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A new variational procedure for evaluating the effective conductivity of a dilute random
dispersion of spheres is proposed. The classical variational principles are employed, in
which a class of trial fields in the form of suitably truncated factorial series is intro-
duced. In general, this class leads to a rigorous formula for the effective conductivity,
which is correct to the order “square of sphere fraction,” and makes use of the distur-
bance to the temperature field in an unbounded matrix, generated by two spherical
inhomogeneities. The basic idea in the present study consists in replacing this “two-
sphere” field by a superposition of disturbances, generated by the same two spheres,
but considered as single already, together with the disturbance due to another single
sphere, centered between them and radially inhomogeneous. In this way new varia-
tional bounds on the effective conductivity are derived and discussed in more detail
for a special choice of the middle sphere’s properties. The obtained bounds improve,
in particular, on the known three-point bounds on the effective conductivity of the
dispersion.
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ductivity
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1. INTRODUCTION

Consider a statistically homogeneous dispersion of equi-sized nonoverlapping
spheres of conductivity s and radii @, immersed at random into a matrix of con-
ductivity km. In the heat conductivity context and absence of body sources, the
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temperature field, #(x), in the dispersion is governed by the equations
Voq(x) =0, a(x)=sx)Vix), (VOx)=G, (1.1)

where k(x) is the random conductivity field of the medium, q(x) — the heat flux
vector, G is the prescribed macroscopic value of the temperature gradient, and the
brackets (-) denote statistical averaging [1]. Since the field x(x) takes the values
Ky or Kk depending on whether x lies in a sphere or in the matrix respectively, it
allows the representation

k(%) = (x) + [A] / h(x — y)¥'(y) &%, (1.2)

where [k] = K — Km, h(x) is the characteristic function of a single sphere of radius
a located at the origin, and ¢’(x) is the fluctuating part of the random density field

¢(X) = Zé(x - xj))

generated by the random field {x;} of sphere’s centers [2]. The integrals hereafter
are over the whole R? if the integration domain is not explicitly indicated.

The solution of Eq. (1.1) is understood in a statistical sense, so that one is
to evaluate all multipoint moments (correlation functions) of #(x) and the joint
moments of x(x) and 6(x), see, e.g., [1]. Let ¢ be the volume fraction of the
spheres, then n = ¢/V, is their number density. As discussed in [3-5], the solution
6(x) of the random problem (1.1), asymptotically valid to the order ¢?, can be
found in the form of truncated functional series:

o) = G x+ [Ti(x - )DL d'y |
(1.3)
+[ [T =y x - v DO 1,y 91 oy

where T} and T, are certain non-random kernels and the fields

D=1, DP(y)=v'(y), DP(y1,¥2) = ¥(y1)W(y2) - 6(y1 — y2)]
(1.4)

~ngo(y1 — .Vz)[D,(,,I) (y1)+ D,(pl)(yz)] —n’go(y1 — y2)

are the first three terms in the c?-orthogonal system, formed as a result of the
appropriate virial orthogonalization, see again [3-5] for details and discussion. In
Eq. (1.4) go(r) is the leading part of the well-known radial distribution function
g(r) = fao(r)/n? for the dispersion in the dilute case n — 0, i.e. g(r) = go(r)+O(n);
f2(r) denotes the two-point probability density for the set of sphere centers and

r= l}'1 -yl
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The identification of the kernels 7} and T3 is performed in [4] and [5] by means
of a procedure, proposed by Christov and Markov [6]. It consists in inserting the
truncated series (1.3) into the random equation (1.1), multiplying the result by the
fields Dg’ ), p = 0,1,2, and averaging the results. In this way a certain system of
integro-differential equations for the needed kernels of the truncated series can be
straightforwardly derived. The solution is analytically obtained in [4] and hence the
~ full statistical solution of the problem (1.1), asymptotically correct to the order ¢2,
is known. In particular, this solution allows one to derive the effective conductivity
k* of the dispersion, to the same order ¢?, through evaluating the one-point moment

(k(x)VO(x)) = k" (VOI(x)) = k" G.

As a result, the renormalized c¢2-formula of Jeffrey [7] for the effective conductivity
of the dispersion was rederived, but with rigorous justification of the integration
mode in the appropriate conditionally convergent integrals.

