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Construction of functional models of Lie algebra {Ai, A2} ([A2, A1] = A1), one of
which is dissipative, was realized earlier. The question of construction of model real-
izations for the given Lie algebra not containing dissipative operator remained open.

This work is dedicated to the construction of model representation of the Lie alge-
bra {A1, A2} of linear non-selfadjoint operators not containing a dissipative operator
which is generated by the commutation relation [A2, A1] = iA;. In Paragraph 1 the
preliminary information is stated, the definitions of colligation of Lie algebra and cor-
responding open system on Lie group of affine transformations of the line M(1) are
given. Paragraph 2 is dedicated to the construction of triangular model for the Lie

algebra [A2, A1] = tA; in the case of finite dimension of the general space of non-
hermicity of operator system {A1, A2}. In Paragraph 3 functional model of the Lie
algebra [A2, A1] = ¢A; is presented, it is realized in L. de Branges spaces of whole

functions. In the last paragraph of this paper, functional model of the Lie algebra
[A2, A1] = iA;1 on Riemann surface is constructed.
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1. LIE GROUP OF AFFINE TRANSFORMATIONS OF LINE AND
COLLIGATION OF LIE ALGEBRA

I. To study a Lie algebra of linear non-selfadjoint operators specified by the
commutation relation [Az2, A1] = iA;, one has [4] to find such Lie group G, vector
{01, 02} Lie algebra of which is such that

[02,01] = Oh.
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Let R be the real line. Define G = M (1) [7, 8] the group of transformations of R
preserving the orientation. Associate with each £ € R number n = y€ + = (y > 0,
x € R). Denote a group element by g = g(z,y). If n = y1€ + 21 and { = yan + a2
then

C=yy2 + x1y2 + 2.
Therefore the group operation on G is given by

g (x2,y2) 0 g (21,91) = g (T1y2 + 2, Y2y1) - (1.1)

Hence it follows that the elements g(x, 1) form the subgroup in G, isomorphic to
the additive group of real numbers R.

g(w2,1)og(w1,1) =g (w1 +x2,1).

And the elements ¢(0,y) form the subgroup in G equivalent to the multiplicative
group of positive numbers in R .

g(0,y2) 09 (0,y1) = g(0,y211) .

The group G is isomorphic to the group of matrices of the second order given by

y
B, = .
This fact immediately follows from the equality

Y2 T2 Y1 T Y2Y1 Y21 + X2
men=| 5 TG 1] -

By og,-
0 1 0 1 0 1 grogz
Specify two subgroups in G,
GL={g(x,1) €G}; G2 ={g(y.0)€ G} (1.2)

as is stated above, they are isomorphic to R and R, respectively. To specify a
function f(g) on the group G = M (1), f: G — C, signifies that we define complex-
valued function f(z,y) in the upper half-plane R x R;. Calculate vector fields
corresponding to the one-parametric semigroups (1.2) [8]. Let g, = (t,1) € GL in
(1.2). Then
Fy=f(geog(z,y) = flelty +z,y)) = f(ty + 2,y).
Therefore the derivative by ¢ at unit, e = ¢(0,1) € G, of the given function equals
d

°r -
o tt=0 o f

0
where 0; = ya— Similarly, consider the functions
x

Ey = f(giog(z,y) = f(z,ty)
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where g; = (0,t) € G2 in (1.2). Then

d

EE =0of

to=0

where 0 = ya2 Thus we construct the Lie algebra of vector fields m(1) of the
Y

group M (1) specified by the differential operators of the first order

0 0

61 :y%, ngya—y.

(1.3)
It is easy to see that the Lie algebra {0a,0:} is specified by the commutation
relation

(02, 01] = 0. (1.4)

It is well-known that the simply connected Lie group M (1) is “uniquely” restored
by the Lie algebra m(1) of differential operators (1.3) [7, 8].

