годишник на софийския университет "св. климент охридски"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Tom 100

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE Tome 100

A NOTE ON THE SECTIONAL CURVATURE

STEFKA T. HINEVA

The type of the matrices of the second fundamental form of a submanifold M^n in a Riemannian manifold N^{n+p} is given, when the equalities in the estimates of the sectional curvature $K_M(\sigma)$ of M^n by means of its mean curvature H and length S of the second fundamental form hold. It is shown that the equality in the upper estimate of the sectional curvature $K_M(\sigma)$ of M^n in a space form $N^{n+p}(c)$ is achieved when the normal bundle of M^n is flat and M^n is a product submanifold of the type $M^2 \times M^{n-2}$ or $M^2 \times E^{n-2}$ (cylinder), where M^2 , M^{n-2} are umbilical manifolds, E^{n-2} - Euclidean. It is also shown that among all the submanifolds in $N^{n+p}(c)$ which pass through its point x and have at this point the same $S(x)$, the product submanifold $M^n = M^2 \times E^{n-2}$ has at x the biggest sectional curvature $K_M(\sigma)(x) = c + \frac{1}{2}S(x)$.

Keywords: Sectional curvature, length of the second fundamental form, mean curvature, product submanifold, eigenvalues

2000 MSC: 53B25, 53C40

1. PRELIMINARIES

Let M^n be an *n*-dimensional submanifold of an $(n+p)$ -dimensional Riemannian manifold N^{n+p} . We choose a local frame of orthonormal fields e_1, \ldots, e_{n+p} in N^{n+p} such that, restricted to M^n , the vectors e_1, \ldots, e_n are tangent to M^n and the remaining vectors e_{n+1}, \ldots, e_{n+p} are normal to M^n .

We shall use the following convention on the ranges of the indices:

$$
1 \le i, j, k, \dots \le n; \qquad 1 \le \alpha, \beta, \gamma, \dots \le p.
$$

We denote the second fundamental form $h: T_xM^n \times T_xM^n \to T_x^{\perp}M^n$ on M^n for $x \in M^n$ where $T_x M^n$ is the tangent space of M^n at x and $T_x^{\perp} M^n$ is the normal space to M^n at x, by its components h_{ij}^{α} with respect to the frame e_1, \ldots, e_{n+p} . We call

$$
H = \sum_{\alpha} \frac{1}{n} h^{\alpha} e_{\alpha}, \qquad H^2 = \frac{1}{n^2} \sum_{\alpha} (h^{\alpha})^2, \quad \text{where} \quad h^{\alpha} = \sum_{i} h_{ii}^{\alpha} \tag{1.1}
$$

the *mean curvature vector* of M^n .

The square S of the length of the second fundamental form is given by:

$$
S = \sum_{\alpha} \left[\sum_{i,j} (h_{ij}^{\alpha})^2 \right]
$$
 (1.2)

In general, for a matrix $A = (a_{ij})$ we denote by $N(A)$ the square of the norm of A, i.e. $N(A) = \text{trace } A \cdot A^t = \sum_{i,j} (a_{ij})^2$ and

$$
|\operatorname{trace} A| \le \sqrt{n.N(A)}.\tag{1.3}
$$

S and h^{α} are independent of our choice of orthonormal basis.

Let X and Y be a pair of orthonormal vectors tangent to M^n at a point $x \in M^n$, and let us suppose that the local frame e_1, \ldots, e_{n+p} (*) is so chosen that X and Y coincide with two arbitrary vectors of that frame. Let $X = e_{n-1}$, $Y = e_n$. Then the sectional curvature $K_M(\sigma)$ of M^n at the point x for the plane σ spanned by X and Y is written as follows:

$$
K_M(\sigma) = \overline{K}_N(\sigma) + \sum_{\alpha} \left[h_{n-1,n-1}^{\alpha} h_{nn}^{\alpha} - (h_{n-1,n}^{\alpha})^2 \right]
$$
 (1.4)

where $\overline{K}_N(\sigma)$ is the sectional curvature of N^{n+p} .