* As shown in [8], the same result is obtained when the truncated series (1.3)
are employed as trial fields in the classical variational principle, corresponding to
the problem (1.1):

Walo()] = (k(0)|VO(x)[*) — min, (V6(x)) =G, (1.5)
min W4 = k*G? |, see, e.g., [1]. Moreover, the leading parts in the virial expansions
Ti(x) = Ti(x;n) =Ty o(x) + 11 (x)n + - -, (1.6)

Tr(x,y) = Tao(x,y;n) = Too(x,y) + T2 (x,y)n+ -+~ (1.7)

of the optimal kernels 77 and T3 suffice to determine the effective conductivity x*
to the order ¢?. In this way the equations for the virial coefficients T} o and T3 o,
already found in [4], have been rederived. It turned out that 7} o(x) coincides with
the disturbance T(1)(x) to the temperature field G - x in an unbounded matrix,
introduced by a single spherical inhomogeneity, located at the origin:

Ty.o(x) = TH(x) = 36G - Vip(x), (1.8)

where @(x) = p(x,a) = h* 21—1|—; is the Newtonian potential for the single sphere
7|x

_ of the radius a and 8 = [k]/(ks + 2km). For the coefficient T3¢ one has
2Ty 0(x,x — z) = TP (x;2) - T (x) — TW(x - 2), (1.9)

where T(?)(x;z) is the disturbance to the temperature field G -x in an unbounded
matrix of conductivity km,, generated by a pair of spherical inhomogeneities of
conductivity ky, centered at the origin and at the point z, |z] > 2a.
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It is important to point out that the variational derivation, involving the trun-
cated series (1.3), leads to a c?-formula for the effective conductivity that contains
absolutely convergent integrals solely. Namely, let

*

=1430c+ac®+ -, az =38%+d),, (1.10)
m

be the virial expansion of &*. For the c¢?-deviation a}.. from the well-known

Maxwell formula one has

[K.] 1

/ 2 __
a2~G V2

h(x) d°x /go(y)V:T“)(x—y)'VxT‘Z)(X;y)day, (1.11)

where V, = 2ma®. (See also {9,10], where the Hashin-Shtrikman variational princi-
ple was employed to derive the same formula (1.11).)

In order to calculate the c®-coefficient as,, one needs the field T(3)(x;z). The
latter can be explicitly found, e.g. by means of the method of twin expansions. The
calculations, based on this solution and the formula (1.11), however, will be not
simpler than the ones in the well-known works [7] and [11], based on the “renormal-
ized” formula of Jeffrey [7]. That is why our aim here is to look for an appropriate
approximation for the field 7(?)(x; z) which, when combined with (1.9), will pro-
duce a class of trial field in the form (1.3). However, this class will be narrower
than (1.3) and as a result certain variational bounds on a3, will follow only.

Consider first the simplest case when the kernel 77 in (1.3) is adjustable and

the kernel 75 vanishes: 73 = 0, 1.e.
8(x) =G -x+ /T1 (x — y)D!(pl)(y) d3y. (1.12)

This class has been introduced and discussed in detail by Markov in [12], where
it is shown that minimizing the functional W4[0(-)] over the class (1.12) gives
the best three-point upper bound &(*) on the effective conductivity «*, i.e. the
most restrictive one which uses three-point statistical information for the medium. '
According to (1.9), this bound corresponds to the approximation

T(z)(x;z) ~ TM(x) + T (x - z) (1.13)

of the disturbance 7(?)(x;z). We will come back to the three-point bounds again
in Section 2.1.

Obviously, the approximation (1.13) is appropriate when the two spheres are
far away, i.e. |z| 3> 2a. Here we propose an improvement of this approximation that
consists in adding the disturbance T(!)(x —z/2) to the adjustable temperature field
®(z) - x, generated by a single radial inhomogeneous sphere, centered between two
spheres, i.e. at the point z/2. Thus, we assume the approximation

- T®(x;z) ~ T (x ~ g) +TW(x) + TW(x - 2). (1.14.)
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This idea is suggested by some successful models in the theory of dispersions, see,
e.g., [13] and [14], where, in fact, the interactions of the spheres are taken into ac-
count by introducing a single radial inhomogeneous sphere, immersed into effective
medium. According to (1.9), the approximation (1.14) leads to the following choice
of the kernel 75 in (1.3):

To(x ~y1,x—y2) = %Tm (x-— yl;yz) : (1.15)

In Section 2.2 a new variational procedure will be considered. It is based on

the possibility to vary both the field ®(z) and the conductivity distribution of the

middle sphere. Its counterpart that yields lower bounds will be discussed in Section

2.3. Finally, in Section 3 a simple case will be considered, when the middle sphere

is homogeneous and encompasses the other two spheres. This case allows us to

obtain quite easily explicit results, which will be then compared with some of the
known variational bounds.