II. Cousider in a Hilbert space H the Lie algebra of linear operators {A;, Az}
satisfying the relation

[As, A1] = iA;. (1.5)

Note that A; and Az cannot be bounded simultaneously, since otherwise (1.5)
implies

[As, A7) = in A}

which results in the inequality 2 ||As|| > n (Vn € Z¢).

It seems natural to write relation (1.5) in the “integral form” similarly to the
Weyl identity in Quantum Mechanics [4]. Let Z; (tx) = exp (it Ag) k =1, 2. (1.5)
implies

Zy (t) Ay = (Ag + 11 A)) Zy (1) (1.6)

Indeed, it is easy to see that f'(t1) = iA1f (¢1) and f(0) = 0 where f(t1) =
7y (t1) A2 — (A2 +t1 A1) Z; (t1). Therefore it is obvious that

A (tl) Zo (tg) = exp {itg (A2 + tlAl)} A (tl) . (17)

III. Construct the colligation of Lie algebra for the given Lie algebra (1.5) of
linear non-selfadjoint operators.

Definition 1.1. Family

A= <{A1,A2};H;¢;E; {ak}f;{vifﬁ}), (1.8)
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where p: H — E, o, v£: E — E (0} = 0%, k=1, 2), is said to be the colligation
of the Lie algebra (1.5), if

1) [Ag, A1) =iAy;

2) 2Im (Agh,h) = (orph,ph); Vh e 9 (Ag); (1.9)
3) og1pAs — o2pA1L =T g

4) v~ =T +i(o2ppror — o1ppros).

It is obvious that y* are non-selfadjoint operators [4] and
- (’yi)* = —io;. (1.10)
Equations of the open system [2, 3, 4, 5] are given by
i0h(z,y) + Ah(z,y) = g oru(z,y) (k=1,2)
hie)=ho (k=1,2); (z,y)€G; (1.11)
v(@,y) = u(e,y) —iph(z,y).
Besides, 0y in (1.11) are equal to (1.11). It is not hard to show [2, 4, 5] that

{01i82 — 09107 + 'y_} u(z,y) = 0;

{01102 — 02101 + 75} v(z,y) = 0.

2. TRIANGULAR MODEL OF LIE ALGEBRA

I. Consider the colligation A (1.8) corresponding to the Lie algebra of linear
operators { A1, A} assuming that (1.9), (1.10) take place, besides, dim F = r < oo,
operator o1 = J is involution, and let o5 = o. Define the Hilbert space Lfﬁ (Fo) 11,
3] assuming that the measure dF, is absolutely continuous, dF, = a,dz, a, < 0,
tra, = 1. Specify in this space the operator system

l
(Kl f) — / FranJdt;

1
(21)2 f> = flby + fod Ve +i/ftatdta (2.1)

(fz € Lf’l (Fz)) where b,, v, are some operator-functions in E specified on [0, ].

Linear span of continuously differentiable functions from L%j ; (F%) such that flb, €
L%,l (Fy) and fo = f; = 0 is the domain D (A3). Note that the structure of A; (2.2)
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coincides with the triangular model [1, 3] when the spectrum o (A;) = 0. Find the
necessary and sufficient conditions on ag, by, vz, J, o for this operator system (2.1)
to form the Lie algebra,

{22,1&] — i A (2.2)

It is easy to see that

l

l l
Ao Ay fo = —ifoan by +i / Frapdtr, — / / faasJds | azodt.
x t

x
Similarly,

l

1 1 1
A Ay fo=i / Flbsag Jdt + / frdyanJdt — / / foasods | apJdt =
x x t

xT

l

l l l
:fz‘fzbmazjfi/ft (btat)'JdtJri/ftJ’ytatJdtf/ /fsasods asJdt
x x t

x

by virtue of f; = 0. Suppose that
azJb, = bgayJ. (2.3)
Then

l l l
g, ({jfg,jfl} i/(l)l) fo :z‘/ftatdt% 7/ /fsasjds arodt—
x x t

l

l l !
_i/ft {J%atJ— (btat)/J} dt+/ /fsasads atJdt—i—/ftatJdt.
xr x T

T

Supposing that -, is continuously differentiable operator-function, calculate deriv-
ative of the function V¥,:

