ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 100

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE Tome 100

A NOTE ON THE SECTIONAL CURVATURE

STEFKA T. HINEVA

The type of the matrices of the second fundamental form of a submanifold M^n in a Riemannian manifold N^{n+p} is given, when the equalities in the estimates of the sectional curvature $K_M(\sigma)$ of M^n by means of its mean curvature H and length Sof the second fundamental form hold. It is shown that the equality in the upper estimate of the sectional curvature $K_M(\sigma)$ of M^n in a space form $N^{n+p}(c)$ is achieved when the normal bundle of M^n is flat and M^n is a product submanifold of the type $M^2 \times M^{n-2}$ or $M^2 \times E^{n-2}$ (cylinder), where M^2 , M^{n-2} are umbilical manifolds, E^{n-2} — Euclidean. It is also shown that among all the submanifolds in $N^{n+p}(c)$ which pass through its point x and have at this point the same S(x), the product submanifold $M^n = M^2 \times E^{n-2}$ has at x the biggest sectional curvature $K_M(\sigma)(x) = c + \frac{1}{2}S(x)$.

Keywords: Sectional curvature, length of the second fundamental form, mean curvature, product submanifold, eigenvalues

2000 MSC: 53B25, 53C40

1. PRELIMINARIES

Let M^n be an *n*-dimensional submanifold of an (n+p)-dimensional Riemannian manifold N^{n+p} . We choose a local frame of orthonormal fields e_1, \ldots, e_{n+p} in N^{n+p} such that, restricted to M^n , the vectors e_1, \ldots, e_n are tangent to M^n and the remaining vectors e_{n+1}, \ldots, e_{n+p} are normal to M^n .

We shall use the following convention on the ranges of the indices:

$$1 \le i, j, k, \dots \le n;$$
 $1 \le \alpha, \beta, \gamma, \dots \le p.$

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20.

We denote the second fundamental form $h: T_x M^n \times T_x M^n \to T_x^{\perp} M^n$ on M^n for $x \in M^n$ where $T_x M^n$ is the tangent space of M^n at x and $T_x^{\perp} M^n$ is the normal space to M^n at x, by its components h_{ij}^{α} with respect to the frame e_1, \ldots, e_{n+p} . We call

$$H = \sum_{\alpha} \frac{1}{n} h^{\alpha} e_{\alpha}, \qquad H^2 = \frac{1}{n^2} \sum (h^{\alpha})^2, \quad \text{where} \quad h^{\alpha} = \sum_i h^{\alpha}_{ii} \qquad (1.1)$$

the mean curvature vector of M^n .

The square S of the length of the second fundamental form is given by:

$$S = \sum_{\alpha} \left[\sum_{i,j} (h_{ij}^{\alpha})^2 \right]$$
(1.2)

In general, for a matrix $A = (a_{ij})$ we denote by N(A) the square of the norm of A, i.e. $N(A) = \operatorname{trace} A A^t = \sum_{i,j} (a_{ij})^2$ and

$$|\operatorname{trace} A| \le \sqrt{n.N(A)}.$$
 (1.3)

S and h^{α} are independent of our choice of orthonormal basis.

Let X and Y be a pair of orthonormal vectors tangent to M^n at a point $x \in M^n$, and let us suppose that the local frame e_1, \ldots, e_{n+p} (*) is so chosen that X and Y coincide with two arbitrary vectors of that frame. Let $X = e_{n-1}$, $Y = e_n$. Then the sectional curvature $K_M(\sigma)$ of M^n at the point x for the plane σ spanned by X and Y is written as follows:

$$K_M(\sigma) = \overline{K}_N(\sigma) + \sum_{\alpha} \left[h_{n-1,n-1}^{\alpha} h_{nn}^{\alpha} - (h_{n-1,n}^{\alpha})^2 \right]$$
(1.4)

where $\overline{K}_N(\sigma)$ is the sectional curvature of N^{n+p} .

