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The paper deals with singularly perturbed differential inclusions with time lag. The
limit behaviour of the solution set when the singular parameter tends to zero is inves-
tigated. The limits of the fast solutions are considered as Radon probability measures.
Then the upper semicontinuity of the solution set with respect to uniform convergence
of the slow motions and to weak probability convergence of the fast motions is exam-
ined.
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1. INTRODUCTION

The paper deals with singularly perturbed differential inclusions with time lag,
having the form
(i(t))EH(tx ), xo= = (1)
Ey(t) y Lty Yt ), 0=¥,Y% =9,
wherez € R*,ye R™,t € Idg[O, 1] and £ > 0 represents the singular perturbation.
Forany z : [-7,1] — R¥ and t € [0, 1] we let z; : [-7,0] — R* be defined by z(s) =
z(t+s), —7 < s <0. Here 7 > 0, H is a set-valued map from I x C([-7, 0], R") x
LY([-7,0],R™) into R**™ and ¢ € C([-7,0],R"),¥ € C([-7,0],R™), where C
and LP, 1 < p < oo, are the usual spaces of respectively continuous (equipped with
the uniform norm) and p-integrable functions.
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The limit behavior of the solution set when the small parameter ¢ tends to
zero is investigated here. In the literature there are mainly three ways to deal with

the problem.

1. Reduction. In this case we consider solution set Z(g), € > 0, of (1) consisting
of all AC (absolutely continuous) functions (z,y) satisfying (1) for a.e. t € I. For
¢ = 0% it is natural to mean by Z(0) the set of all pairs (z,y), with z-AC and
y-integrable on I, satisfying for a.e. t € I the “degenerate” inclusion

(ig)) € H(t,z1,41), To=4¢, Yo=1. @)

The connection between the inclusions (1) and (2) has been investigated in many
papers when they are ordinary — [4, 7, 8, 13, 15, 16}. The LSC (lower semicontinu-
ity) is proved first in [15] in the ordinary differential case and afterwards for more
general systems in {5, 6]. The topology considered is C x L%. However, to prove the
USC (upper semicontinuity) in this topology, one has to “expand” in some sense
the set Z(0), but then the LSC will be no longer valid. It is easy to prove USC
in the weaker C x (LZ—weak) topology but under restrictive conditions. It was
done in [4], where the first result concerning “reduction” technique for nonlinear
differential inclusions is published.
Considering more general functional-differential inclusion than (1), namely

£ (1) o
(;}(t)) € H(t,z,y,2,%), To=9, Yo =1, (3)

we proved in [5] under one-sided Lipschitz condition the USC of Z(¢) at € = 0t
in C x (L2—weak) topology. However, generally we do not have LSC. Making
restrictive assumptions concerning the dependence of the right-hand side of (3) on
y, we get in [5, 6] LSC in some partial cases.

2. Averaging. This approach is used mainly for systems in the form
2(t) € F(t,z,y,u(t)), z(0)=2°,

ey(t) € Glz,y, u(t)), y(0)=1". (4)

Here u(t) € U (U — compact subset), and u(:) plays the role of a control.
Fix z and consider the following associated system:

z = const,
y(1) € G(z,y(r),u(7)), y(0)eQCR™, wu(r)elU, 72>0. (5)
For given z and ¢ the Aumann’s integral
; 1 /5
V(t,z,S5,Q)=cl §/ F(t,z,Y(r,z,5,Q),u(r))dr: u(7) € U} ,
0
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where Y(7,2, 5, Q) is the solution set on the interval [0, 5] of (5) and “c]” denotes
the closed hull, possesses a limit

V(t.2) = lim V(t,2,5Q)

when certain conditions are met. Then it can be shown, see, e.g. (10, 11], that the
“slow part”, i.e. the projection of Z(¢) on R", converges in the C'-topology to the
solution set of the averaged inclusion

z(t)eV(t,z), z(0)=z° tel

Some other averaging results are obtained in [9, 12].

In the forthcoming paper {7] we combine the averaging technique with the
notion of generalized solutions (introduced via Radon probability measures over a
compact set K containing all “fast” solutions) and obtain that Z(¢) has a limit at
¢ =0%in C x [L}(I,C(K))]*—weakx topology.

