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1. INTRODUCTION AND STATEMENT OF THE RESULTS

Throughout this paper, 7, will mean the class of algebraic polynomials of
degree not exceeding n.

A classical result in Approximation Theory, the inequality of the brothers
Markov [5], [6], asserts that for any f € m,

IFPN<ITHNA for k=1, n,

where || - || stands for the uniform norm in [—1,1] and T},(z) := cosn arccosz is the
Chebyshev polynomial of the first kind.

The topic of this paper is Markov type inequalities in the Lo-norms, i.e., norms
of the type

191= ([ wnraipar) "

a
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where w(x) is a weight function on the finite or infinite interval [a,b] (i.e., w(z) is
non-negative and integrable on [a,b] with all moments finite). It is well-known that
(see, e.g., [4] or [8]) there exists a constant ¢, = ¢, (a, b, w) such that

1F1 < enllfIl for every f € mn. (1.1)

The sharp constant ¢, in (1.1) is known to be the largest singular value of a certain
matrix (see, e.g., [3] or [7, Theorems 1.6.3 and 1.6.5]). Despite of this simple
characterization, not much is known about the exact constants even in the classical
cases of weight function of Hermite, Laugerre and Gegenbauer. Schmidt [10] has
found that in the case of Hermite weight function (a = —b = oo, w(x) = exp(—1?))
the best constant is ¢, = v/2n, and the Hermite polynomial H,, is the extremal
polynomial. Turdn [12] has proven that the best constant in the case of Laguerre
weight function (a = 0,b = oo, w(z) = exp(—x)) is

. ™ -1
o= ()

In the case [a,b] = [-1,1], w(z) = 1, E. Schmidt [10] found the best constant
asymptotically, proving that for n > 5,

Cp =

(2n+3)2< -3 16R
3(

-1
here —6< R<13. (1.2
in 24372 (2n+3)4) » where —6<R<13. (12)

The proof of this asymptotic estimate runs in a paper of about 40 pages.
G. Nikolov [9] has studied Markov-type inequalities in the Lo-norm induced by
the Gegenbauer weight function

wy(z) = (1—aH)*V2 N> -1/2, ze€(-1,1).

The notation || - ||x will stand for the Ls[—1, 1] norm induced by wy, i.e.,

i i= ([ w@ir@ipa)”

Specifically, in [9] are proven Markov-type inequalities in the Lo-norms induced by
the Chebyshev weight functions wo(z) = (1 — 2)™*/2 and w; (z) = (1 — z)'/2.

Theorem A. For everyn € N and f € 7, the following inequality holds true:
1£llo < 0.478849(n + 2)?| flo- (1.3)

Moreover, for every n € N there exists f € m, such that || f'[jo > 0.472135n2| f|lo.
Theorem B. For everyn € N and f € m,, the following inequality holds true:
I£/1l1 <0.256861(n + 5/2)2( |1 (1.4)

Moreover, for every n € N there exists f € m, such that ||f'||1 > 0.248549n2| f||1 .
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Let us mention that, although the constants in (1.3) and (1.4) are not sharp,
the supplementary inequalities in Theorems A and B show that they overestimate
the best constants by a factor not exceeding 1.0142 and 1.0334, respectively.

Here, we apply the approach proposed in [9] to obtain an elementary proof of
Ly Markov inequality associated with a constant weight function, i.e., wy /o(x) = 1.
Our result reads as follows:

Theorem 1.1. For every n € N and f € m,, the following inequality holds
true:
11172 < 0.325779(n + 1.6)* || f1/2. (1.5)

Moreover, for every n € N there exists f € m, such that

1fll1/2 > 0.317837 (n+ 1/2)* || f[l12- (1.6)

2. REQUISITES

In this section we introduce some results from [9] which will be needed for the
proof of Theorem 1.1.

The notation |-| will stand for the Euclidean norm, i.e., if t = (¢1,...,t,) € R™,
then [t| = (t2 4+ --- +t2)!/2. The unit sphere in R™ is denoted by S,

Sp = {t e R™ : |t] = 1}.

By S, (resp. R') we shall mean the subsets of Sy, (resp. R™) with non-
negative coordinates.