l l
\II;: = —@'fxal.fyx+i/ftatdt7;+/ftatdtJaxa+

l
+ife {Jywasd — (bpag) T} — /ftatdtaamj— foazJ.
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Hence it follows that ¥/ =0, if

iV, = oa,J — Jayo;
az’Yﬂ:J = J’y:vaz - (bzaaz)/ + iaaz-

Thus ¥, = 0 since ¥; = 0.

Lemma 2.1. Suppose that there exists a family {ay,vVz, bz, J,0} such that
(2.3) and (2.4) take place. Then the operator system {Al,Ag} (2.1) satisfies the

commutation relation (2.2).

II. In order to include the operator system {Al, As ¢ (2.1) in the colligation

A (1.8), it is necessary to verify that the colligation relations (1.9) are true. It is

easy [1, 3] to show that Ay — Af=1d ¢* J ¢ where the operator &: L3, (F:) — E
is given by

l
¢ fo= [ fdt. (2.5)
/

Calculate 2Im </(1)2 7 f> where f € D (14(1)2) Then
2Im <2fz f, f>
1

l
1
_;/da:fxax b (f;)'—f—fy;fo—i/aatft*dt =
0

x

l
1
;/ f;bz+fo’Yz+i/ftatU dtaxf;dfcf

ER

l
:./Uﬁmﬁ%ﬁmwﬂﬁY£hU%%—%ﬁﬂiﬂm+
0

l

1/l
+/ /ftatadtaxf; +fxax/aatft* dt.
0

x x
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It is easy to see that the second integral after the change of order of integration
equals

l

l
/ftatdta/atft*dt = (oof,of)E-
0

0

o
Therefore in order to the colligation relation 2) for A, (2.1) take place, it is necessary
to ascertain under which conditions the first integral vanishes. The integrand of
this integral equals

b [ = foanbls (f5) + fo{TV0te — auyid} f1 =

o, =

= fraz by fi — foasbl (f2) + fo {aaved + (bpas) —ias — azviJ} fi

in virtue of (2.3) and the second equation in (2.4). It is obvious that the solution
vz of equation (2.4) is given by

T

Yz = Yo +i/ (Jato — oarJ) dt. (2.6)
0

Choose the initial condition 7o = (y*)". Since the second summand in (2.6) is a
selfadjoint operator, then taking into account 4+ — (y7)* = —i.J (1.10) we obtain

Yo=Y =%-7% =0 -1t =il (2.7)
So v = 7, — ¢J. Substituting this expression in the formula for ®,, we obtain

S, = flayJbyJ fi— frab (f;)/—i—ﬁc {al.%.J + (bl.ax)'— iay — ax (yp —1J) J} fo=

= foaw by f7 + foto (<03) £+ fo (azbed) £
in virtue of (2.3). Let
bE = —Jb,J. (2.8)
Then @, = {f,a,Jb,Jf:}', and hence

!
/@xdmzo
0

since fo = fias f€D (fig)

Lemma 2.2. Let the family {ay, vz, bz, J,0} be such that the relations (2.3),
(2.4) are true and, moreover, v, the solution of the first equation in (2.4), satisfies
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the initial condition vo = (y)", besides, y* — (y7)" = —iJ (1.9). Then, if (2.8)
takes place, Vf € D <A2) the colligation relation

ot (4o .7 ) = (=0 8 1.5 1)
where f is given by (2.5).