This paper is a continuation of the papers [1] and [2] where we proved that the sectional curvature $K_M(\sigma)$ of a submanifold M^n in a Riemannian manifold N^{n+p} at a point $x \in M^n$ satisfies the following inequalities:

$$K_M(\sigma) \le K_N(\sigma) + \frac{4-n}{2}H^2 + \frac{n-2}{2n}S + \sqrt{\frac{2(n-2)}{n}H^2(S-nH^2)}, \qquad (1.5)$$

$$K_M(\sigma) \ge K_N(\sigma) + \frac{n^2}{2(n-1)}H^2 - \frac{1}{2}S$$
 when $\frac{n^2}{n-1}H^2 - S < 0,$ (1.6)₁

$$K_M(\sigma) \ge K_N(\sigma)$$
 when $\frac{n^2}{n-1}H^2 - S \ge 0.$ (1.6)₂

The purpose of this paper is to show for which submanifolds the equalities in (1.5), (1.6)₁ and (1.6)₂ are fulfilled. For this purpose we will formulate Theorem 1.1 from [2] more precisely describing the types of the matrices (h_{ij}^{α}) of the

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20.

second fundamental form of M^n with respect to the suitably chosen orthonormal basis $e_1, \ldots, e_n, \ldots, e_{n+p}$ (*), when these equalities are achieved:

Theorem 1.1. Let M^n be an n-dimensional submanifold of an (n + p)dimensional Riemannian manifold N^{n+p} . For the sectional curvature $K_M(\sigma)$ of the 2-plane section σ spanned by the two orthonormal vectors X and Y tangent to M^n at a non-totally geodesic point $x \in M^n$ we have (1.5), (1.6)₁ and (1.6)₂, where $K_N(\sigma)$ denotes the sectional curvature of N^{n+p} .

The equality in (1.5) hold only when either n = 2 or if $n \ge 3$ all the matrices (h_{ij}^{α}) of the second fundamental form with respect to the orthonormal basis $e_1, \ldots, e_{n-1} = X, e_n = Y, \ldots, e_{n+p}$ (*) are of the form

$$\begin{pmatrix} \lambda_1^{\alpha} & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & \lambda_1^{\alpha} & 0 & 0 \\ 0 & \dots & 0 & \lambda_n^{\alpha} & 0 \\ 0 & \dots & 0 & 0 & \lambda_n^{\alpha} \end{pmatrix}$$
(1.7)

where

$$\lambda_1^{\alpha} = \frac{h^{\alpha}}{n} \mp \frac{1}{n} \sqrt{\frac{2[nS^{\alpha} - (h^{\alpha})^2]}{n-2}}; \quad \lambda_n^{\alpha} = \frac{h^{\alpha}}{n} \pm \frac{1}{n} \sqrt{\frac{(n-2)[nS^{\alpha} - (h^{\alpha})^2]}{2}}.$$

The equalities in $(1.6)_1$ and $(1.6)_2$ are fulfilled if and only if either n = 2 or when $n \ge 3$ the corresponding matrices (h_{ij}^{α}) are the following

$$\begin{pmatrix} a_1^{\alpha} & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & a_1^{\alpha} & 0 & 0 \\ 0 & \dots & 0 & \frac{a_1^{\alpha} \mp c^{\alpha}}{2} & a_{n-1,n}^{\alpha} \\ 0 & \dots & 0 & a_{n-1,n}^{\alpha} & \frac{a_1^{\alpha} \pm c^{\alpha}}{2} \end{pmatrix}$$
(1.8)₁

where

$$a_{1}^{\alpha} = \frac{h^{\alpha}}{n-1}; \quad a_{n-1,n}^{\alpha} \le \frac{S^{\alpha}}{2} + \frac{(3-2n)(h^{\alpha})^{2}}{4(n-1)^{2}},$$

$$c^{\alpha} = \frac{1}{n-1}\sqrt{(3-2n)(h^{\alpha})^{2} + 2(n-1)^{2}[S^{\alpha} - 2(a_{n-1,n}^{\alpha})^{2}]},$$

