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MODEL REPRESENTATIONS OF THE LIE ALGEBRA

[A2, A1] = iA1 OF LINEAR NON-SELFADJOINT OPERATORS
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Construction of functional models of Lie algebra {A1, A2} ([A2, A1] = iA1), one of
which is dissipative, was realized earlier. The question of construction of model real-
izations for the given Lie algebra not containing dissipative operator remained open.
This work is dedicated to the construction of model representation of the Lie alge-
bra {A1, A2} of linear non-selfadjoint operators not containing a dissipative operator
which is generated by the commutation relation [A2, A1] = iA1. In Paragraph 1 the
preliminary information is stated, the definitions of colligation of Lie algebra and cor-
responding open system on Lie group of affine transformations of the line M(1) are
given. Paragraph 2 is dedicated to the construction of triangular model for the Lie
algebra [A2, A1] = iA1 in the case of finite dimension of the general space of non-
hermicity of operator system {A1, A2}. In Paragraph 3 functional model of the Lie
algebra [A2, A1] = iA1 is presented, it is realized in L. de Branges spaces of whole
functions. In the last paragraph of this paper, functional model of the Lie algebra

[A2, A1] = iA1 on Riemann surface is constructed.
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1. LIE GROUP OF AFFINE TRANSFORMATIONS OF LINE AND
COLLIGATION OF LIE ALGEBRA

I. To study a Lie algebra of linear non-selfadjoint operators specified by the
commutation relation [A2, A1] = iA1, one has [4] to find such Lie group G, vector
{∂1, ∂2} Lie algebra of which is such that

[∂2, ∂1] = ∂1.
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Let R be the real line. Define G = M(1) [7, 8] the group of transformations of R

preserving the orientation. Associate with each ξ ∈ R number η = yξ + x (y > 0,
x ∈ R). Denote a group element by g = g(x, y). If η = y1ξ + x1 and ζ = y2η + x2

then

ζ = y1y2ξ + x1y2 + x2.

Therefore the group operation on G is given by

g (x2, y2) ◦ g (x1, y1) = g (x1y2 + x2, y2y1) . (1.1)

Hence it follows that the elements g(x, 1) form the subgroup in G, isomorphic to
the additive group of real numbers R.

g (x2, 1) ◦ g (x1, 1) = g (x1 + x2, 1) .

And the elements g(0, y) form the subgroup in G equivalent to the multiplicative
group of positive numbers in R+.

g (0, y2) ◦ g (0, y1) = g (0, y2y1) .

The group G is isomorphic to the group of matrices of the second order given by

Bg =

[

y x

0 1

]

.

This fact immediately follows from the equality

Bg2
·Bg1

=

[

y2 x2

0 1

] [

y1 x1

0 1

]

=

[

y2y1 y2x1 + x2

0 1

]

= Bg1◦g2
.

Specify two subgroups in G,

G1
x = {g(x, 1) ∈ G}; G2

y = {g(y, 0) ∈ G}; (1.2)

as is stated above, they are isomorphic to R and R+, respectively. To specify a
function f(g) on the group G = M(1), f : G→ C, signifies that we define complex-
valued function f(x, y) in the upper half-plane R × R+. Calculate vector fields
corresponding to the one-parametric semigroups (1.2) [8]. Let gt = (t, 1) ∈ G1

x in
(1.2). Then

Ft = f (gt ◦ g(x, y)) = f(g(ty + x, y)) = f(ty + x, y).

Therefore the derivative by t at unit, e = e(0, 1) ∈ G, of the given function equals

d

dt
Ft

∣

∣

∣

∣

t=0

= ∂1f

where ∂1 = y
∂

∂x
. Similarly, consider the functions

F̃t = f (gt ◦ g(x, y)) = f(x, ty)
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where g̃t = (0, t) ∈ G2
x in (1.2). Then

d

dt
F̃t

∣

∣

∣

∣

t0=0

= ∂2f

where ∂2 = y
∂

∂y
. Thus we construct the Lie algebra of vector fields m(1) of the

group M(1) specified by the differential operators of the first order

∂1 = y
∂

∂x
, ∂2 = y

∂

∂y
. (1.3)

It is easy to see that the Lie algebra {∂2, ∂1} is specified by the commutation
relation

[∂2, ∂1] = ∂1. (1.4)

It is well-known that the simply connected Lie group M(1) is “uniquely” restored
by the Lie algebra m(1) of differential operators (1.3) [7, 8].