Verify that the colligation condition 3) (1.9) also is true. Really, find the
function ¥,

l

l
g, & <J PAy —o AL —F sz) fu =/ fibe + fod Ve +i/ftatdta agpdr—
0 x

l l 1
_/i/ftatJdta;cU—/f;cal-dI’y-’_.
0 x 0

Integrating by parts and changing the order of integration, we obtain

l T

v, :/d:c —fa (bzaz)/JJr fedVeazJ + fraz i/(oatJf Jago)dt| — frazy ™
0 0

Now taking into account (2.6) and the second equality in (2.4), we have

I
U, :/{fxaxfyx — [od V202 —iaed + fod Voo + fraz (Yo — V2) — foaey " pda =
0

l
:/fzamd:c (70,,)#,2‘(]):0
0

in virtue of 79 = (7*)" and condition (1.10). So ¥, = 0 and relation 3) (1.9) is
proved. If one takes into account (2.5), then (2.6) yields

l
fyl'yo+i/(JatooatJ)dt’yo+i<Js%ga*aa<OP<p* J>,
0

therefore

fy;‘:fy++i(J80g0*0'—0'<P(p* J).
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And we obtain the colligation relation 4) (1.9) where v =~~.

Theorem 2.1. Suppose that an operator family {ay, Vs, bz, J, 0} is such that

—_

) apJby = braydJ;
) bE=—JbyJ;
)
)

[\

(2.9)

w

i, =0azd —Jago; o = (’VJF)* ;

N

(bxax)l = JVpay — agyeJ + iay;
besides, v+ — (yT)" = —iJ. Then the set
A= ({AI;AQ} s L3, (Fo) ;5 B {J, ok};{’ym*}) (2.10)
is the colligation of Lie algebra (1.8)—(1.9) where /(1)1, /(1)2 are given by (2.1), the
operator @ equals (2.5) and v~ =~;.
Now use the Theorem on unitary equivalence [1, 3, 4].
Theorem 2.2. Let A be a simple colligation (1.8), (1.9). If the spectrum

of operator Ay is concentrated at zero and the characteristic function Si(\) =
I —ip(A— N~ " J is given by

T
1JdF,
Sl()\):/exp S t,
0

besides, dF, = azdx and a, is such that for the family {ay, Vs, bz, J,0} (01 = J
is involution and o = o*) the equation system 1) —4) (2.9) is solvable. Then the

colligation A is unitary equivalent to the simple part of colligation 2 (2.10).

Observation 2.1. 1), 2) (2.9) imply
azby + bya, =0, (2.11)
Vo € [0,1].

3. FUNCTIONAL MODEL IN L. DE BRANGES SPACE

This section is concerned with the construction of functional model of the
studied in this paper Lie algebra in L. de Branges space [3]. Consider the triangular
model of the colligation of Lie algebra (2.10) assuming that » = 2 and J is given by
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J = jn (2.1). Under the action of L. de Branges transformation [3], the operator

A; (2.1) changes into the shift operator since

l l
o 1
B (A1 ft) = ;/ i | fodF,J % dF,L} (2) =
0 t

- 1/lftdFt {Le-Lo)

and thus

By, <21 f1> _FR-FO) (3.1)

z

where F(z) € By, (ft). In order to find By, (14(1)1 ft>, first of all note that

Li(z) = (1“&)1 & (1,0). (3.2)
Since
Bu (42 1) = (A 52 @) = (A3 10 2) )
then, taking into account (3.2), we have to calculate the expression

[} o -1 5
Aj (I —z A’{) ©* (1,0). (3.3)

(2.2) implies
therefore

Thus

o o -1 o o o o -2

A (I— z AI) - (I —z A’{) A= —iz A} (I -z AI) . (3.4)
Using (3.4), we obtain

o o -1 5 o -1 5 5 o o -2 5
A5 (I_ZA;) o= (I—ZA*{) Aso” iz Ay (I—ZA*{) o
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The colligation relation J <OPA2: o S(Z’Al +~t @ yields
o o -1 o o -1 o o o -1 o
Aj (I -z A*{) P = (I— z A*{) Alp* oJ + (I -z Ai) " (7+)* J+
o o -2 5
tiz A (sz;f) o