2. THE VARIATIONAL PROCEDURE

The disturbance T{))(x — z/2) to the temperature field #(z) - x, generated by
a single radial inhomogeneous sphere, centered at the point z/2, has the form

T (x - %) = #(z) V1 (x - ;z) (2.1)
where f(w,z) = f(Jw|,2) is a function, specified by the radial distribution of the
conductivity coefficient of the sphere. The dependence of f (w,2z) on its second ar-
gument z indicates explicitly the possibility that the latter distribution is arbitrary
for the moment. Hereafter the differentiation of the function f(w,z) is with respect
to its first argument, V = V.

According to (1.15) and (2.1), we should employ the classical variation principle
(1.5) over the class of trial field (1.3), provided the kernel T3 has the form

To(x,x ~2) = %’di(z) -Vf (x— %,z) ,

1.e.

1 +
To(x ~y1,x—y2) = 54‘()'2 -y1)-Vf (x- A 5 yz,yz —Y1) : (2.2)

Here the kernel 7)(y), the functions @ and f are adjustable. To this end it is ap-
propriate to remind briefly the variational procedure, connected with the derivation
of the so-called optimal three-point bounds.
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2.1. THE THREE-POINT BOUNDS FOR THE DISPERSION

Making use of Eq. (1.2) and the formulae for the moments of the random den-

sity field ¥(x), we find an expression for the restriction Wf‘l)[Tl (-)] of the functional
W4 over the class (1.12), see [12] for details. The optimal kernel 73(x), i.e. the

solution of the Euler-Lagrange equation for the functional ng), is looked for in
the virial form (1.6). This representation of T;(x) generates the appropriate virial

expansion of the restriction Wf‘l)[Tl(-)], namely,
W) = (1) G2+ WO o(Oln+ WEDITo(), T + -+, (23)
see [15, Eqs. (4.2)-(4.5)]. An analysis of the coefficient Wf‘“) shows that
sW DT 0()] = 0 <= T 0(x) = TW(x), (2.4)

where T(1)(x) is the disturbance (1.8), generated by a single spherical inhomogene-
ity. It turns out, however, that at T o(x) = T()(x) the virial coefficient Wﬁl’z)
does not depend on T} ;(x), i.e.

wiBDTM), T, ()] = WoATM()] = 362km (1 + L—'%mz) ViG?,  (25)

where

ma = maloo()] = 2 [ 7o wOa)dA, A=y, (26)
2

is a statistical parameter for the dispersion, introduced in [12]. Hence, according
to Eq. (2.3), we have for the optimal upper tree-point bound x(3)

kG2 < KOG? = (v) G*+ %Wﬁ"”m”cnﬁ V%-Wi"z’m”(-n& +o(c?). (2.7)

On the base of this analysis it is shown in [15] that the Beran’s bounds [16] are ¢2-

optimal in the above explained sense. Egs. (2.5) and (2.7) yield straightforwardly
the following estimate for the c%-coefficient @, in the virial expansion (1.10) of s~
(see [12, 15]) : N
ax < a¥., ab =35’ (1 + L'ﬂmg) . (2.8)
Km
Let us note that the formula (2.8) for the upper bound a3, can be obtained
also if we insert (1.13) into (1.11), taking into account (1.10) and the identities

/h(x) dax/go(y)VT(l)(x —y) - vT)(x) d®x = 0, (2.9a)
/ h(x) d*x / go(¥)|IVTD(x - y)? Py = 38V, my. (2.9b)
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It 1s interesting to point out that inserting (1.13) into the “renormalized” formula
of Jeffrey (7] leads, however, to the Maxwell c?-value as, = 3% that corresponds
to the Hashin-Shtrikman bound.

2.2. NEW UPPER BOUND FOR THE DISPERSION

Using the formulae for the moments of the fields Dfl,l) and D,Ef), see [4, Egs.