This paper is a continuation of the papers [1] and [2] where we proved that the sectional curvature $K_M(\sigma)$ of a submanifold M^n in a Riemannian manifold N^{n+p} at a point $x \in M^n$ satisfies the following inequalities:

$$
K_M(\sigma) \le K_N(\sigma) + \frac{4-n}{2}H^2 + \frac{n-2}{2n}S + \sqrt{\frac{2(n-2)}{n}H^2(S - nH^2)},\tag{1.5}
$$

$$
K_M(\sigma) \ge K_N(\sigma) + \frac{n^2}{2(n-1)}H^2 - \frac{1}{2}S \quad \text{when } \frac{n^2}{n-1}H^2 - S < 0,\tag{1.6}_1
$$

$$
K_M(\sigma) \ge K_N(\sigma) \qquad \text{when } \frac{n^2}{n-1}H^2 - S \ge 0. \tag{1.6}_2
$$

The purpose of this paper is to show for which submanifolds the equalities in (1.5) , (1.6) ₁ and (1.6) ₂ are fulfilled. For this purpose we will formulate Theorem 1.1 from [2] more precisely describing the types of the matrices (h_{ij}^{α}) of the

second fundamental form of M^n with respect to the suitably chosen orthonormal basis $e_1, \ldots, e_n, \ldots, e_{n+p}$ (*), when these equalities are achieved:

Theorem 1.1. Let M^n be an n-dimensional submanifold of an $(n + p)$ dimensional Riemannian manifold N^{n+p} . For the sectional curvature $K_M(\sigma)$ of the 2-plane section σ spanned by the two orthonormal vectors X and Y tangent to M^n at a non-totally geodesic point $x \in M^n$ we have (1.5) , $(1.6)_1$ and $(1.6)_2$, where $K_N(\sigma)$ denotes the sectional curvature of N^{n+p} .

The equality in (1.5) hold only when either $n = 2$ or if $n \geq 3$ all the matrices (h_{ij}^{α}) of the second fundamental form with respect to the orthonormal basis $e_1, \ldots, e_{n-1} = X, e_n = Y, \ldots, e_{n+p} (*)$ are of the form

$$
\begin{pmatrix}\n\lambda_1^{\alpha} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \lambda_1^{\alpha} & 0 & 0 \\
0 & \cdots & 0 & \lambda_n^{\alpha} & 0 \\
0 & \cdots & 0 & 0 & \lambda_n^{\alpha}\n\end{pmatrix}
$$
\n(1.7)

where

$$
\lambda_1^{\alpha} = \frac{h^{\alpha}}{n} \mp \frac{1}{n} \sqrt{\frac{2[nS^{\alpha} - (h^{\alpha})^2]}{n-2}}; \quad \lambda_n^{\alpha} = \frac{h^{\alpha}}{n} \pm \frac{1}{n} \sqrt{\frac{(n-2)[nS^{\alpha} - (h^{\alpha})^2]}{2}}.
$$

The equalities in $(1.6)_1$ and $(1.6)_2$ are fulfilled if and only if either $n = 2$ or when $n\geq 3$ the corresponding matrices (h^α_{ij}) are the following

$$
\begin{pmatrix} a_1^{\alpha} & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & a_1^{\alpha} & 0 & 0 \\ 0 & \dots & 0 & \frac{a_1^{\alpha} \mp c^{\alpha}}{2} & a_{n-1,n}^{\alpha} \\ 0 & \dots & 0 & a_{n-1,n}^{\alpha} & \frac{a_1^{\alpha} \pm c^{\alpha}}{2} \end{pmatrix}
$$
 (1.8)₁

where

$$
a_1^{\alpha} = \frac{h^{\alpha}}{n-1}; \quad a_{n-1,n}^{\alpha} \le \frac{S^{\alpha}}{2} + \frac{(3-2n)(h^{\alpha})^2}{4(n-1)^2},
$$

$$
c^{\alpha} = \frac{1}{n-1} \sqrt{(3-2n)(h^{\alpha})^2 + 2(n-1)^2 [S^{\alpha} - 2(a_{n-1,n}^{\alpha})^2]},
$$