—1 -1
o o 1 o
Now taking into account <I —Z AI) Aj= - { <I —Z AT) — I}, we finally
z

obtain

Thus expression (3.3) has the form

o o 710 1 o -1
Aj (IzA{) w(l,o);{(IZAi)

o -1 5 o o -2,
+ (I -z A’{) " (Y1) J(1,0) + iz A (I— z A;) ©* (1,0).
Expand the vectors 0.J(1,0) and (y+)" J(1,0) by the basis (1,0) and (0,1) in E2.
0J(1,0) = a(1,0) + B(0, 1);

(3.5)

(+*)" J(1,0) = (1, 0) + #(0,1) (3.6)
where
a:(l,O)aJ( (1) ); ﬁ:(l,O)aJ( (1) )
_ Ly * 1y TNk 0
As a result, we obtain that expression (3.5) is written in the following form:
o o -1 5 1 o -1 5 [}
Al <IZA;) " (1,0)&;{<I§AT> cp*go*}(l,O)Jr
103
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_1 [} -1 5 o o -1 5
5 {(IéAi‘) so*so*}(o,mﬁ(IzA;) o (1L0)+

o -1 5 o o -2 5
+v <I -z A;) ©* (0,1) +iz A7 <I -z A;) ©* (1,0). (3.8)

Along with the integral equation for L,(z)

Lo(2) +iz/Lt(z)dFtJ —(1,0), (3.9)
0

consider [3] the integral equation for N, (z)
Na(2) +iz/Nt(z)dFtJ — (0,1). (3.10)
0

So we can rewrite expression (3.8) as

AL (2) = a2 @) ;Lt(o) 4 ) - N0

d
+ L (2) + vN: (2) —izaLt (2).
(3.11)
By the vector-row N.(z) = [Cx(2); Dx(2)], similar to [3], construct the L. de

Branges space B(C, D) and specify the L. de Branges transform from L3, (F)
on B(C, D) by the formula

def

l

A function G(z) € B(C, D) is said to be the dual to F(z) € B(A, B) if
F(z) =B (fi), G(z)=Bn(fi). (3.13)
Using the notation (3.11) and (3.13), we obtain

o F(z)-F — d
Br, (Ag ft) =a () p, © JrﬂG(Z) p, i) +uF(z)+vG(z)7iz£F(z). (3.14)
Thus the Lie algebra (2.2) of linear operators {/(1)1, /(1)2} (2.1) after the L. de Branges

transform Bp, changes into the following operator system

AR = EEZEO) — FO),
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A F(z) = aF(z) + BG(z2) ;aF(O) — BG(0) .
+uF(2) +vG(z) — zz%F(z) (3.15)

where the numbers «, 3, u, v are given by (3.7) and the functions F(z) and G(z)
are equal to0(3.13).

Observation 3.1. The dual function G(z) (3.13) does not necessarily belong
to the space B(A, B), nevertheless, under such selection of o, 8, u, v (3.7), the
expressions

aF(z) + BG(z) — aF(0) — BG(0)

pF(2) + vG(2); .

already belong to B(A, B). Note that the numbers «, 3, u, v do not depend on

Specify now the operator ¢ from B(A, B) into E? using the formula

BF(2) = (F(2), e1()) (1,0) + (F(2), eal2) (0, 1) (3.16)
where
b =20, 4= 1ALE) (3.17)

Theorem 3.1. Let A be the simple colligation of Lie algebra (1.8), (1.9),
besides, the spectrum of operator A is concentrated at zero and the characteristic
function Sy(\) = I —ip (Ay — XI) "' o*J is given by

51<A>/lexp{“th},

0

besides, the measure dF, is absolutely continuous, dF, = a,dx, az > 0, a; is a
matriz-function in E? and J is given by (2.1) [3]. And, moreover, a selfadjoint
operator o and operators & are given in E? such that y* — (vi)* =1iJ. Then the
colligation A (1.8) is unitary equivalent to the functional model