(3.4)}], the restriction Wf) [T1(:), T2(:, -)] of the functional W4 over the general class
(1.3) becomes

WP T(), T, )] = WO + WP 1), Ta(-, ), (2.10)

where

WO [1,(), To(, )] = 20%km [ / go(¥1 — ¥2) [VaTo(x — y1,% — y2)[2 dy1 d°;

+ 2712["]/_/90()’1 — y2)[h(x = y1) + h(x — y2)] |V T2(x — y1,%x — y2)|* d®y1 &y

+ 2n2[n]//go(y1 —y2) [h(x —y1)VTi(x —y2) + h(x - y2)VTi(x — Y1)]

ViTa(x — y1,x—y2) Py, &Pys + o(n2), (2.11)

see [8, Section 3]; here we have used the fact that the kernel 73(y;,y2) is a sym-
metric function of its arguments.

Let us consider now the narrower class (1.3) when the kernel 73 has
the form (2.2). Then, according to Egs. (2.3) and (2.10), for the restriction

W,(,z) [T1(-), ®(-), f(-, -)] of the functional W, over this class we get

W Ty(), (), £, )] = (£) G2+ WSV [T10()) n

(2.12)
+WEDT (), T (), 8(), f(-, ) n® + o(n?),
where
220 ) Ty (), B(), F(-, -
WD (T10(), T (), (), £, )] (.13
= WD Ty 0(), Toa (O + WP [T10(), 80), £, )],
WD (13,00, #0), S, = W50 [T,,o(.), F20-VIC0. (@13)

Here W“(tl’l) and W,(il'”vare the virial coefficients from Eq. (2.3) for which, let us

recall, Egs. (2.4) and (2.5) hold. Hence, the minimization of the functional Wf,z) s
reduced to that of the functional

WOB(), (-, )] = W [T(l)(.),Q(.),f(., .)] , (2.14)
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Taking into account Egs. (1.8) and (2.13b), after an appropriate change of integrand
variables in (2.11), we find the following form of functional (2.14):

W B(), £(, )]
_ % / / g0(2) [nm +2[x]h (w - -;-)] 8(z) - VYV f(w,z)2d3wd®z  (2.15)

+68[x]|G -//go(z)h (w - g) VVe (w + g) -VVf(w,2) ®(z)d’wd’z .
The minimizing functions @ and f satisfy the Euler-Lagrange equations
saW =0, §WP=0. (2.16)
The first of these equations yields straightforwardly
&(z) / [K.m + 2[k]h (w - -g-)] VVf(w,z) - VVf(w,z)d*w
(2.17)
— : _z Z) . 3
= —60[x]G /h (w 2) vV (w+ 2) VVf(w,2) d*w

at |z| > 2a, whose solution &(z) can be easily found for a given function f. Taking
into account that f(w,z) = f(|w|,z), the second equation in (2.16) is recast as

3:@0;() [ {im (850wl 2) 5+ 2] (3 (w = 2) fsiwl, ) | } s
e (2.18)
= — 6,8[::]G,-<I>j‘(z) / (h (w - ;) P ik (w + g-)),kj dS,

n!w

at |z| > 2a, where Q,,, is the sphere |w| = 1.

Eqgs. (2.17) and (2.18) form a very complicated system of integro-differential
equations for the optimal functions @ and f. That is why we shall consider a
simpler procedure in which the function f is fixed.

Making use of Eq. (2.17), the minimum value of the functional W( ! can be
recast now in the form in which the solution #(z) of this equation enters linearly:

min W' (8(), £(-,-)
(2.19)

= 30[x]G - //go(z)h w — —) VVe (w + = ) -VVf(w,z) &(z)dwd’z.
With the notations

R()_V/[Hz['“] ( g)IVVf(vg,z)-VVf(w,z)d3w, (2.20a)
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J(z) = Via/h (w - —;-) VVe (w + —;-) VUV f(w,z) d®w, (2.20b)

Egs. (2.17) and (2.19) can be written in the form
B() R(s) = ~60 G J(a),
min W @), £(,)] = 38VLG - [ 90(2) T(2) - #(2) %5
Thus the solution of Eq. (2.17) is
&(z) = _GﬂI[:_,,],G - Jz)- R (z) (2.21)

and the minimum value of the functional Wf” 1S

—~ 2
min WOt (), £(, )] = — 1867 [":] g 40(2)T(z) - R™Y(2) - T(z) Pz - G .
| (2.22)
Hence, according to Egs. (2.4), (2.5), (2.7), (2.12)-(2.14), we obtain the fol-

lowing upper bound on the effective conductivity «*:

