FOAUILIHUK HA CO®SUNCKUA YHUBEPCUTET »,CB. KIMMEHT OXPHIICKP[“

PAKYJITET 10 MATEMATUKA U UHPOPMATHUKA
Kuura 2 — [Ipunoxkna matemaTuka u unpopmaTuka
Tom 92, 1998

ANNUAIRE DE L'UNIVERSITE DE SOFIA | ST. KLIMENT OHRIDSKI*

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 2 — Mathématiques Appliquée et Informatique
Tome 92, 1998

THE SLRS SYNCHRONOUS IMPERATIVE
PROGRAMMING LANGUAGE

MAGDALINA V. TODOROVA

This paper describes the synchronous imperative programming language SLRS. After a
brief overview of the language we define its behavioural semantics.

Keywords: synchronous language, reactive system, real time process

1991/95 Math. Subject Classification: main 68N15, secondary 68Q15

t. INTRODUCTION

Reactive systems are programs whose main role is to maintain an ongoing
interaction with their environment, rather than to produce some final result on
termination. Such systems should be specified and analysed in terms of their be-
haviour, i.e. the sequences of states or events they generate during their operation.
A reactive program may be treated as a generator of computations which, for sim-
plicity, we may assume to be infinite sequences of states or events [1]. Typical
examples of reactive systems are real time’ process controllers, signal processing
units, digital watches and video games. Operating system drivers and mouse inter-
face drivers are examples of reactive programs too. Lustre [4], Esterel [2, 3], Signal
[5] are programming languages devoted to program reactive systems.

Determinism is an important characteristic of reactive programs. A determin-
istic reactive program produces identical output sequences when fed with identical
input.

75

In this paper a synchronous imperative programming language named SLRS
(Synchronous Language to Reactive Systems) is considered. It is based on the
synchrony hypothesis: each reaction is assumed to be instantaneous and therefore
atomic in any possible sense. Control transmission, signal broadcasting, and el-
ementary computations are supposed to take no time, making the outputs of a
system perfectly synchronous with its inputs [2]. After a brief overview of the Pure
SLRS we define its behavioural semantics.

2. THE PURE SLRS LANGUAGE

In this section we describe the Pure SLRS language intuitively and by exam-

ples.
A SLRS program:

program P;
declaration part
interface part
body

end P.

has a declaration part that declares the external objects used by the program, an
interface part that defines its input and output, and a body that is an executable
statement.

Declaration part. Data declarations declare the constants, types, functions, and
procedures that manipulate data. They are written in the host language (Pascal

or C).
Interface part. The interface part

input 11 {, In};
output O1 {, On};
input relations;

defines program’s input Iy, ..., I, and output O, ..., O, signals.

The basic object of the language is a signal. Signals are used for communication
with the environment as well as for internal broadcast communication. There is a
special signal called tic. It is assumed to be always present. In Pure SLRS there
are only two kinds of interface signals: input and output signals.

Input signals come from the environment. They cannot be produced internally.
They are declared in the form

input 11 {, In};

Output signals are directed towards the environment of the program by the
produce statement. An output signal declaration has the form

output O1 {, On};'

76

Input relations are assertions that can be used to restrict input events. That
is very important for program specification and verification.

A SLRS program specifies a relation between input and output signals. It 1S
activated by repeatedly giving it input events. These events consist of a possibly
empty set of input signals assumed to be present. For each input event, the program
reacts by executing its body and by outputting the produced output signals that
form the output event. We assume that the reaction is perfectly synchronous and
deterministic. A reaction is also called an instant.