A= ({41 Ao} sB(A B3, B (.0} {77 ,77}) (3.18)
where Ay, Ay are given by (3.15); the operator ¢ equals (3.16); the numbers a, f3,

wu, v € C are given by the formulas (3.7); G(z) is the dual function of F(z), and,
finally, {ek(z)}? are given by (3.17).
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4. FUNCTIONAL MODELS ON RIEMANN SURFACE

I. Let = 2n be even, and let a, be given by
ay = Ip X Gy (4.1)

where I, is the unit operator in E™ and é, is such non-negative matrix (2 x 2) that
tra, = n~1. It is obvious that the Hilbert space L%n,l (F) [1, 3] is formed by the
vector-functions f(z) = (f1(x),..., fu(x)) such that

l

/fk(lﬂ)&mfg(x)dx < o0

0
for all k (1 > k > n) where fi(z) € E? for every z € [0,1].
Suppose that the operators oy = J, 01 = o, 4+ are given by

n=J=L&ly 0=50Jv; 7 =7®Jy (4.2)

where & is a selfadjoint operator in £™ and 7 is such operator in E™ that
v - (’?)* = —il,. (4'3)

Realize the L. de Branges transform By, [3] of each component fi(x) € L3 ; (a.dx)
of the vector-function f(z) from Lgn’l (F,) assuming that a, is given by (4.1),

l
def

Fu@) ¥ Bu () = - [ @i Ls () de (1.4)

0

where L,(z) is the solution of the integral equation (3.9) by the measure a,dx.
As a result, we obtain the Hilbert space B"(A, B) = E™ ® B(A, B) which is
formed by the vector-functions F'(z) = (Fi(2),..., F.(2)),

B"(A,B) = {F(2) = (Fi(2),...,Fu(2)) : Fu(2) € BAA,B)(1 <k <n)}, (4.5)

besides, the scalar product in B"(A, B) is given by

n

(F(2),G(2))Bn(a,B) = Z (Fi(2), Gr(2)) p(a.p) - (4.6)

k=1
Taking into account the form of a, (4.1) and J (4.2), we obtain that the L. de

Branges transform By, [3] translates the triangular model A; (2.1) into the shift
operator

(A1F> - %(F(z) —F(0)); VF(z) e BY(A,B). (4.7)
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To obtain the model representation As (2.1), use the formula
o o -1, 1 o -1 5
Al <IZAT) ¢*—{<I§AT> cp*oJ}Jr
z

o -1 5 o o -2,
+ (I—ZA;) " (V) T +iz A (I—ZA;) ©* (4.8)
o -1,
and the fact that L% (z) = (I -z A{) ©* (1,0). Taking into account the con-

crete form of the operators J, o, v (4.2), we obtain

oJ=62L, (v)'J=4@L. (4.9)

Therefore, after the L. de Branges transform (2.24), the operator Ay (2.1) is given
by

(AQF) (2) = %(F(z) — F(0))5 + F(2)7 — iz%F(z). (4.10)
Thus
AyF(2) = é {F(2) (G +27) — F(2) (6 + 27)|o} + iz%F(z) (4.11)

where F(z) (6 + 27)|, = F(0)o.
Now define the colligation of Lie algebra

A= ({fll,flg};B"(A,B);gZa,E%;J,U,’y"‘,’y_) , (4.12)

besides, J, o, 4t are given by (4.2), v~ =+, and the operator ¢ on each compo-
nent of Fy(z) acts in a standard way [1, 3].

Theorem 4.1. Let A (1.8) be the simple colligation of Lie algebra such that
dim E =2n, 01 = J, 01 = 0,y are given by (4.2), spectrum of the operator Ay lies
at zero, and the characteristic function of operator Ay is such that the measure dF,
in multiplicative representation of S1(\) (see Theorem 3.1) is absolutely continuous,
dF, = azdx and a, equals (4.1). Then the colligation A is unitarily equivalent to
the simple part of the functional model A (4.12) where the operators Ay and Ay are
given by the formulas (4.7) and (4.11), respectively.