K,.G2 S ICth, K,th — (IC) G2 + ‘_i—W,(il,l)[T(l)()]c
(2.23)

1

2
V2 {*“‘(1 2)[T(l)( )] + min W( )7} 2 + 0(62) — K(3) 4+ — V min W( i 2 + 0(62)

In turn, Egs. (2.5), (2.22) and (2.23) yield straightforwardly an upper bound for
the c2-coefficient ag, in the virial expansion (1.10) of ", namely,

2
asx < ayl, a'{l = 342 (l e sz - (:[cﬂ) Fr'zg) , (2.24)

m

where
i = m3loo(), S ), 0l = o [0@) u[T0) R @) T@)] &' (229

is a new statistical parameter for the dispersion, o = k;/km,. This parameter
depends not only on the leading part go(r) of the radial distribution function g,
but on the given function f(w,2) and on the ratio a for the dispersion as well, see
Eqgs. (2.20).
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2.3. ON THE LOWER BOUNDS FOR THE DISPERSION

In order to obtain a similar lower bound on x*, we shall employ the classical
dual variational principle for the problem (1.1), formulated with respect to the heat
flux q(x) = V x U(x),

WalU() = (kx)IV x Ux)[P) — min, (a(x))=Q,  (2.26)

minWg = k*Q? k* = 1/k*. The compliance field k(x) = 1/k(x) has the form
(1.2), 1.e.

k(x) = (k) + [k]/h(x -y (y)d%y, [k]=ks—~kn. (2.27)

Similarly to the above-performed analysis, consider the functional Wg over the
class of trial field

U(x) = %Q X X +/Sl(x —y)D{(y) &%
(2.28)

+//Sz(x — y1,x = y2) D (y1,y2) Py d®y2

— the counterpart of the class (1.3). Similarly, if the kernels S; and S, are ar-
bitrary adjustable functions, the class (2.28) leads to the exact c2-value of the
effective compliance k*, as it was the case with the effective conductivity x*. For

the restriction Wéz) [S1(*), S2(-, )] of the functional Wy over this class one has
Wy [810),82(- )] = W [S1()]+ Wg [810), 82(, )], (2.29)
where Wg){Sl( -)] is the restriction of Wp over the class
U(x) = -;—Q X X -l-/Sl(x - y)Df;)(y) d’y (2.30)

and

WP 810,82, )] = 20k //go(yl —¥2) Ve X Sa(x — y1,x — y2)[* &°y1 d°y,

+2n2[k]//g°(yl -yz)[h(x-Y1)+h(x—Y2)] [Vz X Sa(x —y1,x—y2)|* &y, &%y,

+2"2[k]//90()'1 - }'2)["(" ~y1)V x Si(x —y2) + h(x — y2)V x S;(x ‘Yl)]

-V X Sa(x — y1,%X — ¥3) d®y1 d®yy + o(n?). (2.31)

The class (2.30) is the counterpart of (1.12) and leads to the c?-optimal three-
point lower bound 1/k®) on the effective conductivity x*, see [12]. The solution of

the Euler-Lagrange equation 6 Wg) [S1(-)] = 0 now has the form
S1(x) = SM(x) + 0(e),
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where q(1)(x) = V x S()(x) is the disturbance to the constant heat flux Q in an
unbounded matrix, introduced by a single spherical inhomogeneity, located at the
origin:

qV(x) = 38Q-[VVep(x) + h(x)I], ie SU(x)=-38Q x Vp(x). (2.32)

Then
B < kD, k3Q? = minWSV[S,()] = WHSD()] + ofc?)
(2.33)

=km {1 — 3f8c + 3ﬁ2 (2 -+ IE—k]'m2) c2} Q2 + 0(62),

where m; is the statistical parameter (2.6). In virtue of these relations, the optimal
three-point lower bounds for the c2-coefficient @y, in the virial expansion (1.10) of
k* are straightforwardly obtained (see [12, 15]):

K
ah, < age, ah, = 367 (1 + %—]mz) . (2.34)
f
Egs. (2.29) and (2.31) are the counterparts of Egs. (2.10) and (2.11) respec-
tively. A fully similar analysis shows in turn that the leading part S, of the
optimal kernel Sy, Sa2(x,y) = S2,0(x,y) + O(c), has now the form

2S5 0(x,x — 2) = S(z)(x;z) - S(I)(x) — S(l)(x - z), (2.35)

where q?(x;2z) = V, x S()(x;2) is the disturbance to the constant heat flux
Q in an unbounded matrix of conductivity &, generated by a pair of spherical
inhomogeneities of conductivity &y, centered at the origin and at the point z.