3. Invariant measures. The fundamental theorem of Tikhonov [14] states that
for single-valued H depending on (z, y) instead of (2¢,y;), i.e. H = H(¢, z,y), under
appropriate conditions the unique solution of (1) converges as ¢ — 0 to a special
solution of (2) in C(I,R") x C([4,1], R™) for every 0 < 6 < 1.

[ts recent generalizations for systems of ordinary differential equations and
control systems are done in [1, 2, 17]. They are based on the identification of the
limits of the fast solutions y. with invariant measures of the associated system.
The convergence in y, Is in some statistical sense, while the slow part converges to
a solution of specially defined “reduced” system.

We finish the introduction with some notations and definitions. For A C RMt™
we denote by A the projection of A on R™ and by A the projection of A on R™,

Throughout the paper (-, -) is the scalar product, | - | is the norm. For a set A
denote by o(z, A) := sup(z, y) its support function and by Dy (A, B) the Hausdorff
yEA

distance between the sets A, B.

The multifunction F' from the space X into the space Y is said to be U(pper)
S(emi) C(ontinuous) (L(ower)S(emi)C(ontinuous)) at £ € X when to every open
VD F(z) (V) F(z) # 0) there exists a neighbourhood W 3 z such that V O F(y)

(VN F(y) #0) for y € W. All the concepts non- dlscussed in details in the sequel
can be found in [3] or [18].

2. THE RESULTS

Suppose that:
Al. The map H is compact, convex valued, bounded on the bounded sets.
Also H(-,a, 3) is measurable and H(t,-,-) is USC.
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A2. There exist constants a, b, ¢ > 0 such that for every z € R*, y € R™ and
ae te€l

o(z, {I(t,a,ﬂ)) < a(l+ a0 +118lI2), <« €, BeC(-r0,R™),
o(y, H(t,a,8)) < b(1+ lall) — plB(0)?, a€C([-7,0},R"), B€Q.
Here

Q= {a € C(l=r, 0L R™) : [a(0)] = [lallc = max 1a<s)|} ,

-7<5<0

0, = {ﬁ € C(l=7, 0L R™) : 18(0)] = [1Bllc = max w(sn}

—7<s<0
and a(0) = z,3(0) = v.

First, we prove the following lemma:

Lemma 1. There ezist constants Ny, Ny, L > 0 such that

| llzfllc € Nzy  l¥flle < Ny, [H(E 25, 90) < L
for every (z5,y°) € Z(€),e >0 and t € I.

Proof. Let € > 0 be given and let (z°,y°) € Z(¢). Denote

— . 3 2 — 2
p() = max [s(t+ ) a(t)=_max I+l

From A2 it follows that |
(z°(t),2°(t)) < o(2°(t), H(t, 2, ¥5))
< a(l+jz5 () + ¥ 11E)

‘when |z¢(t)| = ||z$llc :== max |z°(t + s)|, and
_ -7<s<0

W (t),ed* (1)) < oy (t), H(t, 25, 45))
< b1+ |l — mly (O
when |y ()] = llgillc := max |y(t+s)l.

-7<s<0
Obviously, p(-) and g(-) are absolutely continuous functions, hence a.e. differ-

entiable. Then we have the following two possibilities for p(t) and g(t), respectively:

p(t) < 2a(1+p(t)+q(t)) or p(t) <0,
eq(t) < 2b(1+4p(t)) — 2uq(t) or ¢(t) <0,

reasoning like in the proof of [5, Lemma 2.1]. It is not difficult to see that p(t) <
u(t), q(t) < v(t), where

i(t) = 2a(l+ut)+o@), u(0)=max{lille. Sl
cit) = 2(1+u(t)) = 2(t), v(0) = Y(0)
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By the first equation u(t) > 0, € I, so b(1 + u(t))/pu is increasing function. Then,
since v(0) < b(1 + u(0))/p, we have v(t) < b(1 + u(t))/u, t € I. Suppose the
opposite, l.e. that there are ¢ty € (0,1) and é > 0 such that v(to) = b(1 + u(to))/p
and v(t) > b(1 + u(t))/p, t € (to,to + 6). Therefore, by the second equation of the
above system, v(t) < 0, t € (to,to + 8), thus v(t) decreases and

v(t) < v(ty) = %(1 + u(tp)) < %(1 + u(t)) for t € (to,to + 96).