For the Markov inequality in the Lo-norm corresponding to wy (x) we need some
facts about the associated orthogonal polynomials. The latter are the ultraspherical
polynomials (also called Gegenbauer polynomials) {C: (z)}55_,. It is well known
that (see [11]), for A # 0

1
/ w(2)C) (z)Cp (x)dw = S;xhy  j,k=0,1,...,

-1

with d;; being the Kronecker symbol and

1/2
21201 (k + 2)\)> /

hi, = hgx = ( El(k + MT2(\)

For t € R™, we introduce the following positive definite quadratic forms:

P (t) :

i (Em: 2% + A — 1)”2’;1 tj)2 (2.1)

(
k=1 j=k
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and

TN (e hok—2 , \?2
Qu(t ; (Jzk (2h 2= 2) 2= tj) . (2.2)

The best constants in the Markov-type inequalities in ||

- |]a-norm, A > 0 and the
quadratic forms P, (t) and Q,,(t) are related through the following

Theorem 2.1. ([9]) If A >0, then

4 sup P (%), if n=2m,
17712 e
T
f€mn, f#0 A 4 sup Qu(t), if n=2m-—1.
te S

The next lemma provides upper bounds for the supremum over S,
definite quadratic forms like P,,, and @Q,,

'm of positive
Lemma 2.1. ([9]) Given positive ay; (1 <k<m, k<j<m), set

m

)= (St

k=1 j=k

Then, for every p= (p1,.--,Pm), (x>0, k=1,...,

m),

Sl][) K t < ax A p
s ( ) — 1<k<m k( )
wh€1€

1 k m
= p—k;aik(;pjaij>.

The equality in (2.3) occurs only if A1(p)

P :A2(P)::Am(P)
We shall use a familiar property of the trapezium and the midpoint quadratures
h m—1 ) m
waalfl = Sl o) + flam)l +h Y flar), Qullfl=h)_ flaeip),
k=1 k=1

where z; :==a+ jh and h = (b—a)/m

Lemma 2.2. a) If f is convez in [a,b], then

m / f dl‘ < m+1[f]'
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b) If f” >0 and f" is convex in [a,b], then

Q= [ rwa- B0 r@l Qi< [ e S

3. PROOF OF THEOREM 1.1: THE CASE OF EVEN n, n=2m

According to Theorem 2.1, we have

1113
sup a2 =4 sup Pm(t)a (31)
remamizo 11T cest

and in our particular case A = 1/2 the quadratic form P defined by (2.2) becomes

Z(Z (4k — 1)( 4j+1)t> : (3.2)

k=1

3.1. AN UPPER BOUND

We apply Lemma 2.1 to K = P,,, the quadratic form given by (3.2), i.e., with
arj = 3+/(4k — 1)(4j + 1). We obtain

= < =
4tselgg P, (t) 45&%‘2 P, (t) 41£r}€a<xmA t(p) = 1&2}5}@4 Ak(p),

where

k
1
25\/41—1 )(4k + 1) Z V(% —1)(45 + 1) p;

1
Pk i=1

(4i— D[k +1) | Y V@i —1)(45 + 1) p;
Vik +1
™ ; Z VA +1p; |,
and p = (p1,...,Pm) is an arbitrary m-tuple of positive numbers. Let us choose

N ) G O e Vi
J 47+ 1 ’

j=1...,m,

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 215-235. 219



where « € (3,4) will be specified later. In view of inequality
(4k +3)* — (4k — 1)™ > 4a(4k + 1), k€N,

we get

Ak +1 k u o
1A4(P) = (g = _1a;4z—1 ;(4;+3 (4]—1))

4k +1 z’“: , .
< 4i —1)(4m + 3)* — (4i — 1)*F (3.3)
da(dk +1)>1 & [ }
k
Ak +1)2«
— % (2k? + k)(4m + 3)* — Z(4z - 1)@“] .
=1

We estimate from below the latter sum with the help of Lemma 2.2 b). We have

k 1
3 (@i - 1) > /k+ /2(433 _qjetigy _ Hat D) [(4k +1)% — 1}

i=1 1/2 24
1 a+1
- - a+2 o a
= Hos3) [(4k +1) 1} - [(4k +1) 1}
1 o

+1
> 4 a+2 o
> qar kD o (k4 1)

t a+1

(for the latter inequality we used tha — m > 0, since a € (3,4)). Applying

this estimation to (3.3) and performing further estimation we obtain

44,(p) < % (2k% + k) (4m + 3)* — ) (4k +1)%2 + O‘g Lk 1) }
_ 4k z;)%a :(4’“ + ;)2 1 m+3)° - m (4k + 1)+ 4 QTH (4k + 1)“}
< 4k z()lé)“‘ :(4k + 1)2&(51m +3)° 4(a1+ ) (4k + 1) + (a g L é) (4m + 1)“}
_ (4k ;24__01 :(4m +3)° 2(45;1)“} 409‘62 Lk + 17 (4m £ 1)°
o ) ;;24_a :(4m +3)% - Q(Lfigq 43621(4771 +1)%.