In order to improve on the optimal lower bound (2.34), similarly to Egs. (1.8),
(2.1)-(2.3) for the upper one and (2.32), we can make the following choice of the
kernel S, in (2.28):

Sy(x,x —2z) = %Q(z) x Vf (x - g,z) , | (2.36a)

where the functions @ and f can be again treated as adjustable. Let us note that

now the field

d2(x,x — 2) = 2V x Sa(x,x — 2)
(2.36b)

z z
= —P(z) - [VVf (x— —2-,z) - Af (x— 5,2)1} ,

in general, is not the disturbance to a certain heat flux in an unbounded matrix,

introduced by a single radial inhomogeneous sphere, centered at the point z/2.

A simple check shows, however, that for a homogeneous middle sphere the field

do(x, x — z) is indeed such a disturbance, see Eqs. (2.32) and (2.36a). An example

of this kind will be considered in Section 3.
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The further analysis is fully similar to the one, already performed in Section
2.2. That i1s way we shall present the basic results only. The explicit form of the
functional

Wgz)t (@), f(-,)] = ;,l—zWé” [S(I)(-), %45(.) -V f(-, .)] (2.37)

is obtained straightforwardly by means of Egs. (2.29), (2.31), (2.32) and (2.36); it
is of the same form (2.15), provided we replace & by k, G by Q, VV¢ by VVe+hl
and VVf by —(VVf - A fI).

With the notations

R(z) = Vi/[l — 2[—'51h (w - ;)] (VVf(w,2) -~ Af(w,2z)I]

Ky
(2.38a)
(VVf(w,2) — Af(w,2)I] d®w
1 z z z
I(z) = -V;/h (w— §) {Vch (w+§,z) +h(w+ 5) I]
| (2.38b)
[VVf(w,z) — Af(w,2)I] d*w
the Euler-Lagrange equation 6¢/VI71(32)? = 0 reads
3(2) - R(s) = 601 Q - S(s)
whose solution is
®(z) = 613[ lq s R"l( ) (2.39)

Then the minimum value of the functional ng 1s

2
min W5 (@), (-, ) = ~ 1871

VaQ - /go(z)%‘(z) R (2) X(2)d%z- Q.

(2.40)
According to Egs. (2.29), (2.33), (2.37) and (2.40), an upper bound k! on the
effective compliance k£* immediately follows

Q% < kTQz—k(3)+ 2 mmW( )'c2+o( )

2
= km {1—3ﬂc+3ﬂ2( ’[c} z—g]- ﬁzg) c2}Q2+o(c2).
Here

| my = fy{go(-), £, ), o] = %/go(z)tr[%(z)-ﬁ'l(z)-i‘s‘(z)] dz  (241)
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is the counterpart of the statistical parameter m}, see (2.25). In virtue of these
relations we obtain straightforwardly the following lower bound for the ¢2-coefficient
azx in the virial expansion (1.10) of £*:

2
ay < azk, ag = 36 (1 + %]mg . (L—“f]) ﬁzg) . (2.42)
Let us note that the bounds (2.24) and (2.42) are five-point bounds in the
sense that they require knowledge of the first £-point moments for the random
density field ¥(x) up to £ = 5, see Egs. (1.2)-(1.5), (2.26)-(2.28). To get explicitly
the parameters m) and m¥ for a given function f, an analytical evaluation of the
integrals (2.20) and (2.38) is needed however.

3. A SIMPLE EXAMPLE

Let us choose now the function f(w,z) in Eqgs. (2.2) and (2.36) in the form

flw,z) =¢ (W, % + A)

at |z| > 2a, 1.e.
z _ z |z
f(x——§,z)_<p(x—2,2 +A), (3.1)

where A is a scalar parameter, A > a, so that |z|/22 + A > 2a.