II. Consider in a Hilbert space H the Lie algebra of linear operators {A1, A2}
satisfying the relation

[A2, A1] = iA1. (1.5)

Note that A1 and A2 cannot be bounded simultaneously, since otherwise (1.5)
implies

[A2, A
n
1 ] = inAn

1

which results in the inequality 2 ‖A2‖ ≥ n (∀n ∈ Zt).
It seems natural to write relation (1.5) in the “integral form” similarly to the

Weyl identity in Quantum Mechanics [4]. Let Zt (tk) = exp (itkAk) k = 1, 2. (1.5)
implies

Z1 (t1)A2 = (A2 + t1A1)Z1 (t1) . (1.6)

Indeed, it is easy to see that f ′ (t1) = iA1f (t1) and f(0) = 0 where f (t1) =
Z1 (t1)A2 − (A2 + t1A1)Z1 (t1). Therefore it is obvious that

Z1 (t1)Z2 (t2) = exp {it2 (A2 + t1A1)}Z1 (t1) . (1.7)

III. Construct the colligation of Lie algebra for the given Lie algebra (1.5) of
linear non-selfadjoint operators.

Definition 1.1. Family

∆ =
(

{A1, A2} ;H ;ϕ;E; {σk}
2
1 ;

{

γ−, γ+
}

)

, (1.8)
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where ϕ: H → E, σk, γ
±: E → E (σ∗

k = σk, k = 1, 2), is said to be the colligation
of the Lie algebra (1.5), if

1) [A2, A1] = iA1;

2) 2Im 〈Akh, h〉 = 〈σkϕh, ϕh〉 ; ∀h ∈ ϑ (Ak) ;

3) σ1ϕA2 − σ2ϕA1 = γ+ϕ;

4) γ− = γ+ + i (σ2ϕϕ
∗σ1 − σ1ϕϕ

∗σ2) .

(1.9)

It is obvious that γ± are non-selfadjoint operators [4] and

γ± −
(

γ±
)∗

= −iσ1. (1.10)

Equations of the open system [2, 3, 4, 5] are given by










i∂kh(x, y) +Akh(x, y) = ϕ∗σku(x, y) (k = 1, 2)

h(e) = h0 (k = 1, 2); (x, y) ∈ G;

v(x, y) = u(x, y) − iϕh(x, y).

(1.11)

Besides, ∂k in (1.11) are equal to (1.11). It is not hard to show [2, 4, 5] that
{

σ1i∂2 − σ2i∂1 + γ−
}

u(x, y) = 0;

{

σ1i∂2 − σ2i∂1 + γ+
s

}

v(x, y) = 0.

2. TRIANGULAR MODEL OF LIE ALGEBRA

I. Consider the colligation ∆ (1.8) corresponding to the Lie algebra of linear
operators {A1, A2} assuming that (1.9), (1.10) take place, besides, dimE = r <∞,
operator σ1 = J is involution, and let σ2 = σ. Define the Hilbert space L2

r,l (Fx) [1,
3] assuming that the measure dFx is absolutely continuous, dFx = axdx, ax ≤ 0,
trax ≡ 1. Specify in this space the operator system

(

◦

A1 f

)

x

= i

l
∫

x

ftatJdt;

(

◦

A2 f

)

x

= f ′

xbx + fxJγx + i

l
∫

x

ftatdtσ (2.1)

(

fx ∈ L2
r,l (Fx)

)

where bx, γx are some operator-functions in E specified on [0, l].

Linear span of continuously differentiable functions from L2
2,l (Fx) such that f ′

xbx ∈

L2
2,l (Fx) and f0 = fl = 0 is the domain D (A2). Note that the structure of A1 (2.2)
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coincides with the triangular model [1, 3] when the spectrum σ (A1) = 0. Find the
necessary and sufficient conditions on ax, bx, γx, J , σ for this operator system (2.1)
to form the Lie algebra,

[

◦

A2,
◦

A1

]

= i
◦

A1 . (2.2)

It is easy to see that

◦

A2

◦

A1 fx = −ifxaxJbx + i

l
∫

x

ftatdtγx −

l
∫

x





l
∫

t

fsasJds



 atσdt.

Similarly,

◦

A1

◦

A2 fx = i

l
∫

x

f ′

tbtatJdt+

l
∫

x

ftJγtatJdt−

l
∫

x





l
∫

t

fsasσds



 atJdt =

= −ifxbxaxJ − i

l
∫

x

ft (btat)
′
Jdt+ i

l
∫

x

ftJγtatJdt−

l
∫

x





l
∫

t

fsasσds



 atJdt

by virtue of fl = 0. Suppose that

axJbx = bxaxJ. (2.3)

Then

Ψx
def
=

([

◦

A2,
◦

A1

]

− i
◦

A1

)

fx = i

l
∫

x

ftatdtγx −

l
∫

x





l
∫

t

fsasJds



 atσdt−

−i

l
∫

x

ft

{

JγtatJ − (btat)
′
J
}

dt+

l
∫

x





l
∫

x

fsasσds



 atJdt+

l
∫

x

ftatJdt.

Supposing that γx is continuously differentiable operator-function, calculate deriv-
ative of the function Ψx:

Ψ′

x = −ifxaxγx + i

l
∫

x

ftatdtγ
′

x +

l
∫

x

ftatdtJaxσ+

+ifx

{

JγxaxJ − (bxax)
′
J
}

−

l
∫

x

ftatdtσaxJ − fxaxJ.

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 93–112. 97



Hence it follows that Ψ′
x = 0, if

{

iγ′x = σaxJ − Jaxσ;

axγxJ = Jγxax − (bxax)
′
+ iax.