$$\left(\begin{array}{cc}h_{11}^{\alpha} & h_{12}^{\alpha} & \dots & h_{1,n-1}^{\alpha} & h_{1n}^{\alpha}\\ h_{1n}^{\alpha} & h_{1n}^{\alpha} & \dots & h_{1,n-1}^{\alpha} & h_{1n}^{\alpha}\end{array}\right)$$

and

$$\begin{pmatrix} h_{11}^{\alpha} & h_{12}^{\alpha} & \dots & h_{1,n-1}^{\alpha} & h_{1n}^{\alpha} \\ h_{12}^{\alpha} & h_{22}^{\alpha} & \dots & h_{2,n-1}^{\alpha} & h_{2n}^{\alpha} \\ \dots & \dots & \dots & \dots & \dots \\ h_{1,n-1}^{\alpha} & h_{2,n-1}^{\alpha} & \dots & 0 & 0 \\ h_{1n}^{\alpha} & h_{2n}^{\alpha} & \dots & 0 & 0 \end{pmatrix}.$$
 (1.8)₂

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11–20.

To find the view (1.7), (1.8)₁ and (1.8)₂ of the matrices (h_{ij}^{α}) we apply for them the basic Lemma 2.1 from [1] and obtain that with respect to the suitably chosen orthonormal basis (*) the upper and the lower bounds of the functions

$$h_{n-1,n-1}^{\alpha}h_{nn}^{\alpha} - (h_{n-1,n}^{\alpha})^2, \quad \alpha = 1, 2, \dots p,$$
 (1.9)

appearing in the expression (1.4) for the sectional curvature $K_M(\sigma)$, namely,

$$\begin{split} h_{n-1,n-1}^{\alpha}h_{n,n}^{\alpha} - (h_{n-1,n}^{\alpha})^{2} &\leq \frac{1}{2n^{2}} \left\{ (4-n)(h^{\alpha})^{2} + n(n-2)S^{\alpha} \\ &+ 2|h^{\alpha}|\sqrt{2(n-2)[nS^{\alpha} - (h^{\alpha})^{2}]} \right\}, \end{split}$$
(1.10)₁
$$h_{n-1,n-1}^{\alpha}h_{n,n}^{\alpha} - (h_{n-1,n}^{\alpha})^{2} &\geq \frac{1}{2(n-1)}(h^{\alpha})^{2} - \frac{1}{2}S^{\alpha}, \quad \text{if } \frac{1}{n-1}(h^{\alpha})^{2} - S^{\alpha} < 0, \\ h_{n-1,n-1}^{\alpha}h_{n,n}^{\alpha} - (h_{n-1,n}^{\alpha})^{2} \geq 0, \qquad \text{if } \frac{1}{n-1}(h^{\alpha})^{2} - S^{\alpha} \geq 0 \end{split}$$
(1.10)₂

are achieved only when (h_{ij}^{α}) have the forms (1.7), (1.8)₁ and (1.8)₂, respectively. We shall formulate some corollaries from this theorem.

Corollary 1.1. The sectional curvature $K_M(\sigma)$ of M^n at a point x for all 2-planes $\sigma \in T_x M^n$ is non-negative $(K_M(\sigma) \ge 0)$ if

$$K_N(\sigma) \ge \frac{1}{2}S - \frac{n^2}{2(n-1)}H^2$$
 when $\frac{n^2}{n-1}H^2 < S$, (1.11)

or

$$K_N(\sigma) \ge 0 \qquad \qquad \text{when } S \le \frac{n^2}{n-1} H^2. \tag{1.12}$$

Corollary 1.2. $K_M(\sigma) \ge K_N(\sigma)$ for the plane $\sigma \in T_x M^n$ at a point $x \in M^n$ when $n^2 \to \infty$

$$S \le \frac{n^2}{n-1} H^2.$$
 (1.13)

Corollary 1.3. $K_M(\sigma) \leq 0$ for the plane $\sigma \in T_x M^n$ at a point $x \in M^n$ when

$$K_N(\sigma) \le -\left(\frac{4-n}{2}H^2 + \frac{n-2}{2n}S + \sqrt{\frac{2(n-2)}{n}H^2(S-nH^2)}\right),\tag{1.14}$$

(1.14) is possible only when $K_N(\sigma)$ is negative as the right side of (1.14) is negative.