$$
\left(h_{11}^{\alpha} - h_{12}^{\alpha} - \dots - h_{1,n-1}^{\alpha} - h_{1n}^{\alpha}\right)
$$

and

$$
\begin{pmatrix}\nh_{11}^{\alpha} & h_{12}^{\alpha} & \dots & h_{1,n-1}^{\alpha} & h_{1n}^{\alpha} \\
h_{12}^{\alpha} & h_{22}^{\alpha} & \dots & h_{2,n-1}^{\alpha} & h_{2n}^{\alpha} \\
\dots & \dots & \dots & \dots & \dots & \dots \\
h_{1,n-1}^{\alpha} & h_{2,n-1}^{\alpha} & \dots & 0 & 0 \\
h_{1n}^{\alpha} & h_{2n}^{\alpha} & \dots & 0 & 0\n\end{pmatrix}.
$$
\n(1.8)

To find the view $(1.7), (1.8)₁$ and $(1.8)₂$ of the matrices (h_{ij}^{α}) we apply for them the basic Lemma 2.1 from [1] and obtain that with respect to the suitably chosen orthonormal basis (∗) the upper and the lower bounds of the functions

$$
h_{n-1,n-1}^{\alpha}h_{nn}^{\alpha} - (h_{n-1,n}^{\alpha})^2, \quad \alpha = 1, 2, \dots p,
$$
\n(1.9)

appearing in the expression (1.4) for the sectional curvature $K_M(\sigma)$, namely,

$$
h_{n-1,n-1}^{\alpha}h_{n,n}^{\alpha} - (h_{n-1,n}^{\alpha})^2 \le \frac{1}{2n^2} \{ (4-n)(h^{\alpha})^2 + n(n-2)S^{\alpha} + 2|h^{\alpha}|\sqrt{2(n-2)[nS^{\alpha} - (h^{\alpha})^2]} \},\
$$

\n
$$
h_{n-1,n-1}^{\alpha}h_{n,n}^{\alpha} - (h_{n-1,n}^{\alpha})^2 \ge \frac{1}{2(n-1)}(h^{\alpha})^2 - \frac{1}{2}S^{\alpha}, \quad \text{if } \frac{1}{n-1}(h^{\alpha})^2 - S^{\alpha} < 0,
$$
\n(1.10)

 $h_{n-1,n-1}^{\alpha}h_{n,n}^{\alpha} - (h_{n-1,n}^{\alpha})^2 \ge 0,$ if $\frac{1}{n-1}$ $\frac{1}{n-1}(h^{\alpha})^2 - S^{\alpha} \ge 0$ $(1.10)_2$

are achieved only when (h_{ij}^{α}) have the forms (1.7) , (1.8) ₁ and (1.8) ₂, respectively. We shall formulate some corollaries from this theorem.

Corollary 1.1. The sectional curvature $K_M(\sigma)$ of M^n at a point x for all 2 -planes $\sigma \in T_x M^n$ is non-negative $(K_M(\sigma) \geq 0)$ if

$$
K_N(\sigma) \ge \frac{1}{2}S - \frac{n^2}{2(n-1)}H^2 \qquad \text{when } \frac{n^2}{n-1}H^2 < S,\tag{1.11}
$$

or

$$
K_N(\sigma) \ge 0 \qquad \text{when } S \le \frac{n^2}{n-1}H^2. \tag{1.12}
$$

Corollary 1.2. $K_M(\sigma) \ge K_N(\sigma)$ for the plane $\sigma \in T_xM^n$ at a point $x \in M^n$ when n 2

$$
S \le \frac{n^2}{n-1} H^2. \tag{1.13}
$$

Corollary 1.3. $K_M(\sigma) \leq 0$ for the plane $\sigma \in T_xM^n$ at a point $x \in M^n$ when

$$
K_N(\sigma) \le -\left(\frac{4-n}{2}H^2 + \frac{n-2}{2n}S + \sqrt{\frac{2(n-2)}{n}H^2(S - nH^2)}\right),\tag{1.14}
$$

(1.14) is possible only when $K_N(\sigma)$ is negative as the right side of (1.14) is negative.