(2.4)

Thus Ψx ≡ 0 since Ψl = 0.

Lemma 2.1. Suppose that there exists a family {ax, γx, bx, J, σ} such that

(2.3) and (2.4) take place. Then the operator system

{

◦

A1,
◦

A2

}

(2.1) satisfies the

commutation relation (2.2).

II. In order to include the operator system

{

◦

A1,
◦

A2

}

(2.1) in the colligation

∆ (1.8), it is necessary to verify that the colligation relations (1.9) are true. It is

easy [1, 3] to show that
◦

A1 −
◦

A∗
1= i

◦

ϕ∗ J
◦
ϕ where the operator

◦
ϕ: L2

2,l (Fx) → E

is given by

◦
ϕ fx =

l
∫

0

ftdt. (2.5)

Calculate 2Im

〈

◦

A2 f, f

〉

where f ∈ D

(

◦

A2

)

. Then

2Im

〈

◦

A2 f, f

〉

=
1

i

l
∫

0



f ′

xbx + fxJγx + i

l
∫

x

ftatσ



 dtaxf
∗

xdx−

−
1

i

l
∫

0

dxfxax



b∗x (f∗

x)′ + γ∗xJfx − i

l
∫

x

σatf
∗

t dt



 =

=
1

i

l
∫

0

(

f ′

xbxaxf
∗

x − fxaxb
∗

x (f∗

x)
′
+ fx {Jγxax − axγ

∗

xJ} f
∗

x

)

dx+

+

l
∫

0





l
∫

x

ftatσdtaxf
∗

x + fxax

l
∫

x

σatf
∗

t



 dt.
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It is easy to see that the second integral after the change of order of integration
equals

l
∫

0

ftatdtσ

l
∫

0

atf
∗

t dt = 〈σϕf, ϕf〉E .

Therefore in order to the colligation relation 2) for
◦

A2 (2.1) take place, it is necessary
to ascertain under which conditions the first integral vanishes. The integrand of
this integral equals

Φx
def
= f ′

xbxaxf
∗

x − fxaxb
∗

x (f∗

x)
′
+ fx {Jγxax − axγ

∗

xJ} f
∗

x =

= f ′

xaxJbxJf
∗

x − fxaxb
∗

x (f∗

x)
′
+ fx

{

axγxJ + (bxax)
′
− iax − axγ

∗

xJ
}

f∗

x

in virtue of (2.3) and the second equation in (2.4). It is obvious that the solution
γx of equation (2.4) is given by

γx = γ0 + i

x
∫

0

(Jatσ − σatJ) dt. (2.6)

Choose the initial condition γ0 = (γ+)
∗
. Since the second summand in (2.6) is a

selfadjoint operator, then taking into account γ+ − (γ+)
∗

= −iJ (1.10) we obtain

γx − γ∗x = γ0 − γ∗0 =
(

γ+
)∗

− γ+ = iJ. (2.7)

So γ∗x = γx − iJ . Substituting this expression in the formula for Φx, we obtain

Φx = f ′

xaxJbxJf
∗

x−fxaxb
∗

x (f∗

x)
′
+fx

{

axγxJ + (bxax)
′
− iax − ax (γx − iJ)J

}

fx =

= f ′

xaxJbxJf
∗

x + fxax (−b∗x) f∗
′

x + fx (axJbxJ)′ f∗

x

in virtue of (2.3). Let

b∗x = −JbxJ. (2.8)

Then Φx = {fxaxJbxJf
∗
x}

′
, and hence

l
∫

0

Φxdx = 0

since f0 = fl as f ∈ D

(

◦

A2

)

.

Lemma 2.2. Let the family {ax, γx, bx, J, σ} be such that the relations (2.3),
(2.4) are true and, moreover, γx, the solution of the first equation in (2.4), satisfies
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the initial condition γ0 = (γ+)
∗
, besides, γ+ − (γ+)

∗
= −iJ (1.9). Then, if (2.8)

takes place, ∀f ∈ D

(

◦

A2

)

the colligation relation

2Im

〈

◦

A2 f, f

〉

=
〈

= σ
◦
ϕ f,

◦
ϕ f

〉

where f is given by (2.5).

Verify that the colligation condition 3) (1.9) also is true. Really, find the
function Ψx,

Ψx
def
=

(

J
◦
ϕ

◦

A2 −σ
◦
ϕ

◦

A1 −γ+ ◦
ϕ

)

fx =

l
∫

0



f ′

xbx + fxJγx + i

l
∫

x

ftatdtσ



 axdxJ−

−

l
∫

0

i

l
∫

x

ftatJdtaxσ −

l
∫

0

fxaxdxγ
+.

Integrating by parts and changing the order of integration, we obtain

Ψx =

l
∫

0

dx







−fx (bxax)
′
J + fxJγxaxJ + fxax



i

x
∫

0

(σatJ − Jatσ) dt



 − fxaxγ
+







.