For the first summand in the last expression we need an upper bound which
does not depend on k. The function

x4fo¢ |:Ma B 2%

h(z) :=

MeN, 0 M 4
390 a+2], (MeN,0<z< M, ac(3,4)

has a derivative
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hence under the above assumptions h(z) has a unique critical point zg in (0, M),

v ((4—a)((;+2)Ma)i _ ((4—04)8(a+2)>iM.

Since A/(xz) > 0 in (0,2z9) and A'(x) < 0 in (xg, M), it follows that zo is a point
of an absolute maximum for h(z) in the interval (0, M). For the maximal value of
h(z) in (0, M) we obtain

4—«

1 (A—a)a+2)\ "
- (Bzaema) "o
(s, W) = 155 ( 8

Going back to the estimation of 4A,(p), substituting M = 4m+ 3 and x = 4k + 1,
we get

4-a)(a+2)
8

4a+1
96

144(p) < 155 ( )T m et S

=128
and the latter inequality holds true for £ =1,2,...,m. Hence,

1712,

>~ X
femzmog20 [IfII3 )y ~ 1<k<m

4—a
1 [d-a)(a+2)\ > 4 Ada+1 9
< — | —————= 4 4 1)=.
_128< 8 (dm + 3]+ =554 (4m+ 1)

4Ar(p)

The above inequality holds for every value of the parameter a € (3,4), and we
exploit this fact to minimize with respect to o the coefficient of (4m + 3)*. With
the help of Wolfram’s MATHEMATICA, we find that the minimum value of the

function e
vle) = (ug(“”)) L acB34),

is equal to 9 (a,) = 0.006633243689 . . ., where o, = 3.23308 ... satisfies a., € (3,4).
We obtain

TR
Sup - e
fE€mam, f#0 ||f||1/2

do, + 1

< 0.006633244(4m + 3)* + o6

(4m +1)%. (3.4)

It is easy to see that for every m € N we have

4o, +1
960vs

0.006633244(4m+3)*+ (4m+1)? < 0.006633244(4m+3.2)*, m € N. (3.5)

Indeed, the expression
(4m +3.2)* — (4m + 3)*
(4m+1)?
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is an increasing function of m, and it suffices to verify (3.5) for m =1 only.
Combining (3.4) and (3.5), we obtain

T
remam.s20 I1F1 /2

< 0.006633244 (4m + 3.2)* = 0.106131904 (2m + 1.6)*

< 0.325778919% (2m + 1.6)*

which implies
[ERIVE
sup
femamt20 | fll1/2

Thus, inequality (1.5) is proven for n = 2m.

< 0.325779 (2m + 1.6)?.

3.2. A LOWER BOUND

To prove inequality (1.6), we observe that every even polynomial f € ma,
can be written as a linear combination of Legendre polynomials with even indices
{Par(z)} (written below as polynomials of Gegenbauer with a parameter A = 1/2
in order to avoid confusion with the quadratic forms P). If

m
z) = 1Oy’ (a), (3.6)
k=1
then
1f H1/2 :4Pm(t)
FE, e
and it suffices to find a vector of coefficients t = (¢1,t2,...,t,) in the expression

(3.6), such that 4520 > 0.3178372(2m + 1/2)*.
For an arbitrary 8 € (3,3.5) (its value will be specified later), we choose

(15+3)° — (4~ 1)"
VAT +1 ’
With this choice of t we shall find a lower bound for the value of the quadratic form
4P,,(t) and an upper bound for [t|?. This will imply a lower bound for 4P,,(t)/|t|?
(depending on the parameter j3).
For the value of the quadratic form 4P,,(t) we obtain

m
m = Z 4k - 1
k=1

tj =

m

P2 (@5 +3)" - (4 - 1>5)]

Em: 4k —1) [ (4m +3)° — (4k — 1)5}2 (3.7)
k=1
= (2m? + m)(4m + 3)*° — 2(4m + 3)° i — 1) 4 f:(élkz —1)%+1,
k=1
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Now we estimate from below 4P, (t). We estimate from above the first sum of the
last line of (3.7) using Lemma 2.2 a):