According to the foregoing analysis, this choice means that the disturbance
T()(x;z), generated by two spheres centered at the origin and at the point z, is
approximated by the superposition of the disturbances TM(x) and TH(x = 2),
generated by the same two spheres, but considered as singly, and the disturbance
T(1)(x —2/2), generated by a single homogeneous sphere, centered exactly between
them and encompassing the same spheres, see Egs. (1.8), (1.14), (2.1) and (3.1).
At that, let us recall, the middle sphere is immersed into adjustable temperature
field ®(z) that has been varied in order to derive the best ¢?-bounds on the effec-
tive conductivity. Now we shall obtain this bounds as functions of the parameter
s=Afa,s>1. |

After simple change of the integrand variable the fields R(z) and J(z) in (2.20)
are recast as

R(z) = Via/{uzl’-‘f]-h(u)] VVf(g-u,z) -VVf(g-u,z) du,

Km

(3.2)

T(z) = Vi / M)V Ve(z - ) VS (5 ~u2) du.
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Taking into account that VVep(u,z) = —1I at |u| < |z| and the Egs. (3.1) and
(3.2), we get
ERD P IR
R(z) = 5{3 (—2;+s) + 2;; I

J(z) = — —w(z) w(z) = —é—/h(u)VVgo(z —u)d%u

The field w(z) is the same one that appears in the variational procedure of Willis
[17], see [9, 10] also, whose explicit form is

(3.3)

3
w(z) = (lz|) (3ere, — 1), e, =2z/|z. (3.4)

In the same way one obtains for the fields R(z) and I(z) in (2.38) the following

f(?rmu]ae:
R(z) = = {(';J s) 4{{—";]}1, %(z):«gw(z). (3.5)

After simple algebra, based on Egs. (2.25), (2.41), (3.3)-(3.5), we get eventually
the needed parameters m% and mj:

1/2

5
32 (g0 ’
"2 = 32/90 (p) 3(1 + 2sp)® + 16p3[k]/km P
0

(3.6)

1/2
/ 5

ST A0 [ —
M2 =64 [ 907 ) ST+ 2o — 320007k
0

Thus, for the simple choice (3.1) of the function f(w,z), we have obtained
the ¢2-bounds (2.24), (2.42) explicitly. A simple check shows that the integrands
in (3.6) are always positive, and so are the parameters m’ and mj. Then, from
(2.8), (2.24), (2.34) and (2.42), we can conclude that the obtained bounds always
improve on the optimal three-point bounds. Moreover, it is immediately seen that
the parameters m), and m4 are decreasing functions of the parameter s, vanishing
as s — o0o. Therefore the obtained bounds are the best if s = 1, i.e. when the
middle sphere, encompassing the other two ones, touches them. This fact suggests
that the consideration of the case when the middle sphere overlaps the other two
spheres could lead to better results. The calculations in this case, however, are
more complicated. In the limiting case s — oo our bounds coincide with the
optimal three-point bounds.

The behaviour of our bounds is illustrated in the well-stirred case when g(z) = 1
at |z| > 2a, see Table 1. It is seen that the new lower bound (at s = 1) improves
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TABLE 1. Comparison of various bounds on the ¢2-coefficient a; for a well-stirred
dispersion of spheres; the exact values are due to Felderhof et al. [11] and

the value of the parameter m; is ma & 0.14045 [12]

Lower bounds Upper bounds
3 reY 3-point  present Willis exact | present 3-point Willis
(2.34)  (2.42) [9, (7.21)] (2.24) (2.8) (9, (7.21)]
-0.5 0 -00 -0 - 0.588 0.641 0.645 0.659
-0.49 | 0.013 -6.715 -2.934 - 0.617 0.620 0.634
-0.4 0.143 0.076 0.165 - 0.399 0.421 0.422 0.433
-0.3 0.308 0.185 0.194 - 0.236 0.243 0.244 0.250
-0.2 0.500 0.103 0.104 - g.110 0.111 0.112 0.114
-0.1 0.727 0.028 0.028 — 0.029 0.029 0.029 0.029
0 1 0 0 0 0 0 0 0
0.2 1.75 0.127 0.127 0.126 0.130 0.132 0.133 -
0.4 3.00 0.525 0.527 0.529 0.563 0.607 0.615 -
0.6 5.50 1.204 1.211 1.249 1.370 1.686 1.763 -
0.8 13 2.169. 2.185 2.328 2.638 4.437 5.156 -
0.9 28 2.759 2.782 3.016 3.485 8.576 11.645 -
0.99 298 3.352 3.382 3.726 58.705 125.592 -
1.0 o 3.420 3.450 3.811 4.506 00 0o -

considerably on the respective three-point bound when o — 0; a similar improve-
ment takes place for the upper ones at @ — oco. In Table 1 the bound of Willis
[9] is also given. Recall that it improves on the lower three-point bound, but the
upper one is worse.