The kernel statements in the language are:
e Statement skip:

skip
It performs no action and terminates immediately.
e Statement stop:
stop
It performs no action'and never terminates.

e Statement produce:
produce S
where S is a signal. It emits S and terminates immediately.

e Statement sequence:
sequence staty, statz end
where stat; and stat, are any statements. The statement stat, starts instantly when
the statement stat; terminates. The sequencing operator takes no time by itself.
e Statement parallel:
parallel stat;, stat; end

where stat; and staty are any statements. The statements stal; and stat, are start-
ed simultaneously when the parallel statement is started. The parallel statement
terminates when its both branches are terminated.

e Statement ifp-then-else-end:

ifp S then statl else stat2 end

where S is a signal, stal; and staly are any statements. The then and else parts ~
are optional. If some of them is omitted, it is supposed to be skip statement.
The presence of S is tested and the then or else branch is immediately started
accordingly.

e Statement cycled-end:

cycled stat end

where stat is any statement. The body stat of a cycled-end starts immediately
when the cycled-end statement starts and whenever stat terminates, 1t is mstantly
restarted. A cycled-end never terminates.

77

e Statement watching-do:
watching S do stat end

where stat is any statement and S is a signal. S is called a guard. The statement
stat 1s executed normally until stat terminates or until future occurrence of the
signal S. If stat terminates just before S occurs or at the same time as S, so does
the whole watching-do statement and the guard has no action. Otherw1se the
occurrence of S provokes immediate preemption of the body stat and 1mmed1ate
termination of the whole watching-do statement.

Ezample. Let define

await S =4.r watching S do stop end.

When await S starts executing, it retains the control until the first future reac-
tion where S is present. If such a reaction exists, the await statement terminates
immediately. Otherwise it never terminates.

Ezample. Let us consider the statement

watching I1 do

sequence
watching 12 do
sequence
await 13,
produce Ol
end
end,
produce O2
end
end

If 11 occurs before I2 and I3 or at the same time as them, then the external
watching-do preempts its body and terminates instantly. In this case no signal is
produced. If /2 occurs before I3 or at the same time as it, but before 11, then
the internal watching preempts its body, OI is not produced even if I9 is present,
02 is produced and the external watching instantly terminates. If I3 occurs just
before /1 and 12, then the await statement terminates, O1 is produced, the internal
watching-do terminates since its body termmates 02 is produced and the external
- watching also terminates.

e Statement run-until:
run stat until X

where stat is any statement and X is a parameter. The body stat starts instant-
ly and determines the behaviour of the run-until statement until it terminates or
executes ezit X. Then the execution of stat is preempted and the whole run-until
constructor terminates. If body of a run-until statement contains parallel compo-
nents, the run-until is exited when one of the components executes an ezit X, the
other component is preempted.

78

Ezample. Let consider the statement

run
parallel
sequence
await I1,
produce O
end,
sequence
await 12,
exit X
end
end
until X

If I1 occurs before I2, then O is produced and run waits for /2 to terminate. If /2
occurs before 11, then the whole statement terminates instantly, the first branch is
preempted and O will never be produced. If I1 and I2 occur simultaneously, then
both branches do execute and O is produced.

Run-until statement provides a way for breaking loops:

run
cycled ... exit X ... end
until X

Notice that the statement

run
sequence
run
parallel
exit X,
exit Y
end
until Y,
produce O
end
until X

is ambiguous. We must define what it means to exit several run-until statements

simultaneously.
Priorities between run-until statements — only the outermost run-until state-

ment matters, the other ones are discarded.
In the above example the internal run-until is discarded and O 1s not produced.

e Statement local:

local S {, Si} in stat end

where S and S; are signals and stat is any statement. It declares a lexically scoped
signal S {, S;} that can be used for internal broadcast communication within stat.

79

At each reaction, a signal has a single status — present or absent. The following
law determines the status of local and output signals: A local or output signal 1s
- present in a reaction if and only if it 1s produced by ezecuting a produce statement
in that reaction. The default status of a signal is to be absent.

3. THE BEHAVIOURAL SEMA}\TTICS OF THE PURE SLRS

This semantics defines program execution reaction by reaction using Structural
Operational Semantics technique [6]. It defines transitions of the form

/
P 5 |

where P is a program, [is an input event, O is the corresponding out'put event,
and P’ is the new program, i.e. the new state of P after reaction to I. The sequence

P P - P —_— .
I, Oy 1 1,0, " Tag1, Ongr
defines the reaction. Oy, Os, ..., On, ... to an input sequence Iy, I, ..., I, ..