- B+1 mrLe B+1 1 B+2
4k — 1 < dr — )PP e <« ———(dm + 1)°P 2.
> (k-1 _/1/2 (42— 1) g m D

A lower bound for the second sum in the last line of (3.7) is obtained with the help
of Lemma 2.2 b):

m m—+1/2
Z(4k—1)25+12/ - (4x—1)25+1dm—i 4(2B4+1)(4m+1)2P—4(28+1)

k=1 1/2
1 26+1 28+1 1
= Am+1)2P2 4m+1)?°
8B )T T Um )T e R
1 26+ 1
> ———(4m +1)*+? — 4m +1
sy —g mE DY
(for the later inequality we used that 26“ (ﬂﬂ) > 0).
Substituting the above lower bounds in (3.7), we obtain
E 2_ s L B p+2
4Py (t) >3 |(4m + 1) 1} (dm 3% — 5 (dm =+ 3)° (4 + 1)
1 26+ 1
4 (4m +1)%+2 dm+ 1
Sy Um D - T )
1 1
=—(4m+1)%*(4 W~ (4 B4m +1)°+2
8(m+ ) (4m + 3) 2510 )(m+3)(m+ )

+ ﬁ@lm +1)2842 25; Lam 118 é(4m +3)%
_ s[l o
—(4m + 3) [8 (4m + 1)%(4m + 3)° s 1)ﬁ+2}

+ 8(%_‘_1)(4m e 20y ~ S(m +3)

A further lower bound is obtained from the inequality
(4m +3)7 > (4m +1)% +28(4m + 1)1

(which follows from Maclaurin’s formula (1 + ) = 1+ Bz + WxQ(l + €)p-1
Withm:ﬁand0<£<m):

AP, () > [(4m +1)% + 28(4m + 1)1

B

1
x [§(4m +1)°%2 4 L (Am 1) - (4m +1)5+2

1
2(8+2)

1 2 1
+———(4m+1)2P2 ﬁ+ L (4m+ 1) — 8(4m+3)2ﬁ

8(B+1)
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B ey L mayn
8(8+1)(8+2) 2(8+2)
+ w«lm +1)% — é(zlm +3)28,

The expression in the last line is positive when m > 2 and 8 € (3,3.5), and therefore
can be neglected. Indeed, to prove the inequality

AB-1)BB+1)  rdm+3\28
3 ><4m+1> )

7
we observe that its right-hand side is less than (%) while its left-hand side is

7
greater than % = %, and % — (19—1> > 0.
Hence,

AP (t) > 2 i dm 4+ 122 L 4B + 1) (dm + 1)2PF1| (3.8)

B+1)(B+2) [(

Our next task is to obtain an upper bound for the norm of t. For the purpose
we estimate all of its components

45 +3)% — (45 —1)P
t]:(J—"_ ) (J ) ) j:17"'?m?

Vvij+1
bearing in mind that S € (3,3.5). On using the Maclaurin series, we obtain
BE-1(E-2)
3

4 ﬁ(ﬁ - 1)(ﬁ2; 2)(6 - 3) 24 [(1 + elx)ﬁ—4 _ (1 _ 92x)/3—4} ,

(1+2)f -1 —2)° =28z +

where 61,02 € (0,1). For 3 < 8 < 4 and 0 < & < 1 the expression in the square
brackets is negative, therefore for such 8 and = we have

(1+2) -1 -2 <282+ wx? (3.9)

Applying this inequality with x = 4j2T (x € (0,1)), we get an upper bound for ¢;:
t < 4B+ 1772 + 265 - 1)(5 - D)4 + 1)
= 4845 + 17214 2 (8~ 1)(8 - 2>m}
<4545+ 1) 1+ gm} .
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Consequently,

s 1
(4j +1)2 4 (45 + 1)4
21 1

<1652(4j+1)2’6 3[1+ZW s

12 < 163%(4j +1)2°3 [1 +5

and thus
2 < 168745 + 1) 3 4 848245 + )70, j=1,....m. (3.10)