Next we will give other estimates of the sectional curvature $K_M(\sigma)$, depending only on the length S of the second fundamental form.

We need the following

Proposition 1.2. Let M^n be a submanifold in a Riemannian manifold N^{n+p} , then at a point $x \in M^n$ the functions (1.9) satisfy

$$
h_{n-1,n-1}^{\alpha}h_{nn}^{\alpha} - (h_{n-1,n}^{\alpha})^2 \le \frac{1}{2}S^{\alpha},\tag{1.15}_1
$$

$$
h_{n-1,n-1}^{\alpha}h_{nn}^{\alpha} - (h_{n-1,n}^{\alpha})^2 \ge -\frac{1}{2}S^{\alpha}.
$$
 (1.15)

The equality in $(1.15)₁$ holds when the matrices (h_{ij}^{α}) with respect to the basis (*) have the view

$$
h_{ij}^{\alpha} = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & h_{nn}^{\alpha} & 0 \\ 0 & 0 & \dots & 0 & h_{nn}^{\alpha} \end{pmatrix}, \quad h_{nn}^{\alpha} = \pm \sqrt{\frac{S^{\alpha}}{2}}.
$$
 (1.16)

The equality in $(1.15)_2$ is valid when $h^{\alpha} = 0$ and (h^{α}_{ij}) are

$$
\begin{pmatrix}\n0 & \dots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \dots & 0 & 0 & 0 \\
0 & \dots & 0 & c^{\alpha} & h_{n-1,n}^{\alpha} \\
0 & \dots & 0 & h_{n-1,n}^{\alpha} & -c^{\alpha}\n\end{pmatrix}
$$
\n(1.17)

where

$$
(h_{n-1,n}^{\alpha})^2 < \frac{1}{2}S^{\alpha}, \quad c^{\alpha} = \pm \frac{1}{2}\sqrt{2[S^{\alpha} - 2(h_{n-1,n}^{\alpha})^2]}.
$$

The proof of this proposition follows from Lemma 2.2 from [1], applied to the matrices (h_{ij}^{α}) .

From these estimates of the functions (1.9) and the expression (1.4) for the sectional curvature $K_M(\sigma)$ we obtain the following

Theorem 1.3. The sectional curvature $K_M(\sigma)$ of M^n in a Riemannian manifold N^{n+p} at a point $x \in M^n$ satisfies the following inequalities:

$$
K_M(\sigma) \le K_N(\sigma) + \frac{1}{2}S,\tag{1.18}
$$

$$
K_M(\sigma) \le K_N(\sigma) - \frac{1}{2}S. \tag{1.18}_2
$$

The equalities in (1.18) ₁ and (1.18) ₂ are satisfied only when (h_{ij}^{α}) with respect to a suitable basis $(*)$ have the forms (1.16) and (1.17) , respectively.

2. THE EQUALITY CASES IN THE ESTIMATES

Let the ambient space $N^{n+p}(c)$ be a space of constant curvature c, then (1.5) , $(1.6)₁$ and $(1.6)₂$ take view, respectively:

$$
K_M(\sigma) \le c + \frac{4-n}{2}H^2 + \frac{n-2}{2n}S + \sqrt{\frac{2(n-2)}{n}H^2(S - nH^2)},
$$
 (2.1)

$$
K_M(\sigma) \ge c + \frac{n^2}{2(n-1)}H^2 - \frac{1}{2}S \quad \text{when} \quad \frac{n^2}{n-1}H^2 - S < 0,\tag{2.2}_1
$$