Now taking into account (2.6) and the second equality in (2.4), we have

Ψx =

l
∫

0

{

fxaxγx − fxJγxaxJ − iaxJ + fxJγxaxJ + fxax (γ0 − γx) − fxaxγ
+
}

dx =

=

l
∫

0

fxaxdx
(

γ0 − γ+ − iJ
)

= 0

in virtue of γ0 = (γ+)
∗

and condition (1.10). So Ψx ≡ 0 and relation 3) (1.9) is
proved. If one takes into account (2.5), then (2.6) yields

γl = γ0 + i

l
∫

0

(Jatσ − σatJ) dt = γ0 + i

(

J
◦
ϕ

◦

ϕ∗ σ − σ
◦
ϕ

◦

ϕ∗ J

)

,

therefore

γ∗l = γ+ + i

(

J
◦
ϕ

◦

ϕ∗ σ − σ
◦
ϕ

◦

ϕ∗ J

)

.
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And we obtain the colligation relation 4) (1.9) where γ∗l = γ−.

Theorem 2.1. Suppose that an operator family {ax, γx, bx, J, σ} is such that

1) axJbx = bxaxJ ;

2) b∗x = −JbxJ ;

3) iγ−x = σaxJ − Jaxσ; γ0 = (γ+)
∗
;

4) (bxax)
′
= Jγxax − axγxJ + iax;

(2.9)

besides, γ+ − (γ+)
∗

= −iJ . Then the set

◦

∆=

({

◦

A1,
◦

A2

}

;L2
2,l (Fx) ;

◦
ϕ;E; {J, σk} ;

{

γ−, γ+
}

)

(2.10)

is the colligation of Lie algebra (1.8)–(1.9) where
◦

A1,
◦

A2 are given by (2.1), the

operator
◦
ϕ equals (2.5) and γ− = γ∗l .

Now use the Theorem on unitary equivalence [1, 3, 4].

Theorem 2.2. Let ∆ be a simple colligation (1.8), (1.9). If the spectrum
of operator A1 is concentrated at zero and the characteristic function S1(λ) =
I − iϕ (A1 − λI)

−1
ϕ∗J is given by

S1(λ) =

←

l
∫

0

exp
iJdFt

λ
,

besides, dFx = axdx and ax is such that for the family {ax, γx, bx, J, σ} (σ1 = J

is involution and σ = σ∗) the equation system 1) – 4) (2.9) is solvable. Then the

colligation ∆ is unitary equivalent to the simple part of colligation
◦

∆ (2.10).

Observation 2.1. 1), 2) (2.9) imply

axb
∗

x + bxax = 0, (2.11)

∀x ∈ [0, l].

3. FUNCTIONAL MODEL IN L. DE BRANGES SPACE

This section is concerned with the construction of functional model of the
studied in this paper Lie algebra in L. de Branges space [3]. Consider the triangular
model of the colligation of Lie algebra (2.10) assuming that r = 2 and J is given by
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J = jN (2.1). Under the action of L. de Branges transformation [3], the operator
◦

A1 (2.1) changes into the shift operator since

BL

(

◦

A1 ft

)

=
1

π

l
∫

0







i

l
∫

t

fsdFsJ







dFtL
∗

t (z̄) =

=
1

π

l
∫

0

ftdFt

{

−
L∗

t (z̄) − L∗
t (0)

z

}

and thus

BL

(

◦

A1 f1

)

=
F (z) − F (0)

z
(3.1)

where F (z) ∈ BL (ft). In order to find BL

(

◦

A1 ft

)

, first of all note that

Lt(z) =

(

I − z
◦

A∗

1

)−1
◦

ϕ∗ (1, 0). (3.2)

Since

BL

(

◦

A2 ft

)

=

〈

◦

A2 ft, Lt (z̄)

〉

=

〈

ft,
◦

A∗

2 Lt (z̄)

〉

,

then, taking into account (3.2), we have to calculate the expression

◦

A∗

2

(

I − z
◦

A∗

1

)−1
◦

ϕ∗ (1, 0). (3.3)

(2.2) implies

◦

A2

(

I − z
◦

A1

)

−

(

I − z
◦

A1

)−1

= −iz
◦

A1,

therefore
(

I − z
◦

A1

)−1
◦

A2 −
◦

A2

(

I − z
◦

A1

)−1

= −iz
◦

A1

(

I − z
◦

A1

)−2

.

Thus

◦

A∗

2

(

I − z̄
◦

A∗

1

)−1

−

(

I − z
◦

A∗

1

)

◦

A∗

2= −iz̄
◦

A∗

1

(

I − z̄
◦

A∗

1

)−2

. (3.4)

Using (3.4), we obtain

◦

A∗

2

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗=

(

I − z̄
◦

A∗

1

)−1
◦

A∗

2

◦

ϕ∗ +iz̄
◦

A∗

1

(

I − z̄
◦

A∗

1

)−2
◦

ϕ∗ .
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The colligation relation J
◦
ϕ

◦

A2= σ
◦
ϕ

◦

A1 +γ+
◦
ϕ yields

◦

A∗

2

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗=

(

I − z̄
◦

A∗

1

)−1
◦

A∗

1

◦

ϕ∗ σJ +

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗
(

γ+
)∗
J+

+iz̄
◦

A∗

1

(

I − z̄
◦

A∗

1

)−2
◦

ϕ∗ .