To obtain an upper bound for [t|? = t3+t3+- - -+2,, we shall use (3.10) and the fact
that for 8 € (3,3.5) the functions g;(z) = (4 + 1)2/72 and go(x) = (4o + 1)2/—5
are convex and have convex second derivatives in the interval [0, m]. This enables
us to apply Lemma 2.2 b) to estimate the sums which appear. With Q! being the
(m + 1)-point trapezium quadrature formula for the interval [0, m], we have

m
1 1
D_(4j+ 17 = =5 4 S(4m+ 1) + Qo]

[
—

1 m 4(28 —
—(4m+1)25+3+/ (4x+1)25*3dm+M[(4m+1)25*4—1}
2 ; 12
1 1 26— 3
 (m A1) (dm )23 2T (g g 1)2 1
<8(/3'—1)(m+) +2(m+) + 3 (dm+1) ,

m
1 1
D_(4j+ 1P = =5+ S(Am+ )P + Qg

<.
—

1 m 4(28 —
e A R
0
1 1 28— 5
— (4 1244 -4 P54~ 4 1)28-6
<8(6—2)(m+) +2(m+) + 3 (dm +1)
We use (3.10) and these two estimations in order to obtain an upper bound for |t|?:
m m
62 <1657 (45 +1)% 73 + 8452y “(4j +1)%
j=1 j=1
232 16582(28 — 3
<31 f -(4m + 1)%0-2 4 8% (4m 4+ 1)>73 + 165726 = 3) (:f )(4m 4 1)2-4
2152 482(283 —
+ A (4m + 1)1 £ 418%(4m 4+ 1)?P7° + 845°(25 - 5) (4m +1)%°=6
2(8-2) 3
232 28—2 2 28-3
:ﬁ—l(4m+1) +8°(dm+1)
16(28—-3 21 1 41 84(28—-5 1
o (1605-3) PR 1T N
3 2(8—2) | 4m~+1 " (dm+1) 3 (dm+1)
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With m > 2 and 8 € (3,3.5) we estimate the expression in the square brackets as
follows:

- (16(2ﬂ —3) 21 ) 1 41 84(28-5) 1

35 ToB—2))am+l @mt12 T 3 @m+lp

64 1 41 168 1
ZhT) = 2 <12,
<8+<3+7> s T T3 @S

Hence for 8 € (3,3.5) and m > 2 we have

. 2p2 282 263

It]2 < 5_1[(4m+1) 1 6(8 — 1)(dm + 1) .

This inequality combined with (3.8) yields, for 8 € (3,3.5) and m > 2,

4 F1 (4m + 1)* LH ner Eisy

[t]2 16(8+ 1)(8 +2) 14 86-D

4m—+1
B—1
SCEDCED)

Since the last inequality holds true for every 8 € (3,3.5), we can optimize our
choice, searching for the maximum of the function

L
B+1)(B+2)’
The zeros of ¢’ are 31 =1—+v6and By =1+ V6; only B2 =1+ 6 =3,44949 . ..

is in (3,3.5), and B8 = (35 is a point of a global maximum for () in this interval.
We have

B V6 R R T - S
‘p(Hﬁ)*(2+\/6)(3+¢6)*12+5¢6*5+2¢6*5 2v6 = (V3 —v2)%

Therefore for 8 = B3 and n = 2m, m > 2, we have

(2m +1/2)%.

p(B) = B € (3,3.5).

P (t
4 |t|(2 ) s (V3 V2% (n+1/2)*.
The last inequality means that for the polynomial f(z) = Y7 | tkC;,éz (x) we have
L1113 P, (t
21/2 —4 (2)(\/3—\/5)2(7’L+1/2)4
.

Since v/3—v/2 = 0.317837245 . . ., this proves the lower bound (1.6) in Theorem 1.1
for n =2m, m > 2.
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4. PROOF OF THEOREM 1.1: THE CASE OF AN ODD n, n=2m—1

According to Theorem 2.1, we have
L1113
s — 12y sup Qm(t), (4.1)
femam—_1,f#0 Hle/Q tes;h

where, in our particular case A = 1/2, the quadratic form @, defined by (2.3)
becomes

Qum(t i(i —V4k —3/4j — 1 t) : (4.2)

k=1

4.1. AN UPPER BOUND

For any p = (p1,...,pm) € R}, Lemma 2.1 applied to K = @Q,, implies

thselgp+ Qm (t) 4;1;1; Qm(t) < 4 max Ak(p)  ax 4 Ak (p),

where

k m
Ar(p) = pikz %\/41' —3 4k — 1(Z %\/mﬂj—_lpj)

- z4z—s (zm——pj)