Next we will give other estimates of the sectional curvature $K_M(\sigma)$, depending only on the length S of the second fundamental form.

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20.

We need the following

Proposition 1.2. Let M^n be a submanifold in a Riemannian manifold N^{n+p} , then at a point $x \in M^n$ the functions (1.9) satisfy

$$h_{n-1,n-1}^{\alpha}h_{nn}^{\alpha} - (h_{n-1,n}^{\alpha})^2 \le \frac{1}{2}S^{\alpha}, \qquad (1.15)_1$$

$$h_{n-1,n-1}^{\alpha}h_{nn}^{\alpha} - (h_{n-1,n}^{\alpha})^2 \ge -\frac{1}{2}S^{\alpha}.$$
 (1.15)₂

The equality in $(1.15)_1$ holds when the matrices (h_{ij}^{α}) with respect to the basis (*) have the view

$$h_{ij}^{\alpha} = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & h_{nn}^{\alpha} & 0 \\ 0 & 0 & \dots & 0 & h_{nn}^{\alpha} \end{pmatrix}, \quad h_{nn}^{\alpha} = \pm \sqrt{\frac{S^{\alpha}}{2}}.$$
 (1.16)

The equality in $(1.15)_2$ is valid when $h^{\alpha} = 0$ and (h_{ij}^{α}) are

$$\begin{pmatrix} 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \\ 0 & \dots & 0 & c^{\alpha} & h^{\alpha}_{n-1,n} \\ 0 & \dots & 0 & h^{\alpha}_{n-1,n} & -c^{\alpha} \end{pmatrix}$$
(1.17)

where

$$(h_{n-1,n}^{\alpha})^2 < \frac{1}{2}S^{\alpha}, \quad c^{\alpha} = \pm \frac{1}{2}\sqrt{2[S^{\alpha} - 2(h_{n-1,n}^{\alpha})^2]}.$$

The proof of this proposition follows from Lemma 2.2 from [1], applied to the matrices (h_{ij}^{α}) .

From these estimates of the functions (1.9) and the expression (1.4) for the sectional curvature $K_M(\sigma)$ we obtain the following

Theorem 1.3. The sectional curvature $K_M(\sigma)$ of M^n in a Riemannian manifold N^{n+p} at a point $x \in M^n$ satisfies the following inequalities:

$$K_M(\sigma) \le K_N(\sigma) + \frac{1}{2}S, \qquad (1.18)_1$$

$$K_M(\sigma) \le K_N(\sigma) - \frac{1}{2}S. \tag{1.18}_2$$

The equalities in $(1.18)_1$ and $(1.18)_2$ are satisfied only when (h_{ij}^{α}) with respect to a suitable basis (*) have the forms (1.16) and (1.17), respectively.

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11–20. 15

2. THE EQUALITY CASES IN THE ESTIMATES

Let the ambient space $N^{n+p}(c)$ be a space of constant curvature c, then (1.5), (1.6)₁ and (1.6)₂ take view, respectively:

$$K_M(\sigma) \le c + \frac{4-n}{2}H^2 + \frac{n-2}{2n}S + \sqrt{\frac{2(n-2)}{n}H^2(S-nH^2)}, \qquad (2.1)$$

$$K_M(\sigma) \ge c + \frac{n^2}{2(n-1)}H^2 - \frac{1}{2}S$$
 when $\frac{n^2}{n-1}H^2 - S < 0,$ (2.2)₁