This 1s a contradiction.
Now, we get

. b
u(t) < 2a (1 + u(t) + ;(1 + u(t))) = M(1 + u(t)).
where M = 2a(1 + b/p). By virtue of Gronwall inequality one obtains

u(t) < (M + u(o»exp(M) N2,
v(t) < —(1 +u) < — (1 + (M + u(0)) exp(M)) = — (1 + N2).

Remark 1. Obviously, we have that

b

N7 = exp(M)(M +u(0)), Ny = m (1+N;),

where M and u(0) are defined in the proof above. Furthermore, the boundedness
for € = 0 can be easily proven using Gronwall lemma.

Remark 2. We use A2 only to prove Lemma 1, so we could replace A2 by the
requirement of boundedness of all solutions of (1), uniformly ine¢ > 0 and ¢t € I.
Or we could assume A2 only locally — over the closed ball (in R**™) with radius

(N2 + N!‘f)l/2 and centered at zero, which the solutions of (1) could not abandon.

We give a simple example where A2 is satisfied.

Example. Consider the following control system:
l'(t) € i+ Yt + w(t), g = 0,
ey(t) € = —2f(y) _max [y(t+s)|+w(t), v =0,

where w(-) is measurable, w(t) € [-1,1] a.e.in I, f(0) = 0 and f(y) = y/|y|, y # 0.
Then, using the simple inequality c¢d < (c? + d?)/2, we get for o and 8 such that

a(0) =z, B(0) = v:
(2, H(t,a,8)) = (a(0),a(")) + (2(0), B(-)){(0), w(t))
65



o |, 0OF , 1BOF | [wO)

= 2 2 2
< 201+ |a(0)) + |IBIIE),

(y, H(t,o, B)) = (B(0),(-)) — 2(B(0), F(BONIB(O)]) + (B(0), w(t))
< 1+|lallz - 18(0)|* for B € Q.

Thena=2,b=p=1

Theorem 1. Let Al, A2 hold. Suppose in addition
A3. For every r € R*™ o — o° in C([-7,0},R"), and #* — £° in
LY([-7,0], R™)-weak
limsup o (r,H(t, &, 8") < o (r, H(t,a° B°) .

Then the map ¢ — Z(e) is upper semicontinuous at € = 0% in C(I,R") x
(LY(I,R™)-weak).

Proof. Suppose ¢; — 0 and (z*,y*) € Z(¢;) fori = 1,2,... By Lemma 1 all sets

Z(€), € > 0, are contained in a C(I, R")x L' (I, R™)-—bounded set, so it is sufficient
to prove that every cluster point of {(z*,3*)}2; in C(I,R™) x (L'(I,R™)-weak)
belongs to Z(0). We denote where necessary a given sequence and its subsequences
in the same way to simplify the notations. '

Let (z¢,y") and (zi,4i),i = 1,2,..., be subsequences, converging to (z°,3°),
respectively (z¥,4?) in C(I,R™) x(L*(I,R™)-weak). Obviously, z'(-) — z°(:) in
LY (I, R™)-weak.

Let » € R™ be arbitrary. Then by A3 we have

limsup o (r, H(t, zi, ) <o (r,H(t,z!,y))) forae telr

k—oco

and with standard arguments (see [5]) one can show that (2) is fulfilled. O

Remark 3. We note that A3 is satisfied, for example, if for fixed (¢, ) the
map H(t,a, ) has convex graph.