For some « € (3,4), which will be specified later, we choose
G Ol G k) MO
S s B
For any such a we have the inequality

(4k +1)* — (4k — 3)* > da(4k — 1)* ', keEN,

N 0

and we apply it to obtain

k m
4Ak(p)_(4k+1)4k—;llk 3@;41 ; (4j +1)° — (47 — 3)%)
4k —1 k
= Ja(@k — 1)1 [4’ 4m+1)a—(4i—3)“+1} (4.3)
4.3
= M [(2k2_k)(4m+1)a_zk:(4i_3)a+1]
4ox 2

2—« 2 k
_ Uk _4;) [(4k _;) “Lm 1) - 2(42' —3)>t! — 1] :
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For the last sum appearing in the right-hand side of (4.3) we apply Lemma 2.2 b)
to obtain

k k+1/2
3 (i 3)7 1 > / (4 — 3)°+! dz — % [(4k — 1) - 3“}
i=2 3/2

= m |4k —1)eF2 - 3e] = & 1 |4k = 1) - 3]
> m@k—na“ Ot g1y
(for the latter inequality we have used that 23 — 4(2—12) > 0, since « € (3,4)).
Substitution of this bound in (4.3) and a further estimation yield
4A,(p) < (4k;i)2ﬂ {(4’“_;)2_1 (4m—|—1)a—4(17+2)(4k‘ 1)* +O‘T+1 (4k—1)°‘—1}
< (4’“;3H {(4’“_;)2_1 (dm+1)" — 4( 57 (ak=1)"" +(%“—%)(4m_1)a}
W {(4m+1)a 2k s } 20 4 — 1) (4 — 1)
s%{umJﬂ)“* } 4a+1 m—1)2.

From the analysis in the case (n = Qm) we know that the function

x4—o¢ 2™
= M —
M) = 550 { a+ 2}

has a unique global maximum in the interval (0, M) for « € (3,4). Repeating the
argument from Section 3.1, substituting M = 4m + 1 and x = 4k — 1, we obtain

44—«
1 f(A—a)(a+2)\ > s da+1 9
4A - 4 1 —(4m -1 1<k<m.
k()_128( 8 Um 1)+ —ggq Um =17 1<k<m
Minimization of the major term in the right-hand side with respect to « yields
1771132 4
s < max 4A(p) < 0.10613184(n + 1.6)* .
fE€mam—_1,f#0 ||f||1/2 1<k<m

Inequality (1.5) is proven in the case n =2m — 1, m > 2.

4.2. A LOWER BOUND

Every odd polynomial f € mg,,—1 can be expressed as a linear combination
of the Legendre polynomials with odd indices {Ps;_1}, which we write again as
polynomials of Gegenbauer with a parameter A = 1/2. If

m

= G2 (@), (4.4)
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then

B, e
We will find a suitable vector of the coefficients t = (t1,%2,...,t,) € R in (4.4),
such that 4926 > 0.317837%(n + 1/2)".
For a 8 € (3,3.5), which will be specified later, we choose

171132 4 @nt)

1) -3
As it was done in Section 3.2, we estimate from below the quadratic form

4Q,(t) and from above |t|?, thus obtaining a lower bound for 4Q,,(t)/[t|?. For
this choice of t we have

4Qum f:élk 3(i4y+1 (4j - 3) )2
j=k

k=1

f: Ak — 3) { (4m +1)% — (4 — 3)"]2 (4.5)
k=1

= (2m* —m)(dm + 1)* —2(4m + 1)7 Y " (4k = 3)7T 4 " (4k — 3)*7 1,
k=1 k=1

For the first of the sums above we apply Lemma 2.2 a) to obtain

m m—1 m—1/2
> [k =3)t =14 )" 4k+1ﬂ+1<1+/ (4 + 1)+ dx
k=1 k=1 1/2
1
1 [ Am — 1)P+2 35“} Am — 1)0+2,
gl TEE A
where for the last inequality we have used that 1 — 4?;:_22) <0.

Lemma 2.2 b) applied to the second sum of the last line of (4.5) yields

m m—1 m—1
> (k= 3)P =34k + 1) =14 ) 4k + 1)
k=1 k=0 k=1
m—1/2 92 1
>1 +/ (4o 4+ 1)2PH1gp — 2P T1 {(4m —1)28 _ 3%}
1/2 6
1 26+ 1 28+ 1 9
= (dm 1) L um - 1) 1 32 T 3%
sErpm- b g Um DT A 8(B+1)
1 spin 2841 2
> 8(ﬁ+1)(4m 1) 5 (4dm — 1)*" |

where for the last line we have used that 1 + 327 (MTH — %) > 0.