Now taking into account

(

I − z̄
◦

A∗
1

)−1
◦

A∗
1=

1

z

{

(

I − z̄
◦

A∗

1

)−1

− I

}

, we finally

obtain

◦

A∗

2

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗=
1

z

{

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗ σJ−
◦

ϕ∗ σJ

}

+

+

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗
(

γ+
)∗
J + iz̄

◦

A∗

1

(

I − z̄
◦

A∗

1

)−2
◦

ϕ∗

Thus expression (3.3) has the form

◦

A∗

2

(

I − z̄
◦

A∗

1

)−1
◦
ϕ (1, 0) =

1

z

{

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗ −
◦

ϕ∗

}

σJ(1, 0)+

+

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗
(

γ+
)∗
J(1, 0) + iz̄

◦

A∗

1

(

I − z̄
◦

A∗

1

)−2
◦

ϕ∗ (1, 0). (3.5)

Expand the vectors σJ(1, 0) and (γ+)
∗
J(1, 0) by the basis (1, 0) and (0, 1) in E2.

σJ(1, 0) = ᾱ(1, 0) + β̄(0, 1);

(

γ+
)∗
J(1, 0) = µ̄(1, 0) + ν̄(0, 1) (3.6)

where

ᾱ = (1, 0)σJ

(

1
0

)

; β̄ = (1, 0)σJ

(

0
1

)

µ̄ = (1, 0)
(

γ+
)∗
J

(

1
0

)

; ν̄ = (1, 0)
(

γ+
)∗
J

(

0
1

)

. (3.7)

As a result, we obtain that expression (3.5) is written in the following form:

◦

A∗

2

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗ (1, 0) = ᾱ
1

z

{

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗ −
◦

ϕ∗

}

(1, 0)+
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+β̄
1

z

{

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗ −
◦

ϕ∗

}

(0, 1) + µ̄

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗ (1, 0)+

+ν̄

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗ (0, 1) + iz̄
◦

A∗

1

(

I − z̄
◦

A∗

1

)−2
◦

ϕ∗ (1, 0). (3.8)

Along with the integral equation for Lx(z)

Lx(z) + iz

x
∫

0

Lt(z)dFtJ = (1, 0), (3.9)

consider [3] the integral equation for Nx(z)

Nx(z) + iz

x
∫

0

Nt(z)dFtJ = (0, 1). (3.10)

So we can rewrite expression (3.8) as

◦

A∗

2 Lt (z̄) = ᾱ
Lt (z̄) − Lt(0)

z̄
+ β̄

Nt (z̄) −Nt(0)

z̄
+ µ̄Lt (z̄) + ν̄Nt (z̄) − iz̄

d

dz
Lt (z̄) .

(3.11)
By the vector-row Nx(z) = [Cx(z);Dx(z)], similar to [3], construct the L. de
Branges space B(C,D) and specify the L. de Branges transform from L2

2,l (Fx)
on B(C,D) by the formula

G(z)
def
= BN (ft) =

1

π

l
∫

0

ftdFtN
∗

t (z̄) . (3.12)

A function G(z) ∈ B(C,D) is said to be the dual to F (z) ∈ B(A,B) if

F (z) = BL (ft) , G(z) = BN (ft) . (3.13)

Using the notation (3.11) and (3.13), we obtain

BL

(

◦

A2 ft

)

= α
F (z) − F (0)

z
+β

G(z) −G(0)

z
+µF (z)+νG(z)−iz

d

dz
F (z). (3.14)

Thus the Lie algebra (2.2) of linear operators

{

◦

A1,
◦

A2

}

(2.1) after the L. de Branges

transform BL changes into the following operator system

Ã1F (z) =
F (z) − F (0)

z
;
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Ã2F (z) =
αF (z) + βG(z) − αF (0) − βG(0)

z
+

+µF (z) + νG(z) − iz
d

dz
F (z) (3.15)

where the numbers α, β, µ, ν are given by (3.7) and the functions F (z) and G(z)
are equal to(3.13).

Observation 3.1. The dual function G(z) (3.13) does not necessarily belong
to the space B(A,B), nevertheless, under such selection of α, β, µ, ν (3.7), the
expressions

µF (z) + νG(z);
αF (z) + βG(z) − αF (0) − βG(0)

z

already belong to B(A,B). Note that the numbers α, β, µ, ν do not depend on
F (z).