Reformulated Theorem 1 states that if {(z,%°)}e>o0 18 a generalized sequence
of solutions of (1), then it has a subsequence converging in C x (L!-weak) to (z°, y°),
where z° is AC, y° isin L' and

z0(t -
(P9 enatid), 8= 8= (6

forae t€l

If A3 does not hold, we will not be able to claim the above result. But we
will derive a close result considering the “fast” y-parts of Z(¢) as measures over
the compact set K = {y € R™ : |y| < Ny} containing all y-solutions (N, is the
constant found in Lemma 1). :
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To this end let R(K') be the set of all Radon probability measures on K and
define the set of functions :

p:={v:I—-R(K)|v() is measurable}.
If every point y € K is considered as the Dirac measure 8, concentrated. at the
point y (i.e. &,({y}) = 1), we can represent every measurable function y : I — K
as V() = 0y(.), which is an element of p.

Let E be the space of all Caratheodory functions f(-,-) on I x K with values in
R™, i.e. f(-,y) is measurable, f(,-) is continuous and integraly bounded. Then E
is isometrically isomorphic to L'(I, C(K,R™)) (see [18, Theorem 1.5.25]). More-
over, from Dunford-Pettis theorem (18, Theorem IV.1.8], we know that g with the
weak norm topology is isomorphic to the space [L!(I, C(K,R™))]* equipped with
the weak* topology. Then v — v for v', v € pand i = 1,2,... if and only if

/I(./K f(t, y)v'(1) (dy))dt"“’/l(/x f(t,y)v(t) (dy))dt for every f € E,

which means that y*(-) € L'(I,R™) converges to v in (L'(I,C(K, Rm))‘-Weak* if
and only if

1—00

for every f € E.

tim [ (o) ae= [ ([ smwio) @)

Theorem 2. Let Al and A2 be fulfilled and let {(z°,y°)}e>0 be a gener-
alized sequence of solutions of (1) with € — 0. Then there exists a subsequence
{(z¢,¥°)}e>0 (denoted in the same way) such that z° — 2% in C and y* — v in the
weak® topology of [L(I,C(K))]* as € — 0.

Proof. Suppose ¢ — 0 and (z¢,y°) € Z(¢) for every € > 0. The net {z(-)}c>0is
C(I1,R") precompact due to Lemma 1 and to Arzela-Ascoli theorem. We know that
{v°()}eso 1s [LY(I,C(K, R™))]* —weak* precompact {18, Theorem IV.2.1}. There-
fore passing to subsequences if necessary, (z€, y°) converges to (z°,v) in considered
topology, where v € p. 0

Obviously we have z{ — z? in C([-7, 0}, R") and 3§ — v; in L'([-7,0], L) for
every t € I, where £ = [L}(I,C(K,R™))]* ~weak™. But more important question
is to define an inclusion corresponding to (6) which is satisfied by z° and v (like in
(7], where ordinary differential inclusions are considered). In some partial cases it
1s possible. ’

Consider first a functional-differential inclusion with constant time lag 7 > 0:

(20) e Hsuste=m) 0=, v(s) = ¥(e), s€[-n0 (1)

Theorem 3. Suppose the following s true:

A1l’. The map H is compact, convex valued, bounded on the bounded sets.
Also H is almost continuous, i.e. for every é > 0 there exists I; C I with measure
greater than 1 — 8 such that H is continuous on I5 x R™+?"
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A2'. There exist constants a, b, p > 0 such that forevery z € R" andy,v € R™
o(z, H(t,a,9,0)) < a(l+]a(0) +]y* + vf*), a€Q,
o(y, H(t,a,y,0)) < b(1+|lelle) = plyl®, a€C([-7,0],R"),

for a.e. t € I. Here a(0) = z, v(t) = y(t — 7).

Then to every generalized sequence {(z°,y°)}e>o of solutions of (1) there exists
a subsequence (denoted in the same way) such that ¢ — z° and y* — v in the same

topologies as in Theorem 2 and
-0 :
(F)e [ Heatouw@), = ®)
KxK
where pu(t) is the measure product v(t) @ v(t — 7). Here v(s) = by(y), s € [—T,0].

Proof. Substitute z(t) = (y(t), y(t — 7)). Then like in the proof of Theorem 2
we have ¢; — 0 and (z',y') € Z(&;) for every i = 1,2,... such that (passing to
subsequences if necessary) (z*, z') converges to (z°, u) in considered topologies and
(2'(-), €9 (+)) converges to (2o(-),0) in L' (1, R*+™)-weak.