$$
K_M(\sigma) \ge c
$$
 when $\frac{n^2}{n-1}H^2 - S \ge 0.$ (2.2)₂

We'll show when the equality in (2.1) holds. From the form (1.7) of the matrices (h_{ij}^{α}) corresponding to this bound we see that all they are simultaneously diagonalized with respect to the chosen basis $e_1, \ldots, e_{n-1} = X, e_n = Y, \ldots, e_{n+p}$ (*). Each one of them has exactly $n-2$ eigenvalues equal to the corresponding λ_1^{α} and two equal to the corresponding λ_n^{α} from (1.7) and the vectors X and Y on which the 2-plane σ is spanned are their common eigenvectors corresponding to their 2-multiple eigenvalue λ_n^{α} . Then, taking in view the fact that every two of the matrices (1.7) are commutative as they can be simultaneously diagonalized, from the Ricci equation

$$
R^{\alpha}_{\beta kl} = h^{\alpha}_{ks} h^{\beta}_{sl} - h^{\alpha}_{ls} h^{\beta}_{sk} \tag{2.3}
$$

where $R^{\alpha}_{\beta kl}$ is the curvature tensor of the normal bundle $T_x^{\perp} M^n$, it follows that

$$
R^{\alpha}_{\beta kl} = 0,\t\t(2.4)
$$

i.e. the normal bundle of $Mⁿ$ is flat. The converse is also true. Thus we prove the following

Theorem 2.1. Let M^n be a non-totally geodesic submanifold in a space form $N^{n+p}(c)$. The equality

$$
\max_{\sigma \in T_x M^n} K_M(\sigma) = c + \frac{4-n}{2} H^2 + \frac{n-2}{2n} S + \sqrt{\frac{2(n-2)}{n} H^2 (S - nH^2)}
$$
(2.5)

when σ runs over all 2-plane sections tangent to M^n at a point $x \in M^n$, holds for all points $x \in M^n$, if and only if:

- i. the normal bundle of M^n is flat,
- ii. each one of the matrices (h_{ij}^{α}) has exactly $(n-2)$ eigenvalues equal to the corresponding λ_1^{α} and two equal to λ_n^{α} from (1.7) with respect to the basis (*),
- iii. the vectors X and Y on which the 2-plane σ is spanned for which $\max K(\sigma)$ is achieved are their common eigenvectors corresponding to their double eigenvalue λ_n^{α} .

With the next theorem two examples of submanifolds satisfying the conditions of the above theorem will be given.

Theorem 2.2. If the submanifold M^n $(n \geq 4)$ of $N^{n+p}(c)$ satisfies the following conditions:

- i. the normal bundle of M^n is flat,
- ii. M^n is a product submanifold of the type $M^n = M^2 \times M^{n-2}$ or $M^n = M^2 \times$ E^{n-2} , where M^2 , M^{n-2} and E^{n-2} are 2-dimensional umbilical submanifold of $N^{n+p}(c)$, $(n-2)$ -dimensional umbilical submanifold of $N^{n+p}(c)$, and $(n-2)$ dimensional Euclidean submanifold of $N^{n+p}(c)$, respectively,

then the equality in (2.1) (or (2.5)) is achieved at a point $x \in M^n$ for a 2-plane σ , which belongs to T_xM^2 .

Next, from Theorems 1.3 and 2.1 we obtain the following

Theorem 2.3. From all n-dimensional submanifolds of $N^{n+p}(c)$ which pass through a point $x \in N^{n+p}(c)$ and have at x the same $S(x)$, only the submanifold $Mⁿ$ which satisfies the following conditions:

- i. the normal bundle of M^n is flat;
- ii. each one of the matrices (h_{ij}^{α}) has exactly $n-2$ eigenvalues equal to zero and two equal to $\lambda_n^{\alpha} = \pm$ $\sqrt{S^{\alpha}}$ $\frac{1}{2}$ with respect to the basis $(*)$,

has the biggest max $K(\sigma_0)(x) = c + \frac{1}{2}$ $\frac{1}{2}S(x)$ achieved for σ_0 spanned by the common eigenvectors X and Y of all (h_{ij}^{α}) , corresponding to their 2-multiple eigenvalue $\lambda_n^{\alpha} = \pm$ $\sqrt{S^{\alpha}}$ $\frac{S^{\alpha}}{2}$. The mean curvature of this submanifold is $H(x) = \pm \frac{1}{n}$ $rac{1}{n}\sqrt{2S(x)}$.