II. Consider the linear bundle

G427 =0+ 2in — %zln (4.13)

(Y +77)

N =

in view of (4.3) where g = 45 =
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Denote by h(z,w) the eigenvectors of selfadjoint (when z € R) bundle 6 + 29,
h(P) (¢ + 2z3Rr) = wh(P) (4.14)
where P = (z,w) belongs to the algebraic curve
Q={P=(z,w) €C*:Q(z,w) =0} (4.15)
specified by the polynomial
Q(z,w) =det (6 + 2zr — wTy,) . (4.16)

Suppose that the curve Q (4.15) is nonsingular [4, 9], then z = z(P) and w = w(P)
are “l-valued” and, respectively, “n-valued” functions on Q (I = rankygr). We
normalize the rational function h(P) (4.14) using the condition h,,(P) = 1 where
hn(P) is the nth component of the vector h(P).

It is easy to see [4] that the quantity of poles, taking into account the multiplic-
ity, of vector-function h(P), equals N = g+ n — 1 where g is the type of Riemann
surface Q (4.15). Specify on Q analogues of halfplanes C+ and R,

Qi+ ={P=(z,w) €Q:+Imz(P) > 0}; Q°=0Qx.. (4.17)
Expand every function F(z) € B"(A, B) by the basis h (P) (z € R),

n

F(z) =) g(P) b (P h(Pe)
k=1

where P, = (z,w"(z)) € Q and w"(z) are different roots of the polynomial
Q(z,w) = 0 (4.16); g(Px) = (F(2),h(Pr))gn (1 < k < n). It is obvious that
wk(P), along with h (Py), g (Py), represents branches of “n-valued” algebraic func-
tions w(P), h(P), g(P). Therefore the last equality signifies that

F(P) = F(2(P)) = g(P)||h(P)|| 52 h(P). (4.18)

And since the basis h(P) in E™ is constant, the vector-function F'(P) is defined by
the scalar component g(P). The function ¢g(P) is a meromorphic function on Q
(4.15), the poles of which may lay only in the poles of h(P) (4.14), and their joint
multiplicity could not exceed N =g+ n — 1.

Define [3] the L. de Branges space Bg(A4, B, h) on the Riemann surface Q (4.15).
It is easy to see that the operator A; (4.7) in L. de Branges space Bo(A, B, h) acts
in the following way:

7 _9(P) =4 (P, R)g(R)
(Alg) P) === (330) : (4.19)
where ¢ (P, Py) is given by
W (P, Po) = (h(Po) , h(P)) g [|R(P)]] = (4.20)
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besides, Py = (0,w) € Q. }
Now study how the operator As (4.11) acts in the space Bg(A, B, h). (4.11),
(4.13) imply

(42F) (P) = ==y {90 [P + 527 - InPE2h(P)-

~0 (7o) [u (R0 + 5 ()] - I ()

snry )

~is(P) { LaP) - INPIEP) = 29(P) - [P P h(P)

FalP)- [P 5h(P) .

Therefore we arrive at the following structure of the operator A, in L. de Branges
space Bg(A, B, h):

(a0) () = ==y {90 [P + 32| -

PR g () [w(B5) 4 2 (80)] = iP) Lo(P) — x(PRPI(P) (221

where the function b(P) equals

d

W) = (HPLHEP)) PG 2P P (122

En

Now construct the colligation of Lie algebra
A = ({Al; 142} ; BQ(A, B, h)7 (‘57 15‘2717 J7 o, ,y'i‘7 ,y—> (423)

where the operators A; and Ay are given by (4.19), (4.21); the functions ¢ (P, Py)
and b(P) are given by the formulas (4.20) and (4.22); the operators J, o, v+ are
represented by (4.2), v~ = ~T; and the operator ¢ acts on the function g(P) in the
following way:

2
¢g(P) = Z <g(P)aek(Z(P))>BQ(A,B,h) " Ch;
k=1

besides, e (z) are given by

e1(z) = 1= 2 g (2); eaz)= -z (1-A"(2)); e1=(1,0); ex=1(0,1).