Specify now the operator ϕ̃ from B(A,B) into E2 using the formula

ϕ̃F (z) = 〈F (z), e1(z)〉 (1, 0) + 〈F (z), e2(z)〉 (0, 1) (3.16)

where

ê1(z) =
B∗

l (z̄)

z
; ê2(z) =

1 −A∗
l (z̄)

z
. (3.17)

Theorem 3.1. Let ∆ be the simple colligation of Lie algebra (1.8), (1.9),
besides, the spectrum of operator A is concentrated at zero and the characteristic
function S1(λ) = I − iϕ (A1 − λI)−1

ϕ∗J is given by

S1(λ) =

l
∫

0

exp

{

iJdFt

λ

}

,

besides, the measure dFx is absolutely continuous, dFx = axdx, ax ≥ 0, ax is a
matrix-function in E2 and J is given by (2.1) [3]. And, moreover, a selfadjoint
operator σ and operators γ± are given in E2 such that γ± − (γ±)

∗
= iJ . Then the

colligation ∆ (1.8) is unitary equivalent to the functional model

∆̃ =
({

Ã1, Ã2

}

;B(A,B); ϕ̃, E2, {J, σ};
{

γ+, γ−
}

)

(3.18)

where Ã1, Ã2 are given by (3.15); the operator ϕ̃ equals (3.16); the numbers α, β,
µ, ν ∈ C are given by the formulas (3.7); G(z) is the dual function of F (z), and,
finally, {ek(z)}2

1 are given by (3.17).
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4. FUNCTIONAL MODELS ON RIEMANN SURFACE

I. Let r = 2n be even, and let ax be given by

ax = In × âx (4.1)

where Ix is the unit operator in En and âx is such non-negative matrix (2×2) that
trâx = n−1. It is obvious that the Hilbert space L2

2n,l (Fx) [1, 3] is formed by the
vector-functions f(x) = (f1(x), . . . , fn(x)) such that

l
∫

0

fk(x)âxf
∗

k (x)dx <∞

for all k (1 ≥ k ≥ n) where fk(x) ∈ E2 for every x ∈ [0, l].
Suppose that the operators σ1 = J , σ1 = σ, γ± are given by

σ1 = J = In ⊗ JN ; σ = σ̃ ⊗ JN ; γ± = γ̃ ⊗ JN (4.2)

where σ̃ is a selfadjoint operator in En and γ̃ is such operator in En that

γ̃ − (γ̃)
∗

= −iIn. (4.3)

Realize the L. de Branges transform BL [3] of each component fk(x) ∈ L2
2,l (âxdx)

of the vector-function f(x) from L2
2n,l (Fx) assuming that ax is given by (4.1),

Fk(x)
def
= BL (fk) =

1

π

l
∫

0

fk(x)âxL
∗

x (z̄) dx (4.4)

where Lx(z) is the solution of the integral equation (3.9) by the measure âxdx.
As a result, we obtain the Hilbert space Bn(A,B) = En ⊗ B(A,B) which is

formed by the vector-functions F (z) = (F1(z), . . . , Fn(z)),

Bn(A,B) = {F (z) = (F1(z), . . . , Fn(z)) : Fk(z) ∈ B(A,B) (1 ≤ k ≤ n)} , (4.5)

besides, the scalar product in Bn(A,B) is given by

〈F (z), G(z)〉Bn(A,B) =

n
∑

k=1

〈Fk(z), Gk(z)〉
B(A,B) . (4.6)

Taking into account the form of ax (4.1) and J (4.2), we obtain that the L. de

Branges transform BL [3] translates the triangular model
◦

A1 (2.1) into the shift
operator

(

Ã1F
)

=
1

z
(F (z) − F (0)); ∀F (z) ∈ BN(A,B). (4.7)

106 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 93–112.



To obtain the model representation
◦

A2 (2.1), use the formula

◦

A∗

2

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗=
1

z

{

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗ σJ

}

+

+

(

I − z̄
◦

A∗

1

)−1
◦

ϕ∗
(

γ+
)∗
J + iz̄

◦

A∗

1

(

I − z̄
◦

A∗

1

)−2
◦

ϕ∗ (4.8)

and the fact that L∗
x (z̄) =

(

I − z̄
◦

A∗
1

)−1
◦

ϕ∗ (1, 0). Taking into account the con-

crete form of the operators J , σ, γ+ (4.2), we obtain

σJ = σ̃ ⊗ I2,
(

γ+
)∗
J = γ̃∗ ⊗ I2. (4.9)

Therefore, after the L. de Branges transform (2.24), the operator
◦

A2 (2.1) is given
by

(

Ã2F
)

(z) =
1

z
(F (z) − F (0))σ̃ + F (z)γ̃ − iz

d

dz
F (z). (4.10)

Thus

Ã2F (z) =
1

z
{F (z) (σ̃ + zγ̃) − F (z) (σ̃ + zγ̃)|0} + iz

d

dz
F (z) (4.11)

where F (z) (σ̃ + zγ̃)|0 = F (0)σ.
Now define the colligation of Lie algebra

∆̃ =
({

Ã1, Ã2

}

;Bn(A,B); ϕ̃, E2n; J, σ, γ+, γ−
)

, (4.12)

besides, J , σ, γ+ are given by (4.2), γ− = γ+, and the operator ϕ̃ on each compo-
nent of Fk(z) acts in a standard way [1, 3].