Finally, we shall note that the proposed approach to derive variational bounds
can be employed on the base of the variational principle of Hashin-Shtrikman. In
this case it can be easily shown, for example, that the bounds of Willis correspond
to the approximation VT'?)(x;z) = VT()(x) 4+ &(z), see [9, 10]. This means that
the bounds of Willis can be treated as the exact HS-counterpart of our bounds,
derived in Section 3. More details will be given elsewhere.

ACKNOWLEDGEMENTS. The support of this work by the Bulgarian Ministry
of Education, Science and Technology under Grant No MM416-94 is gratefully
acknowledged. The author thanks K. Z. Markov for the helpful and stimulating -

discussions.

REFERENCES

1. Beran, M. Statistical continunm theories. John Wiley, New York, 1968.

2. Stratonovich, R. L. Topics in theory of random noises, Vol. 1, Gordon and Breach,
New York, 1967.

3. Markov, K. Z. On the factorial functional series and their application to random
media. SIAM J. Appl. Math., 51, 1991, 172-186.

191



10.

11.

12.
13.
14.

15.

16.

17.

Markov, K. Z. On the heat propagation problem for random dispersions of spheres.
Math. Balkanica (New Series), 3, 1989, 399-417.

. Christov, C. I., K. Z. Markov. Stochastic functional expansion for random media

with perfectly disordered constitution. SIAM J. Appl. Math., 45, 1985, 289-311.
Markov, K. Z., C. I. Christov. On the problem of heat conduction for random

dispersions of spheres allowed to overlap. Math. Models and Methods in Applied

Sciences, 2, 1992, 249-269.

Jeffrey, D. J. Conduction through a random suspension of spheres. Proc. Roy. Soc.
London, A335, 1973, 355-367.

Zvyatkov, K. D. Variational principles and the ¢?>-formula for the effective conduc-
tivity of a random dispersion. In: Continuum Models and Discrete Systems, ed. K.
Z. Markov, World Sci., 1996, 324-331.

Markov, K. Z., K. D. Zvyatkov. Functional series and Hashin-Shtrikman’s type
bounds on the effective conductivity of random media. Europ. J. Appl. Math., 6,
1995, 611-629.

Markov, K. Z., K. D. Zvyatkov. Functional series and Hashin-Shtrikman’s type
bounds on the effective properties of random media. In: Advances in Mathematical
Modeling of Composite Materials, ed. K. Z. Markov, World Sci., 1994, 59-106.
Felderhof, B. U., G. W. Ford, E. G. D. Cohen. Two-particle cluster integral in the
expansion of the dielectric constant. J. Stat. Phys., 28, 1982, 1649-1672.

Markov, K. Z. Application of Volterra-Wiener series for bounding the overall con-

ductivity of heterogeneous media. I. General procedure. II. Suspensions of equi-sized
spheres. STAM J. Appl. Math., 47, 1987, 831-850, 851-870.

Hashin, Z. Assessment of the self-consistent approximation. J. Composite Materials,
2, 1968, 284-300.

Acrivos, A., E. Chang. A model for estimating transport quantities in two-phase
materials. Phys. Fluids, 29, 1986, 3—-4.

Markov, K. Z., K. D. Zvyatkov. Optimal third-order bounds on the effective proper-
ties of some composite media, and related problems. Advances in Mechanics ( War-
saw), 14, No 4, 1991, 3-46.

Beran, M. Use of a variational approach to determine bounds for the effective per-
mittivity of a random medium. Nuovo Cimento, 38, 1965, 771-782.

Willis, J. R. Variational principles and bounds for the overall properties of com-
posites. In: Continuum Models and Discrete Systems, ed. J. Provan, University of
Waterloo Press, Ontario, 1978, 185-215.

Received February 19, 1998

Faculty of Mathematics and Informatics,
“K. Preslavski” University of Shumen,
BG-9700 Shumen, Bulgaria

E-mail: zvjatkov@uni-shoumen.bg

192