‘ ‘ (4.24)
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Theorem 4.2. Let there be given such simple colligation A (1.8) of Lie al-
gebra that im E = 2n, o1 = J, 01 = 0, v" is given by (4.2), spectrum of A; is
concentrated at zero, and the characteristic function of operator Ay is such that
the measure dFy, in the multiplicative representation of S1(X\) (see Theorem 3.1) is
absolutely continuous, dF, = a,dz, besides, a, equals (4.1). Then the colligation
A (1.8) is unitarily equivalent to the simple part of functional model A (4.23).

III. Consider the following example. Let dim E' = 6, the operators ¢ and 7 in
E? be equal

1 i
P 0 *5 0 a
G=| 0 1 b A= 0 ,% 0o |; (4.25)
1
0 b ——2 a !
2

where a > 0; k € (0,1); b= /2 (% - 1). In this case the curve Q is given by the
polynomial

k?a®2*(1 —w) = (1 +w) (1 — k*w?). (4.26)
Assuming that £ = kaA\(1 — w), we obtain the Legendre algebraic curve

&€= (1-w?) (1-kuw?). (4.27)

The two-sheeted Riemann surface (4.27) has the genus g = 1 and is formed by the
“crosswise” gluing of two w planes along the cut | —oo, —%] Ul-1,]uU (%,oo).
The imaginary part

1
kalmz = Im\/ﬂ (1 — k2w?)
1—w

changes its sign on the cuts, therefore Q7 and Q™ (4.17) are sheets of the Riemann
surface (4.15) and Q° = 9Q% coincides with the mentioned cuts. On surface (4.27)
there exists the Abelian differential of genus one [9],

dw

W= \/(1 — k2w2)' (4.28)
Using the elliptic integral
p
u(P) = /w (P =(\w) €Q), (4.29)
Py
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specify the conform map [9] between (4.27) and the rectangle
I'={u € C: Reu € [—2k, 2k]; Imu € [k, k]} (4.30)

where P; = (0,1) and the numbers 4k and 2ik" are the periods of the closed differ-
ential w (4.28). Inversion of the elliptic integral (4.29) results in the uniformization
of curve (4.27) in terms of the elliptic Jacobi functions [9]. Therefore for (4.26) we
obtain

sn'u

z(u) = m; w(u) = snu. (4.31)

The eigenvectors h(P) = h(u) of linear bundle h(P) (& + 27r) = wh(P) are given
by

sn'u b
1 —snu)(1+ ksnu) snu — 1’

wp) = [ oz b 1]; h(u):[(

It kw w1

1} . (4.32)

It is easy to show that the function ¢ (P, Py) (4.20) equals 1, ¢ (P, Py) = 1. The
function b(P) (4.22) is given by

b(P) = [|n(P)]

b2 k2a?z

—4

n - . 4.33
# et ) (4:39)
Thus in this case the functional model of Lie algebra is

~ g(P) —g(Po)
(‘419) (P) = 2(P)—z(P)’

(P) [w(P) + L2P)| = g (By) | (Ry) + L2 (B
(‘429) (P ):9 [ : 2(1]3) _gz(PO)[ : } (4:34)

~i2(P) L 4(P) — i=(P)H(P)g(P).

Thus,

1) for the Lie algebra {A;, As} ([A2, A1] = i4;), the triangular model (2.1) in
the space of functions LZ; (F) is constructed (see Theorem 2.2);

2) functional model (3.15) for the studied in this paper Lie algebra {A4;, Az}
in spaces of entire L. de Branges functions is determined (Theorem 3.1);

3) model realization of the given Lie algebra on Riemann surface is presented
(Theorem 4.1 and Theorem 4.2).
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