The following theorem gives an example of a submanifold satisfying the conditions of Theorem 2.3.

Theorem 2.4. The product submanifold $M^n = M^2 \times E^{n-2}$ (cylinder) of $N^{n+p}(c)$ with flat normal bundle, where M^2 and E^{n-2} are 2-dimensional umbilical submanifold of $N^{n+p}(c)$ and $(n-2)$ -dimensional Euclidean submanifold of $N^{n+p}(c)$, respectively, has at $x \in M^n$ sectional curvature $K(\sigma_0)(x) = c + \frac{1}{2}$ $\frac{1}{2}S(x)$ for $\sigma_0 \in$ T_xM^2 . The mean curvature of M^n is: $H(x) = \frac{1}{n}\sqrt{2S(x)}$ or $H(x) = -\frac{1}{n}$ $rac{1}{n}\sqrt{2S(x)}$.

Let us now see what we can say for the equality case in the lower bound in $(2.2)_1$.

The only thing which can be said for the equality case in $(2.2)_1$ is formulated in the following theorem and follows from Theorems 1.1 and 1.3.

Theorem 2.5. From all n-dimensional submanifolds of $N^{n+p}(c)$ which pass through a point $x \in N^{n+p}(c)$ and have at x the same $S(x)$, only the minimal submanifold M^n which second fundamental tensors with respect to an orthonormal basis $e_1, \ldots, e_{n-1} = X, e_n = Y, \ldots, e_{n+p}$, have matrices

where

$$
(h_{n-1,n}^{\alpha})^2 < \frac{1}{2}S^{\alpha}, \quad c^{\alpha} = \pm \frac{1}{2}\sqrt{2[S^{\alpha} - 2(h_{n-1,n}^{\alpha})^2]},
$$

has the smallest min $K(\sigma_0)(x) = c - \frac{1}{2}$ $\frac{1}{2}S(x)$ for σ_0 spanned on $X = e_{n-1}$ and $Y = e_n$.

The mean curvature $H(x)$ of M^n is zero, the sectional curvature of M^n is negative if the ambient space is Euclidean or Hyperbolic.

Example of Theorem 2.1. The hyperellipsoid $M^3 \in E^4$

$$
M^3: x_1^2 + x_2^2 + x_3^2 + mx_4^2 = 1, \quad 0 < m < 1.
$$

The principal curvatures of M^3 are:

$$
\lambda_1 = \lambda_2 = \frac{1}{\sqrt{1 + (m^2 - m)x_4^2}} = \frac{1}{\sqrt{Q}}; \quad \lambda_3 = \frac{m}{\left(\sqrt{1 + (m^2 - m)x_4^2}\right)^3} = \frac{m}{\left(\sqrt{Q}\right)^3},
$$

$$
h_{ij} = \begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_3 \end{pmatrix}, \quad 0 < \lambda_3 \le \lambda_1 = \lambda_2.
$$

$$
3H = h = 2\lambda_1 + \lambda_3 = \frac{2Q + m}{\left(\sqrt{Q}\right)^3}, \quad S = 2\lambda_1^2 + \lambda_3^2 = \frac{2Q^2 + m^2}{Q^3} \tag{2.6}
$$

 $\min \lambda_i \lambda_j \leq K_{M^3}(\sigma) \leq \max \lambda_i \lambda_j = \lambda_1 \lambda_2 = \lambda_1^2 = \frac{1}{C}$ $\frac{1}{Q} \Rightarrow K_{12} = \frac{1}{Q}$ $\frac{1}{Q} = \max_{\sigma} K_{M^3}(\sigma).$

On the other hand, according to (2.5) and taking in view (2.6) for the $\max K_{M^3}(\sigma)$ we have:

$$
\max K_{M^3}(\sigma) = \frac{1}{2}H^2 + \frac{1}{6}S + \sqrt{\frac{2}{3}H^2(S - 3H^2)} = \frac{1}{18}\left(h^2 + 3S + 2h\sqrt{2(3S - h^2)}\right),
$$

which is exactly equal to $\frac{1}{Q} = K_{12}$.