Theorem 4.1. Let ∆ (1.8) be the simple colligation of Lie algebra such that
dimE = 2n, σ1 = J , σ1 = σ, γ+ are given by (4.2), spectrum of the operator A1 lies
at zero, and the characteristic function of operator A1 is such that the measure dFx

in multiplicative representation of S1(λ) (see Theorem 3.1) is absolutely continuous,
dFx = axdx and ax equals (4.1). Then the colligation ∆ is unitarily equivalent to
the simple part of the functional model ∆̃ (4.12) where the operators Ã1 and Ã2 are
given by the formulas (4.7) and (4.11), respectively.

II. Consider the linear bundle

σ̃ + zγ̃ = σ + zγ̃R −
i

2
zIn (4.13)

in view of (4.3) where γ̃R = γ̃∗R =
1

2
(γ̃ + γ̃∗).
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Denote by h(z, w) the eigenvectors of selfadjoint (when z ∈ R) bundle σ̃+zγ̃R,

h(P ) (σ̃ + zγ̃R) = wh(P ) (4.14)

where P = (z, w) belongs to the algebraic curve

Q =
{

P = (z, w) ∈ C2 : Q(z, w) = 0
}

(4.15)

specified by the polynomial

Q(z, w) = det (σ̃ + zγ̃R − wTn) . (4.16)

Suppose that the curve Q (4.15) is nonsingular [4, 9], then z = z(P ) and w = w(P )
are “l-valued” and, respectively, “n-valued” functions on Q (l = rankγ̃R). We
normalize the rational function h(P ) (4.14) using the condition hn(P ) = 1 where
hn(P ) is the nth component of the vector h(P ).

It is easy to see [4] that the quantity of poles, taking into account the multiplic-
ity, of vector-function h(P ), equals N = g + n− 1 where g is the type of Riemann
surface Q (4.15). Specify on Q analogues of halfplanes C± and R,

Q± = {P = (z, w) ∈ Q : ±Imz(P ) > 0}; Q0 = ∂Q±. (4.17)

Expand every function F (z) ∈ Bn(A,B) by the basis h (Pk) (z ∈ R),

F (z) =
n

∑

k=1

g (Pk) ‖h (Pk)‖−2
En h (Pk)

where Pk =
(

z, wk(z)
)

∈ Q and wk(z) are different roots of the polynomial
Q(z, w) = 0 (4.16); g (Pk) = 〈F (z), h (Pk)〉En (1 ≤ k ≤ n). It is obvious that
wk(P ), along with h (Pk), g (Pk), represents branches of “n-valued” algebraic func-
tions w(P ), h(P ), g(P ). Therefore the last equality signifies that

F (P ) = F (z(P )) = g(P )‖h(P )‖−2
Enh(P ). (4.18)

And since the basis h(P ) in En is constant, the vector-function F (P ) is defined by
the scalar component g(P ). The function g(P ) is a meromorphic function on Q

(4.15), the poles of which may lay only in the poles of h(P ) (4.14), and their joint
multiplicity could not exceed N = g + n− 1.

Define [3] the L. de Branges space BQ(A,B, h) on the Riemann surface Q (4.15).
It is easy to see that the operator Ã1 (4.7) in L. de Branges space BQ(A,B, h) acts
in the following way:

(

Ã1g
)

(P ) =
g(P ) − ψ (P, P0) g (P0)

z(P ) − z (P0)
(4.19)

where ψ (P, P0) is given by

ψ (P, P0) = 〈h (P0) , h(P )〉En ‖h(P )‖−2
En , (4.20)
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besides, P0 = (0, w) ∈ Q.
Now study how the operator Ã2 (4.11) acts in the space BQ(A,B, h). (4.11),

(4.13) imply

(

Ã2F
)

(P ) =
1

z(P ) − z (P0)

{

g(P )

[

w(P ) +
i

2
z(P )

]

· ‖h(P )‖−2
E h(P )−

−g (P0)

[

w (P0) +
i

2
z (P0)

]

· ‖h (P0)‖
−2
En h (P0)

}

−

−iz(P )

{

d

dz
g(P ) · ‖h(P )‖−2

Enh(P ) − 2g(P ) · ‖h(P )‖−3
En

d

dz
‖h(P )‖Enh(P )+

+g(P ) · ‖h(P )‖−2
En

d

dz
h(P )

}

.