$$K_M(\sigma) \ge c$$
 when $\frac{n^2}{n-1}H^2 - S \ge 0.$ (2.2)₂

We'll show when the equality in (2.1) holds. From the form (1.7) of the matrices (h_{ij}^{α}) corresponding to this bound we see that all they are simultaneously diagonalized with respect to the chosen basis $e_1, \ldots, e_{n-1} = X, e_n = Y, \ldots, e_{n+p}$ (*). Each one of them has exactly n-2 eigenvalues equal to the corresponding λ_1^{α} and two equal to the corresponding λ_n^{α} from (1.7) and the vectors X and Y on which the 2-plane σ is spanned are their common eigenvectors corresponding to their 2-multiple eigenvalue λ_n^{α} . Then, taking in view the fact that every two of the matrices (1.7) are commutative as they can be simultaneously diagonalized, from the Ricci equation

$$R^{\alpha}_{\beta k l} = h^{\alpha}_{k s} h^{\beta}_{s l} - h^{\alpha}_{l s} h^{\beta}_{s k} \tag{2.3}$$

where $R^{\alpha}_{\beta k l}$ is the curvature tensor of the normal bundle $T^{\perp}_{x} M^{n}$, it follows that

$$R^{\alpha}_{\beta k l} = 0, \qquad (2.4)$$

i.e. the normal bundle of M^n is flat. The converse is also true. Thus we prove the following

Theorem 2.1. Let M^n be a non-totally geodesic submanifold in a space form $N^{n+p}(c)$. The equality

$$\max_{\sigma \in T_x M^n} K_M(\sigma) = c + \frac{4-n}{2}H^2 + \frac{n-2}{2n}S + \sqrt{\frac{2(n-2)}{n}H^2(S-nH^2)}$$
(2.5)

when σ runs over all 2-plane sections tangent to M^n at a point $x \in M^n$, holds for all points $x \in M^n$, if and only if:

- i. the normal bundle of M^n is flat,
- ii. each one of the matrices (h_{ij}^{α}) has exactly (n-2) eigenvalues equal to the corresponding λ_1^{α} and two equal to λ_n^{α} from (1.7) with respect to the basis (*),
- iii. the vectors X and Y on which the 2-plane σ is spanned for which $\max K(\sigma)$ is achieved are their common eigenvectors corresponding to their double eigenvalue λ_n^{α} .

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20.

With the next theorem two examples of submanifolds satisfying the conditions of the above theorem will be given.

Theorem 2.2. If the submanifold M^n $(n \ge 4)$ of $N^{n+p}(c)$ satisfies the following conditions:

- i. the normal bundle of M^n is flat,
- ii. M^n is a product submanifold of the type $M^n = M^2 \times M^{n-2}$ or $M^n = M^2 \times E^{n-2}$, where M^2 , M^{n-2} and E^{n-2} are 2-dimensional umbilical submanifold of $N^{n+p}(c)$, (n-2)-dimensional umbilical submanifold of $N^{n+p}(c)$, and (n-2)-dimensional Euclidean submanifold of $N^{n+p}(c)$, respectively,

then the equality in (2.1) (or (2.5)) is achieved at a point $x \in M^n$ for a 2-plane σ , which belongs to $T_x M^2$.

Next, from Theorems 1.3 and 2.1 we obtain the following

Theorem 2.3. From all n-dimensional submanifolds of $N^{n+p}(c)$ which pass through a point $x \in N^{n+p}(c)$ and have at x the same S(x), only the submanifold M^n which satisfies the following conditions:

- i. the normal bundle of M^n is flat;
- ii. each one of the matrices (h_{ij}^{α}) has exactly n-2 eigenvalues equal to zero and two equal to $\lambda_n^{\alpha} = \pm \sqrt{\frac{S^{\alpha}}{2}}$ with respect to the basis (*),

has the biggest $\max K(\sigma_0)(x) = c + \frac{1}{2}S(x)$ achieved for σ_0 spanned by the common eigenvectors X and Y of all (h_{ij}^{α}) , corresponding to their 2-multiple eigenvalue $\lambda_n^{\alpha} = \pm \sqrt{\frac{S^{\alpha}}{2}}$. The mean curvature of this submanifold is $H(x) = \pm \frac{1}{n}\sqrt{2S(x)}$.