The programs P; are called derivations of P.
The transition

P —— P

1, O
is defined using the following auxiliary relation:
/
stat W St?.t ’

where stat is the body of P, stat’ is the body of P/, E is the current event in
which stat reacts, £’ is the event composed of the signals produced by stat, ¢ is an
"integer (¢ > 0) that codes the way in which stat terminates or exits, and S is a set
of integers. S is called a stopset and t — a termination level’ They are defined
below. The current event E is composed of all signals that are present at a given
reaction. By the law, which determines the state of local and output signals,
must contain the set E’ of produced signals. The auxiliary relation is defined by
- structural induction on statements by means of inductive rules.

The connection between the transition and the auxiliary relation is as follows:

! 2 N /
P - Plifstat —rommms———7 stat

for some t and S.

Termination level. To determine the termination level, it is useful to label the
ezit X part of a run-until X statement with the corresponding level ¢ 4+ 2, where t
(t > 0) is an integer and is equal to the number of the run-unt:il statements which
one must traverse to reach the run-until X statement [2].

Ezample.
run
parallel
exit X : 2,
run

80

parallel

exit X : 3,
exit Y : 2
end
until Y
end
until X

The first exit X and the ezilt Y are labelled 2 since there is not intermediate run-
until statement to traverse, while the second ezit X is labelled 3 since one must
traverse the run-until Y statement to reach the run-until X statement.

Definition. The termination level t of a statement stat is defined as t(stat),
where: :
t(skip) = 0,
t(stop) = 1,
t(produce X) = 0,
t(staty) if t(stat;) >0,
t(staty) if t(staty) =0,
t(paralle] stat), stats end) = max{t(stat,), t(staty)},
t{cycled stat end) = 1 if t(stat) = 0,
t(cycled stat end) = t(stat) if t(stat) > 0,
t(watching X do stat end) = t(stat),
0 if t(stat) = 0 or t(stat) = 2,
t(run stat until X) = ¢ 1 if t(stat) = 1,
i—1 if t(stat) =1,1> 2,

t(sequence staty, staty end) = {

t(exit X : 1) =1,
t(local X in stat end) = t(stat).

The termination level of the statement of the above example is 0.

Stopset. We number all occurrences of the stop statement in stat by different
integers from 0 to », n > 0. A stopset S is a subset of [0..n] that satisfies the
following condition: If stat; and stat; are the two statements of a sequence or two
branches of an ifp-then-else-end statement, then S cannot contain an occurrence of
stop in stat; together with an occurrence of stop in staty. Notice that § =@ when
t#1and S# @ whent=1 '

Inductive Rules:

(IR2) stop : 1 o LT stop : 1;
(IR3) produce X ——r5r—2~ skip;

81

R /
stat; E B 03 stat]
and
staty - ~ stat}
(IR4) T 2
sequence stat;, staty en E, B UE] t;, 5; stat;
. I}
(IR5) stat, R stat], t; >0 .
sequence stat;, stat, end E B 1S Sequence stat], stat; end’
) 1 ’
N /
Statl E, E’l, th, ST' Statl
and
N /
(IR6) stats B E G S stats
parallel stat;, staty end B, B UF, mae) S parall_el stat{, staty end’
S; US,, if max(ty, ts) <1 T
where § = { > U 92 imax(ty, &) <1, and stat = St34 it # 0,
D, if max(ty,13) > 1 . skip, ift; =0;
) stat m stat,', t>0
(IR7) — ;
cycled stat end “E B 5 Sequence stat’, cycled stat end end
N /
(IRS) X € E and stat, BB s stati .
. . ,)
ifp X then stat, else stat, end EE s stat}
. /
(IR9) X ¢ E and stat, B E 5, Stats |
ifp X then stat, else stat, end BB s stat/,
/
(IRlo) stat ‘m stat ' .
watching X do stat end 5 5 5 Up X else watching X do stat’ end end’
. /
stat EE, Lo stat
and
t=0ort=2
(IR11) - —
run stat until X EE 05 skip
stat E—E‘;—t—s—b stat’
and
(IR12) (t =1 and t’::l)or(t>25.md t'=t-1)
run stat until X — run stat’ until X’