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 215-235. 229



Substitution of the bounds for these sums in (4.5) implies

AQum(t) >% {(4m —1)2—1](dm+ 1) — m(m +1)8(4m — 1)+
+ m(élm —1)%+2 %(m —1)%
:é(llm —1)2(4m +1)%° — 2(51 ) (4m + 1)P (4m — 1)P+2
+ m(élm _q)28e2 %(4m 128 2By gy
=(4m +1)° [%(4771 —1)2(4m +1)% — m@m —1)#+?]
+ 8(61+ 5 (am — 122 é(llm payze = B, e

Furthermore, from (4m + 1)% > (4m — 1)% + 28(4m — 1)#~1 we get
AQum(t) > [(4m +1)8 + 28(4m — 1)ﬁ*1}

X (é(‘lm —1)? [(4m +1)7 +2B(4m — 1)%?—1} - m@lm _ 1)5+2>
1 26 4 1

8(B+1) T 6
LR ! B_ 8 1

= {g — 2512 + 8(6+1)}(4m—1)2ﬁ+2+ (5 _ m)(4m_1)2ﬁ+

B 41126 L 26 _
+ 2(4m 1) 8(4m+1)

_|_

1
(4m —1)%°+2 g(4m+ 1)%8 (4m —1)*

28+ 1

(4m —1)*

B 2 8?
= _(4m—1)>*2 4 4m —1)28+1
sEroerg T Tyt Y
(B -1 1
+ %(m — 1% - —(4m+1)?8.
For m > 2 and g € (3,3.5) the expression in the last line is positive, and therefore
can be neglected. Indeed, in the inequality

AB-1)BB+1)  dm+1\28
3 > <4m—1)

7 7
the right-hand side is < (%) , the left-hand side is > %, and also % — <%) > 0.

Therefore,

B 32 )
O a0
g .

- P (4m 1) [1 +4(8 + 1)4m1_ 1]

~8(B+1)(B+2)
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Next, we find an upper bound for the norm of t. For this purpose we estimate
all of its components
45+ 1)% — (45 — 3)P
t]:(j+ ) (j ) ) j:17""m’

VA —1

using that g € (3,3.5). Inequality (3.9) applied with x = 4j2—_1 yields an upper
bound for ¢;:

b < 484~ 1P/ 4 S8(5 — 1)(8 ~ 2)(1) — 1P~

= 4545 ~ 121+ 2 (8~ 1)(8 ~ 2) |

-1
501
445 — 132142 2 ]
<485 - 1) [+2(4j—1)2}
Since j > 1, we have
1 25 1
2 168247 — 1) 3 |11+5—— 422 °
£ < 1657(1) = 127721 (4j—1)2+4(4j—1)4}
1 25 1
<1 24‘—12/3*3[1 5 —7}
< 1657145 - 1) oW T - 1)e
205 1
:1624‘—1213*3[1 —7}
Fi=1 T 36 (@ — 12
Thus,
2 200 1\28-3 , 920 o . l9p_s .
t; < 165°(45 — 1) +—9ﬁ(4j 1) , j=1,...,m. (4.7)

To estimate from above |t|?, we make use of (4.7) and the fact that for 3 € (3,3.5)
the functions hi(z) = (4 — 1)?73 and ho(x) = (4x — 1)275 are convex and
have convex second derivatives in the interval [1,m]. Let Q! _, be the m-point
trapezium quadrature formula for the interval [1,m]. By Lemma 2.2 b) we have

m ) B 32,8—3 Am — 1 25-3 .
S -t = S AU g a
j=1

32078 (4m—1)%P18

2 + 2

" 26-3 26-3 284 _ 9234
+/ (4x—1)%° dac—l—T (4m—1)2-_328
1

= m(ﬁlm — 1)2&2 + %(4m — 1)2&3 + %T_3(4m _ 1)2574
L_26-3_ 3 a3
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3275 (4m —1)?P5

>ty - 1oe = S G DT g n
j=1
< 32275 + (4m—21)2&5 +/1m(4x—1)2ﬁ5dx+25T_5 {(4m _1)26-6_ 3266
= m(llm —1)24 4 %(4m —1)%-5 4 2’;3_5(47’1 _1)26-6
* [% - 2ﬁ9_ - 8(53_ 2)}32’3‘5.