The following theorem gives an example of a submanifold satisfying the conditions of Theorem 2.3.

Theorem 2.4. The product submanifold $M^n = M^2 \times E^{n-2}$ (cylinder) of $N^{n+p}(c)$ with flat normal bundle, where M^2 and E^{n-2} are 2-dimensional umbilical submanifold of $N^{n+p}(c)$ and (n-2)-dimensional Euclidean submanifold of $N^{n+p}(c)$, respectively, has at $x \in M^n$ sectional curvature $K(\sigma_0)(x) = c + \frac{1}{2}S(x)$ for $\sigma_0 \in T_x M^2$. The mean curvature of M^n is: $H(x) = \frac{1}{n}\sqrt{2S(x)}$ or $H(x) = -\frac{1}{n}\sqrt{2S(x)}$.

Let us now see what we can say for the equality case in the lower bound in $(2.2)_1$.

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11–20.

The only thing which can be said for the equality case in $(2.2)_1$ is formulated in the following theorem and follows from Theorems 1.1 and 1.3.

Theorem 2.5. From all n-dimensional submanifolds of $N^{n+p}(c)$ which pass through a point $x \in N^{n+p}(c)$ and have at x the same S(x), only the minimal submanifold M^n which second fundamental tensors with respect to an orthonormal basis $e_1, \ldots, e_{n-1} = X, e_n = Y, \ldots, e_{n+p}$, have matrices

\int_{0}^{0}		0	0	0
0	· · · · ·	0	0	0
0		0	c^{lpha}	$h_{n-1,n}^{\alpha}$
$\sqrt{0}$		0	$h_{n-1,n}^{\alpha}$	$-c^{\alpha}$ /

where

18

$$(h_{n-1,n}^{\alpha})^2 < \frac{1}{2}S^{\alpha}, \quad c^{\alpha} = \pm \frac{1}{2}\sqrt{2[S^{\alpha} - 2(h_{n-1,n}^{\alpha})^2]},$$

has the smallest min $K(\sigma_0)(x) = c - \frac{1}{2}S(x)$ for σ_0 spanned on $X = e_{n-1}$ and $Y = e_n$.

The mean curvature H(x) of M^n is zero, the sectional curvature of M^n is negative if the ambient space is Euclidean or Hyperbolic.

Example of Theorem 2.1. The hyperellipsoid $M^3 \in E^4$

$$M^3: x_1^2 + x_2^2 + x_3^2 + mx_4^2 = 1, \quad 0 < m < 1.$$

The principal curvatures of M^3 are:

$$\lambda_{1} = \lambda_{2} = \frac{1}{\sqrt{1 + (m^{2} - m)x_{4}^{2}}} = \frac{1}{\sqrt{Q}}; \quad \lambda_{3} = \frac{m}{\left(\sqrt{1 + (m^{2} - m)x_{4}^{2}}\right)^{3}} = \frac{m}{\left(\sqrt{Q}\right)^{3}},$$
$$h_{ij} = \begin{pmatrix} \lambda_{1} & 0 & 0\\ 0 & \lambda_{1} & 0\\ 0 & 0 & \lambda_{3} \end{pmatrix}, \quad 0 < \lambda_{3} \le \lambda_{1} = \lambda_{2}.$$
$$3H = h = 2\lambda_{1} + \lambda_{3} = \frac{2Q + m}{\left(\sqrt{Q}\right)^{3}}, \quad S = 2\lambda_{1}^{2} + \lambda_{3}^{2} = \frac{2Q^{2} + m^{2}}{Q^{3}} \tag{2.6}$$

$$\min \lambda_i \lambda_j \le K_{M^3}(\sigma) \le \max \lambda_i \lambda_j = \lambda_1 \lambda_2 = \lambda_1^2 = \frac{1}{Q} \Rightarrow K_{12} = \frac{1}{Q} = \max_{\sigma} K_{M^3}(\sigma).$$

On the other hand, according to (2.5) and taking in view (2.6) for the $\max K_{M^3}(\sigma)$ we have:

$$\max K_{M^3}(\sigma) = \frac{1}{2}H^2 + \frac{1}{6}S + \sqrt{\frac{2}{3}H^2(S - 3H^2)} = \frac{1}{18}\left(h^2 + 3S + 2h\sqrt{2(3S - h^2)}\right),$$

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20.

which is exactly equal to $\frac{1}{Q} = K_{12}$.