E, E' t' S

(IR13) exit X : i o e Stop;

82

! R /
X ¢ E' and stat EEUXT TS stat

IR14 . ; —
() local X in stat end FE s local X in stat’ end ’
/ N /
(IR15) X ¢ E' and stat B B LS stat .
local X in stat end ——————— local X in stat’ end

E,E,t S

Definition. A program is locally correct if its body and its substatements are
such that each local and output signal can have a single status for any input event
that satisfies the input relations.

Definition. A program is correct if all its derivations are locally correct.

Correctness obviously implies determinism. In the sequel, we will consider a
correct program P. For technical reasons (see Theorem 1 below), we assume also
that the body of P never terminates, adding a trailing stop if it is necessary. This
does not change the observable behaviours.

Let stat be a statement, S — a stopset, and stat’ — a derivation of stai. We
will define term R(stat:S) equal to stat’, i.e. by means of the operator R we recover
the derivation stat’ from stat and S. The argument of the operator R is a term
labelled S. A labelled term stat:S is obtained by labelling the subterms of stat
either S+, or S—. A subterm is labelled S+ if and only if it contains at least one
occurrence of stop which number is in S, otherwise, the subterm is labelled S—.
The labels are redundant, but they make the proofs simpler to write.

Definition. R(stat:S—) = stat

R(skip:S) = skip

R((stop:1):S) = stop:i

R((produce X):S) = skip

R(sequence stat;:S+, staty:S— end) = sequence R(stat;:S+), stats end
R(sequence stat;:S—, staty:S+ end) = R(staty:S+)

R(parallel stat,:S+, stat,:S+ end)= parallel R(stat;:S+), R(stat2:S+) end
R(parallel stat,:S+, stat:S— end) = parallel R(stat;:S+), skip end
R(parallel stat,:S—, stat;:S+ end) = parallel skip, R(stat2:S+) end

R(ifp X then stat;:S+ else staty:S— end) = R(stat;:S+)

R(ifp X then stat;:S— else staty:S+ end) = R(staty:S+)

R(cycled stat:S+ end) = sequence R(stat:S+), cycled stat end end
R(watching X do stat:S+ end) = ifp X else watching X do R(stat:S+) end end
R((run stat until X):S) = run R(stat:S) until X

R((local X in stat end):S) = local X in R(stat:S) end.

Theorem 1. Let stat be the body of a correct program and stat never termi-
nate. Let S be a stopset in staf. Then for any transition of the form

R(stat:S) » stat’

E, E' 1,68

the stopset S’ contains only stops occurring in stal’ and stat’ = R(stat:S’).
| g

83

Proof. Let E is a given current event. The proof is by structural induction on
stat. All cases are similar, so we will consider the sequence and the watching-do
statements as examples.

(1) Let stat = sequence staly, stat, end. There are two main subcases:

— If stat:§ = stat:S+ = sequence stat;:S—, staty:S+ end, then 'R(stat:S)‘=
R(staty:5+). By correctness and by the hypothesis that stat stops, R(staty:S+)
has a unique transition

R(staty:S+) = R(stat:S)

— stat/,

E,E'N1,8 .
where S’ is a non-empty stopset that contains only stops in staty. By induction,
stat’ = R(stat,:S’) (1)
and S’ contains only stops in stat’. Since S’ is non-empty and is a stopset in stats,
R(staty:S’) = R(sequence statI:S’-, staty:S’ + end) = R(stat:S’). (2)
The result is achieved as a consequence of (1) and (2).