Using these two estimations we obtain

m

820 —
t]? < 1632 45 —1)%0-3 4 = 2(45 —1)%8-5
t] B2y (45 -1) +9;5(J )

j=1
232 1 28 — 3
=3 f —(4m — 1) 7% 1 16” [5(4m _qyze- 2623, 1)2%3—4}
20532 ssa | 820 71 055 | 28—5 25t
oy m - VP e [5(4m—1) P S am - ) }

1 28-3 3 82071 28-5 3 o
+<16{§_ 9 _8(6—1)]+§{§_ 9 _S(ﬁ—2)}>5232 -

Let us show that the expression in the last line is negative. Set

- 1 25-3 3 82011 28-5 3
w(ﬁ)*lﬁ[i_ 9 _8(6—1)} ﬁ[i_ 9 _S(ﬁ—z)}’
where 8 € (3,3.5). Since
oy 4232 6 205
V) =g T Eoe T 2e

is a decreasing function in the interval (3, 3.5), therein we have

4232 3 205
/ ! _ == e =
Y'(B) <Y'(3) = =9 +2+ 1 <0,

so 1(B) decreases in the interval (3,3.5), and therefore ¥(5) < ¢ (3) < 0.
Thus, we obtain
. 22 28-2 2 25-3
2 _
4;_062(4777‘ _ 1)2ﬁ75 + 820ﬂ (26 5)

232 o ,
=33 (4m —1)%P72 4+ B2(4m — 1)*’=3D(B,m),

165%(28—-3) 20532
3 +18(ﬁ—2)}(4m_1)254

+ (4m —1)%-6
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where

D(Bim) =8+ (16(2ﬁ ~3) 205 ) 1 410 820(24 — 5)

35 TBG-2)Im—1  9Gm-12  W@m-13

An crude estimation reveals that D(3,m) < 14 for m > 2 and S € (3,3.5). There-
fore, for these 8 and m we have

26 1 T(B - 1>]

t[2 [
It < g7 ' T T T

By (4.6), for 5 € (3,3.5) and m > 2 we also have

8? 4(B+1)
1Qmlt) = 8(B+1)(B+2) { T am+ 1)} ’
whence
Qm(t) g—1 L1+ 2
e T @ nE Y e

Since 4(f + 1) > 7(8 — 1) for § € (3,3.5), the above inequality implies

Qm(t) B—1 B—1
t]? 16(8+1)(B +2) B+1)(B+2)

Repeating our final argument from Section 3.2, we maximize the coefficient of

(n +1/2)* with respect to 8 to obtain inequality (1.6) for n =2m — 1, m > 2.
The proof of Theorem 1.1 is complete, but (1.6) is shown for n > 3 only, due

to our assumption m > 2. This restriction is easily removed, see the next section.

4 (4m —1)* = (n+1/2)*.

5. FINAL REMARKS

1. The proof of (1.6) in the cases n = 2m and n = 2m — 1 was accomplished
under the assumption that m > 2. In fact, for n < 8 inequality (1.6) is
verified with f = P,, - the n-th Legendre polynomial. We have

2
1Pall = 4/ ;
2n+1

and to evaluate || P/ ||, we exploit the fact that P, is orthogonal to m,—1 and
other well-known properties of P, such as P,(1) = 1, P,(—1) = (=1)" and
PL(1) = nfn+1)/2

1P = / PACEADES AN ACIACIE / Py () P! (x)de

=2P' (1) =n(n+1), .
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ie, ||PL]| = n(n +1). The inequality (1.6) with f = P, is equivalent to

Jam T D _/antl/2”
nin+1)> (V3 ﬂ)\/m

It is easy to see that the last inequality is true for n < 8.

. With more elaborate estimations of P,,, @ and t (including a Taylor series

expansion up to ninth term), and using MATHEMATICA, inequality (1.6)
could be improved to

1112 > 0.317837(n+ 3/2) || f[|1/2-

We however decided to skip the derivation of this slightly better inequality.

. In view of (1.2), the overestimation of the best constant in Markov’s Lo

inequality, given by (1.5), is asymptotically equal to

w =1.02346... .
1/m
On the other hand,
T oouy.

Vi- 2

which shows that the lower bound for the best constant in Markov’s Lo in-
equality, given by (1.6), is rather satisfactory.
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