Therefore we arrive at the following structure of the operator Ã2 in L. de Branges
space BQ(A,B, h):

(

Ã2g
)

(P ) =
1

z(P ) − z (P0)

{

g(P )

[

w(P ) +
i

2
z(P )

]

−

−ψ (P, P0) g (P0)

[

w (P0) +
i

2
z (P0)

]}

− iz(P )
d

dz
g(P ) − iz(P )b(P )g(P ) (4.21)

where the function b(P ) equals

b(P ) =

〈

d

dz
h(P ), h(P )

〉

En

‖h(P )‖−4
En − 2‖h(P )‖−3

En

d

dz
‖h(P )‖En . (4.22)

Now construct the colligation of Lie algebra

∆̃ =
({

Ã1, Ã2

}

;BQ(A,B, h); ϕ̃, E2n; J, σ, γ+, γ−
)

(4.23)

where the operators Ã1 and Ã2 are given by (4.19), (4.21); the functions ψ (P, P0)
and b(P ) are given by the formulas (4.20) and (4.22); the operators J , σ, γ+ are
represented by (4.2), γ− = γ+; and the operator ϕ̃ acts on the function g(P ) in the
following way:

ϕ̃g(P ) =

2
∑

k=1

〈g(P ), ek(z(P ))〉
BQ(A,B,h) · ek,

besides, ek(z) are given by

e1(z) =
1 − αz

z
B∗ (z̄) ; e2(z) =

1 − αz

z
(1 −A∗ (z̄)) ; e1 = (1, 0); e2 = (0, 1).

(4.24)
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Theorem 4.2. Let there be given such simple colligation ∆ (1.8) of Lie al-
gebra that dimE = 2n, σ1 = J , σ1 = σ, γ+ is given by (4.2), spectrum of A1 is
concentrated at zero, and the characteristic function of operator A1 is such that
the measure dFx in the multiplicative representation of S1(λ) (see Theorem 3.1) is
absolutely continuous, dFx = axdx, besides, ax equals (4.1). Then the colligation
∆ (1.8) is unitarily equivalent to the simple part of functional model ∆̃ (4.23).

III. Consider the following example. Let dimE = 6, the operators σ̃ and γ̃ in
E3 be equal

σ̃ =











−
1

k
0 0

0 1 b

0 b
1

k
− 2











; γ̃ =













−
i

2
0 a

0 −
i

2
0

a −
i

2













; (4.25)

where a > 0; k ∈ (0, 1); b =

√

2

(

1

k
− 1

)

. In this case the curve Q is given by the

polynomial

k2a3z2(1 − w) = (1 + w)
(

1 − k2w2
)

. (4.26)

Assuming that ξ = kaλ(1 − w), we obtain the Legendre algebraic curve

ξ2 =
(

1 − w2
) (

1 − k2w2
)

. (4.27)

The two-sheeted Riemann surface (4.27) has the genus g = 1 and is formed by the

“crosswise” gluing of two w planes along the cut

(

−∞,−
1

k

]

∪ [−1, ] ∪

(

1

k
,∞

)

.

The imaginary part

kaImz = Im

√

1 + w

1 − w
(1 − k2w2)

changes its sign on the cuts, therefore Q+ and Q− (4.17) are sheets of the Riemann
surface (4.15) and Q0 = ∂Q± coincides with the mentioned cuts. On surface (4.27)
there exists the Abelian differential of genus one [9],

ω̄ =
dw

√

(1 − w2) (1 − k2w2)
. (4.28)

Using the elliptic integral

u(P ) =

P
∫

P1

ω (P = (λ,w) ∈ Q), (4.29)
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specify the conform map [9] between (4.27) and the rectangle

Γ = {u ∈ C : Reu ∈ [−2k, 2k]; Imu ∈ [−k′, k]} (4.30)

where P1 = (0, 1) and the numbers 4k and 2ik′ are the periods of the closed differ-
ential ω (4.28). Inversion of the elliptic integral (4.29) results in the uniformization
of curve (4.27) in terms of the elliptic Jacobi functions [9]. Therefore for (4.26) we
obtain

z(u) =
sn′u

ka(1 − snu)
; w(u) = snu. (4.31)

The eigenvectors h(P ) = h(u) of linear bundle h(P ) (σ̃ + zγ̃R) = wh(P ) are given
by

h(P ) =

[

kaz

1 + kw
,

b

w − 1
, 1

]

; h(u) =

[

sn′u

(1 − snu)(1 + ksnu)
,

b

snu− 1
, 1

]

. (4.32)

It is easy to show that the function ψ (P, P0) (4.20) equals 1, ψ (P, P0) = 1. The
function b(P ) (4.22) is given by

b(P ) = ‖h(P )‖−4
En

{

b2

(w − 1)2
−

k2a2z

(1 + kw)2

}

. (4.33)

Thus in this case the functional model of Lie algebra is

(

Ã1g
)

(P ) =
g(P ) − g (P0)

z(P ) − z (P0)
;

(

Ã2g
)

(P ) =

g(P )

[

w(P ) +
i

2
z(P )

]

− g (P0)

[

w (P0) +
i

2
z (P0)

]

z(P ) − z (P0)
− (4.34)

−iz(P )
d

dz
g(P ) − iz(P )b(P )g(P ).

Thus,
1) for the Lie algebra {A1, A2} ([A2, A1] = iA1), the triangular model (2.1) in

the space of functions L2
r,l (Fx) is constructed (see Theorem 2.2);

2) functional model (3.15) for the studied in this paper Lie algebra {A1, A2}
in spaces of entire L. de Branges functions is determined (Theorem 3.1);

3) model realization of the given Lie algebra on Riemann surface is presented
(Theorem 4.1 and Theorem 4.2).
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