— If stat:S = stal:S+ = sequence stat,:S+, stat,:S— end, then R(stat:S) =
sequence R(stat;:S+), staty end. By correctness and by the hypothesis that stat
stops, R(stat,:S+) has a unique transition

R(stat,:S+) stat},

E E,1,8 .
where S’ is a non-empty stopset that contains only stops in stat;. By induction,

stat] = R(stat;:S') | (3)
and S’ contains only stops in stat|. By (IR5) we have

sequence R(stat;:S+), staty end RN W
sequence stat], staty end = stat’. - (4)
From (3) and (4)
stat’ = sequence stat, stat, end = sequence R(stat;:S'), stat, end
= R((sequence staty, staty end):S’) = R(stat:S’)

and the result is achieved.

(ii) Let stat = watching X do stat; end. There are also two main subcases:
— If stat:S = stai:S—, then R(stat:S—) = stat.
By correctness and by the hypothesis that stat stops, stat, has a unique transition
R(stat;:S) = stat,

N /
E' E,' 1’ S, L Statl,

where S’ is a non-empty stopset that contains only stops in stat,. By (IR10) we
have

stat ——r 5 ifp X else watghing X do stat} end end = stat’.

By induction,
stat] = R(stat;:S'),

84

and by the fact that S’ is a non-empty stopset that contains only stops in stat;,

stat’ = ifp X else watching X do stat} end end
= ifp X else watching X do R(stat; : S'+) end end
= R(stat : §').
— If stat:S = stat:S+, then R(stat:S+) = ifp X else watching X do R(stat,:5+)

end end. By correctness and by the hypothesis that stat stops, R(stat;:5+) has a
unique transition

R(stat;:S+)

R /
EE 15 stat;,

where S’ is a non-empty stopset that contains only stops in stat;. By induction,
stat] = R(stat;:S’) o
and S’ contains stops in stat}. By (IR10) and (IR9) (X & E) we have

R(stat:S+) = ifp X else watching X do R(stat;:5+) end end
» ifp X else watching X do stat] end end = stat'.

E, E' 1,8
Then
stat’ = ifp X else watching X do R(stat;:S’) end end = R(stat:S’).

Theorem 2. Let P be a correct program and stat be its body. Then any
derivation stat’ of stat is equal to R(stat:S) for some stopset S and there are only
finitely many derivations.

Proof. We shall use induction on the length of a transition sequence. Let the
derivative stat’ of stat be produced by means of the following sequence:

» stat’.

stat = stat; —— .- —— staty T

If n =0, stat’ = stal = R(stat:) and the result is achieved.
Let stat, = R(stat:S') for some stopset S’. Then

Q/ \
R(stat:S") P B TS, stat’.
By Theorem 1,
stat’ = R(stat:Sy)

and the result is achieved.
The finiteness property is obvious since there are only finitely many possible

stopsets 1n stat.

We can therefore completely replace a program P by its reaction graph con-
sidered as a finite state automaton with derivatives as states.

REFERENCES

1. Manna, Z., A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer — Verlag, 1991.

85

Berry, G., G. Gonthier. The Esterel Synchronous Programming Language: Design,
Semantics, Implementation. ‘
http://www.time-rover.com/reactive.html/islip_ps.gz.

Berry, G., S. Ramesh, R. Shyamasunder. Communicating Reactive Processes.
http://www.time-rover.com/reactive.html.

Halbuachs, N., J-C. Fernansez, A. Bouajjani. An executable temporal logic to express
safety properties and its connection with the language Lustre. Proc. in ISLIP’93,
1993.

Guernic, P., M. Borgne, T. Gauthier, C. Maire. Programming real time applications

‘with Signal. Proc. of the IEEE, 1991.

Plotkin, G. A Structural Approach to Operational Semantics. Technical Report D
AIMI FN-19, University of Aarhus, 1981.

Received November 9, 1998
Revised January 15, 1999

Faculty of Mathematics and Informatics
“St. Kliment Ohridski” University of Sofia
5 James Bourchier Blvd.

BG-1164 Sofia, Bulgaria

E-mail: magda@fmi .uni-sofia.bg

86