3. CHARACTERIZATION OF SOME SUBMANIFOLDS IN N^{N+P}

Theorem 3.1. A complete simply connected n-dimensional submanifold $Mⁿ$ in a Riemannian manifold N^{n+p} of negative sectional curvature is diffeomorphic to R^n if the second fundamental tensor of M^n satisfies (1.14).

The proof follows from Corollary 1.3 and the theorem of Hadamard-Cartan.

Corollary 3.1. If the second fundamental tensor of an n-dimensional complete simply connected submanifold M^n in an $(n+p)$ -dimensional Riemannian manifold N^{n+p} of constant negative curvature $(c < 0)$ satisfies

$$
\frac{4-n}{2}H^2 + \frac{n-2}{2n}S + \sqrt{\frac{2(n-2)}{n}H^2(S - nH^2)} \le -c
$$
 (3.1)

then M^n is diffeomorphic to R^n .

Theorem 3.2. A complete connected n-dimensional submanifold M^n in an $(n+p)$ -dimentional Riemannian manifold N^{n+p} of positive curvature bounded below by a constant $c > 0$ is compact with diameter $\leq \frac{\pi}{\sqrt{2}}$ $\frac{\partial}{\partial \sqrt{c}}$ if its second fundamental form satisfies (1.13) .

Remark. Another proof of this theorem in the case when N^{n+p} is of constant positive curvature is given by M. Okumura [7].

Theorem 3.3. Let M^n be an n-dimensional non-compact complete connected submanifold in an $(n + p)$ -dimensional Riemannian manifold N^{n+p} . If at each point $x \in M^n$ for which $\frac{n^2}{n}$ $\frac{n^2}{n-1}H^2 < S$ the inequality $K_N(\sigma) \geq \frac{1}{2}$ $\frac{1}{2}S - \frac{n^2}{2(n-1)}H^2$ is fulfilled or if at each point x for which $S \leq \frac{n^2}{n-1}$ $n-1$ H^2 the inequality $K_N(\sigma) \geq 0$ holds, then there exists in M^n a compact totally geodesic and totally convex submanifold Q_M without boundary such that M^n is diffeomorphic to the normal bundle of Q_M . In the case when N^{n+p} is of positive curvature which is not bounded bellow by a positive constant then M^n is diffeomorphic to R^n if $S \leq \frac{n^2}{n-1}$ $n-1$ H^2 .

We prove this theorem using Corollary 3.1 and the theorems of Cheeger and Gromoll [5] and Gromoll and Meyer [6].

REFERENCES

- 1. Hineva, S. Submanifolds and the second fundamental tensor. Lecture Notes in Math., 1156, 1984, 194–203.
- 2. Hineva, S., E. Beltchev. A note on the submanifolds of a δ -pinched manifold. Ann. Sofia Univ., Fac. Math. and Inf., 81, 1987, 59–65.
- 3. Hineva, S. Inequalities for the sectional curvature and the Ricci curvature of submanifolds. In: Math. and Education of Math. Proc. of the XIX Spring Conf. of UBM, Sunny Beach, April 6–9, 1990, 7–8.
- 4. Chen, B. Y. Handbook of Differential Geometry, Vol. 1, Elsevier Holland, 2000, 187–417.
- 5. Cheeger, J., D. Gromoll. The structure of complete manifolds of nonnegative curvature. Bull. Amer. Math. Soc., 74, 1968, 1147–1150.
- 6. Gromoll, D., W. Meyer. On complete open manifolds of positive curvature. Annals of Math., II, Ser. 90, 1969, 75–90.
- 7. Okumura, M. A pinching problem on the second fundamental tensors and submanifolds of a sphere. Tohoku Math. J., 25, 1973, 461–467.

Received on June 16, 2009

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier Blvd, 1164 Sofia BULGARIA E-mail: hinevast@fmi.uni-sofia.bg