strengthen. Differences between the prefer values are often small. We in-

crease them by settings prefer′j = emult·preferj

maxbs∈Bemult·prefers
. Here mult is a pa-

rameter.

• Update. First transform the weights of the outgoing edges to have the same
meaning as the prefer′ values. This is achieved by setting weight(a1, bj) to

weight(a1,bj)
maxbs∈Bweight(a1,bs)

. Then update each weight(a1, bj) to be equal to

6 Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 3–10.

(1 − α) · weight(a1, bj) + α · prefer′j . Finally, normalize the weights so that
they sum to one (by dividing each weight by the sum of all weights). α is a
parameter, analogous to learning rate in the learning algorithms of classical
neural networks.

The updates are done similarly for all other nodes in layers A and B. There are
two parameters, the learning rate α and the mult parameter that scales the prefer
values. Exponential grid search is used to select the parameters. More specifically,
the mult dimension of the grid consists of the values 1.2x for x ∈ 1, 2, . . . , 50.
The α dimension consists of 0.2 · 0.8y for y ∈ 0, 1, 2, 3, 4. For each cell of the
grid we run the optimization with the corresponding parameters. We then pick
the best solution found. To guarantee convergence in the allocated time, during
each optimization run the learning rate decreases exponentially with the number
of iterations. From our experience, the initial value of the learning rate affects
the speed of convergence, but does not affect significantly the quality of the final
solution (assuming the optimization runs long enough). On the other hand, mult
affects the quality of the solution.

5. TEST PROBLEMS AND RESULTS

The proposed network is tested on four groups of problems:

• Unweighted trees (TU). Random trees with 50 to 100 nodes and p (number of
facilities) between two and six. All edges are of length one. The random trees
are generated using Prüfer’s code, a mapping of trees to number sequences
[10].

• Weighted trees (TW). Trees with the same parameters as the unweighted trees
above, but with random floating point edge lengths between 1 and 100.

• Chordal graphs (CH). Chordal graphs are graphs without induced s-cycles for
s more than three [2]. They have more complex structure than trees, but still
are simple enough to allow efficient algorithms for many problems that are
hard in general graphs. We generate chordal graphs with 50 to 100 vertices
and set p (number of facilities) to a value between three and six. To generate
them we use two methods — producing a perfect elimination order and using
the equivalence to intersections of subtrees of a tree [6].

• Bulgarian road network (BR). For various geographic regions in Bulgaria we
take the populated places and the roads connecting them. We choose regions
with 60 to 400 populated places and set p (number of facilities) to a value
between two and four. Data about populated places and roads is taken from
OpenStreetMaps [9] (using Overpass queries).

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 3–10. 7

For each of the first three groups, we randomly generate 200 graphs. For the last
group, we generate 30 graphs.

For each of the instances above we compute the optimal answer by trying all
possibilities of locating the facilities. Constraints in the instances are chosen small
enough so that this computation runs in reasonable time. We also run a local
search for each instance to compare its results with the results of the proposed neu-
ral network. Local search [1] is a classical general method for solving optimization
problems that often gives very good results. It starts from a random solution and
repeatedly tries to improve it by choosing a better solution from some neighbour-
hood of the current one. In our case, the neighbourhood is defined by changing the
location of a facility, or by changing the facility that services a client. Since the
results of local search depend on the initial solution, for each instance we run 1000
independent local searches and pick the best value they return.

The results for the MiniSum problem are presented in Table 1. Both methods
have excellent performance, most of the time finding an optimal solution. Local
search has slightly better performance, probably because it runs 1000 independent
searches.

Table 1. Results of local search and the proposed neural network for the MiniSum problem.
Max is the maximum error over all inputs (as percentage from the optimal answer), Avg is the
average error, and Exact is the percentage of inputs, solved exactly.

Local search Neural network
Max, % Avg, % Exact, % Max, % Avg, % Exact, %

TU 0.312 0.009 97 0.295 0.007 98
TW 1.130 0.030 92 2.000 0.090 90
CH 3.191 0.072 98 4.000 0.500 80
BR 0.021 0.012 96 0.000 0.000 100

The results for the MiniMax problem are presented in Table 2. Our approach
to MiniMax requires solving a sequence of harder MiniSum instances, so, as
expected, the results are worse than the ones for MiniSum. The neural network
approach performs significantly better than local search. It is often able to exactly
solve the instance. As a side note, the excellent results on chordal graphs (CH) are
probably because they, intuitively, are a sequence of attached cliques, which makes
MiniMax simpler to solve.

Table 2. Results of local search and the proposed neural network for the MiniMax problem.
Max is the maximum error over all inputs (as percentage from the optimal answer), Avg is the
average error, and Exact is the percentage of inputs, solved exactly.

Local search Neural network
Max, % Avg, % Exact, % Max, % Avg, % Exact, %

TU 32.900 9.770 60 5.080 0.827 87
TW 31.640 7.180 47 3.042 0.253 87
CH 0.000 0.000 100 0.000 0.000 100
BR 36.150 16.210 0 10.000 3.090 67

8 Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 3–10.

6. CONCLUSION

We presented a new neural network architecture for solving graph-based facility
location problems and evaluated its performance on several groups of MiniSum
and MiniMax problems. Our method is based on the self-organizing approach
to optimization and shows good performance. On simpler instances its results are
comparable to local search, and it significantly outperforms local search on harder
instances.

ACKNOWLEDGEMENT. Map data used for generating the facility location
instances based on the Bulgarian road network is copyrighted by OpenStreetMap
contributors and can be found at https://www.openstreetmap.org

7. REFERENCES

[1] Aarts, E., Lenstra, J. K.: Local Search in Combinatorial Optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons,
1997.

[2] Blair, J. R. S., Peyton, B.: An Introduction to Chordal Graphs and Clique Trees.
Graph Theory and Sparse Matrix Computation. IMA Volumes in Mathematics and
its Applications, vol. 56, 1993.

[3] Cappanera, P.: A Survey on Obnoxious Facility Location Problems. University of
Pisa, technical report, 1999.

[4] Durbin, R., Willshaw, D.: An analogue approach to the travelling salesman problem
using an elastic net method. Nature, 326, 1987, 689–691.

[5] Favata, F., Walker, R.: A study of the application of Kohonen-type neural networks
to the Travelling Salesman Problem. Biological Cybernetics, 64, 1991, 463–468.

[6] Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs.
J. Combin. Theory Ser. B, 16, 1974, 47–56.

[7] Hopfield, J. J., Tank, D. W.: “Neural” computation of decisions in optimization prob-
lems. Biological Cybernetics, 52, 1985, 141–152.

[8] Kohonen, T.: Self-organized formation of topologically correct feature maps. Biolog-
ical Cybernetics, 43, 1982, 59–69.

[9] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org.
https://www.openstreetmap.org (2017)

[10] Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv für Mathematik
und Physik, 27, 1918, 142–144.

[11] Wilson, G. V., Pawley, G. S.: On the stability of the Travelling Salesman Problem
algorithm of Hopfield and Tank. Biological Cybernetics, 58, 1988, 63–70.

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 3–10. 9

Received on April 18, 2019
Received in a revised form on February 29, 2020

Vladislav Haralampiev

Faculty of Mathematics and Informatics
“St. Kliment Ohridski” University of Sofia
5 blvd. J. Bourchier, BG-1164 Sofia
BULGARIA

E-mail: vladislav.haralampiev@gmail.com

10 Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 3–10.