Let » € R"t™ be arbitrary and let [s,t] C I. For every i one has

(r, (2"(t) = 2'(s), ey () — v'(s)) < / o(r, H(r, (), 2'(7))) dr.

Due to [18, Theorem IV.2.9], -

lim t’a(r,H(r,zi(r),zi(r)))dr=/:{/ a(r,H(r,:co(T),z))yo(r)(dz)}dT.

s KxK
Combining the above two inequalities, we obtain
t ' ,
(r,(2°(t) — 2°(5), 0)) < / { / o(r, H(r,2"(r), 2))po(7) (d2) } dr  (9)
) KxK

for evef)'/ t > s € I. Consequently, zo(0) = z° and z°, p satisfy (8). O
Take now a functional-differential inclusion with two variable time lags:
H(t, ze,y, y(t — hi(t)), y(t — ha(1))),
(2460) € Ht, e vu(e = ba(0). (e = ()
ro =@, y(s)=1y(s), se€[-70], (10)

where hi(t), ho(t) € [0,7] and hy, hy are Borel measurable functions on I. The
measurability of h;(-) is required to assure the existence of solutions of (10). We
can formulate the same result for (10) like in Theorem 3.

Theorem 4. Suppose that the following conditions are satisfied:
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A1”. The map H is compact, convex valued, bounded on the bounded sets.
Also H 1s almost continuous, i.e. for every § > 0 there exists Is C I with measure
greater than 1 — & such that H is continuous on Is x R™+3",

A2". There exist constants a, b, u > 0 such that for every t € I, (z(t),y(t)) €

Rn+m

o(z(t), H(t, z,y, y(t — hi(t)), y(t — ha(1))))

< a(l+ Jz(t)]” + |y(t)]* + |yt — ha())* + ly(t — ha(2))]?),
a(y(t), H(t, e, y, y(t — ha(t)), y(t — ha(t))))

< b(1+ z(t)* + Jy(t = ha(2))1* + [yt — ha(1)]?) — ply(t)].

A3'. If infies{h1(2), ha(t)} = 0, then p > 2b.

Then to every generalized sequence {(z°,y°)}e>0 of solutions of (10) there ezists a
subsequence (denoted in the same way) such that & — z° and y* — v in the same
topologies as in Theorem 2 and

(éoo(t)) € /H(t,z?,z)u(t)(dz), To = @, | (11)
K

where W(t) = V() @ {1 = ks (1)) @ (t = ha(8) and v(s) = 8yqey, s € [-7,0].

Proof. Using A2"” and A3’, we can prove a result analogous to Lemma 1, see,
e.g. [6]. Then substituting z(t) = (y(t), y(t — h1(t)), y(t — h2(t))) again, like in the
previous proof, we have ¢; — 0 and (2%, ") € Z(&;), i = 1,2,... such that (passing
to subsequences if necessary) (z*,z') converges to (z°, u) in considered topologies
and (z'(-), &' () converges to (zo(+),0) in L'(I, R**™)-weak.

Now, we will show that (z°, u) satisfies (11). The proof is very similar to the
previous one — we just have to prove (9) (with K in the limits of the second
integral instead of K x K') for any » € R**™ and [s,t] C I.

Since H is almost continuous, we have by [18, Theorem 1V.2.9]

lim /Sl o(r; H'(r, z'(1), 2 (7)) dr < /:{/Ks o(r, H(t,zo(T), 2)) po(7) (dz)} dr.

1 =00

Consequently,

(0 - 260 < [ { [ ot Hr (), o) (d) } dr

for every 7 € R®*™ and t > s € I, which finishes the proof. [J

Obviously, we are able to extend the above result for inclusions with finite
number of delays

(52((?)) € H(t,ze,y, y(t—h1(2)), ..., y(t—he(2))), zo = 9, y(s) = ¥(s),s € [-7,0],
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where h;(t) € [0,7], 7 =1,...,k, and h; are Borel measurable functions on /. But
proving the corresponding theorem for the general case (1) is an open question.
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