3. CHARACTERIZATION OF SOME SUBMANIFOLDS IN N^{N+P}

Theorem 3.1. A complete simply connected n-dimensional submanifold M^n in a Riemannian manifold N^{n+p} of negative sectional curvature is diffeomorphic to R^n if the second fundamental tensor of M^n satisfies (1.14).

The proof follows from Corollary 1.3 and the theorem of Hadamard-Cartan.

Corollary 3.1. If the second fundamental tensor of an n-dimensional complete simply connected submanifold M^n in an (n+p)-dimensional Riemannian manifold N^{n+p} of constant negative curvature (c < 0) satisfies

$$\frac{4-n}{2}H^2 + \frac{n-2}{2n}S + \sqrt{\frac{2(n-2)}{n}H^2(S-nH^2)} \le -c \tag{3.1}$$

then M^n is diffeomorphic to \mathbb{R}^n .

Theorem 3.2. A complete connected n-dimensional submanifold M^n in an (n+p)-dimensional Riemannian manifold N^{n+p} of positive curvature bounded below by a constant c > 0 is compact with diameter $\leq \frac{\pi}{\sqrt{c}}$ if its second fundamental form satisfies (1.13).

Remark. Another proof of this theorem in the case when N^{n+p} is of constant positive curvature is given by M. Okumura [7].

Theorem 3.3. Let M^n be an n-dimensional non-compact complete connected submanifold in an (n + p)-dimensional Riemannian manifold N^{n+p} . If at each point $x \in M^n$ for which $\frac{n^2}{n-1}H^2 < S$ the inequality $K_N(\sigma) \ge \frac{1}{2}S - \frac{n^2}{2(n-1)}H^2$ is fulfilled or if at each point x for which $S \le \frac{n^2}{n-1}H^2$ the inequality $K_N(\sigma) \ge 0$ holds, then there exists in M^n a compact totally geodesic and totally convex submanifold Q_M without boundary such that M^n is diffeomorphic to the normal bundle of Q_M . In the case when N^{n+p} is of positive curvature which is not bounded below by a positive constant then M^n is diffeomorphic to R^n if $S \le \frac{n^2}{n-1}H^2$.

We prove this theorem using Corollary 3.1 and the theorems of Cheeger and Gromoll [5] and Gromoll and Meyer [6].

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11–20. 19

REFERENCES

- Hineva, S. Submanifolds and the second fundamental tensor. Lecture Notes in Math., 1156, 1984, 194–203.
- 2. Hineva, S., E. Beltchev. A note on the submanifolds of a δ -pinched manifold. Ann. Sofia Univ., Fac. Math. and Inf., **81**, 1987, 59–65.
- Hineva, S. Inequalities for the sectional curvature and the Ricci curvature of submanifolds. In: Math. and Education of Math. Proc. of the XIX Spring Conf. of UBM, Sunny Beach, April 6–9, 1990, 7–8.
- 4. Chen, B. Y. Handbook of Differential Geometry, Vol. 1, Elsevier Holland, 2000, 187–417.
- Cheeger, J., D. Gromoll. The structure of complete manifolds of nonnegative curvature. Bull. Amer. Math. Soc., 74, 1968, 1147–1150.
- Gromoll, D., W. Meyer. On complete open manifolds of positive curvature. Annals of Math., II, Ser. 90, 1969, 75–90.
- Okumura, M. A pinching problem on the second fundamental tensors and submanifolds of a sphere. *Tohoku Math. J.*, 25, 1973, 461–467.

Received on June 16, 2009

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier Blvd, 1164 Sofia BULGARIA E-mail: hinevast@fmi.uni-sofia.bg

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20.