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In this paper, we consider a mathematical model of calcium dynamics inside the muscle
cell, proposed by Williams. We make a qualitative study of the model solutions. In

particular, we study the existence and stability of equilibrium points of the model with

respect to the model parameters in two limiting cases—when a constant stimulus is
present and when there is no stimulus that triggers muscle activity. Numerical examples

are given for each case, in order to illustrate the analytic results.
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1. INTRODUCTION

A general cross-section of a skeletal muscle can be seen in Figure 1.

The hierarchical structure in the skeletal muscle is described as follows [3]:

• A skeletal muscle is surrounded by fibrous tissue, called epimysium. It serves
as a protection shield and protects the muscle from friction against other
muscles and bones;

• Within the muscle, there is another connective tissue, the perimysium, which
connects muscle fibers into bundles, called fascicles. A large muscle contains
more fibers in each bundle, while a small one contains less;
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Figure 1: Skeletal muscle morphology [1].

• Inside the fascicles there is another connective tissue, which isolates each
fiber, called endomysium;

• The endomysium contains the muscle cells/fibers or myofibers, formed in the
process of myogenesis. Every myofiber can have a different length up to
several centimeters, which is the reason that the muscle cells have multiple
nuclei.

In Figure 2, the structure of a muscle fiber is shown. The membrane of the
muscle cell, called sarcolemma, contains a bunch of tubes called myofibrils—the
contractile units of the cell. Each muscle fiber contains hundreds or thousands of
myofibrils, which are divided into segments called sarcomeres. The sarcomeres are
the basis for muscle contraction theory, known as the sliding filament theory.

Each sarcomere is separated by a border, called a Z-line or a Z-disc. As
in Figure 2, the sarcomere is composed of long fibrous proteins. It contains two
main types of long protein chains, called filaments1—thin, made of actin protein
strands, and thick—composed of myosin protein strands. Muscle contraction hap-
pens, because of thin and thick filaments sliding past each other through complex
biochemical processes, triggered by calcium dynamics inside the muscle cell.

Each muscle cell has the so-called sarcoplasmic reticulum (SR), which is a
membrane-bound network of tubules that wraps the myofibrils. The main func-

1We have marked in bold the crucial terms related to the muscle structure that will be used
throughout the paper.
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Figure 2: A muscle fiber structure [1].

tion of the SR is to store calcium ions.

It has been shown that calcium plays a central role in the process of activation
of a muscle cell. In general, the process that leads to a contraction of a muscle fiber
can be described in the following steps [9]:

1. An impulse travels through the axon of the motor neuron to the axon terminal;

2. At the axon terminal there are voltage-gated calcium channels, which open
due to the action potential and calcium ions diffuse into the terminal;

3. The calcium presence in the axon terminal opens the so-called synaptic vesi-
cles to release a neurotransmitter, called acetylcholine (ACh);

4. The released ACh diffuses, crosses the synaptic cleft and binds to ACh recep-
tors on the motor end plate of the muscle, which contains cation channels.
The cation channels open and sodium ions enter the muscle fiber, causing
potassium ions to exit the muscle fiber;

5. The input flux of the sodium ions changes the membrane potential, causing
depolarization or the so-called end plate potential (EPP). Once the membrane
potential reaches a threshold value, an axon potential propagates along the
sarcolemma;

6. Inside the muscle cell, the sarcoplasmic reticulum (SR), which is a network of
tubules that regulates calcium concentration, then releases calcium so that it
can bind to contractile filaments (actin and myosin filaments) in the muscle
fiber. The binding of calcium to the contractile filaments (CFs) causes a shift
in the filaments and allows them to bind to each other and contract. The
latter is the so-called contractile filament theory, developed independently by
two research teams in the 20th century [8].
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Various authors have worked on the mathematical description of calcium dy-
namics inside the muscle cell, see e.g. [5, 6, 7] and the references therein. In the
present work, we consider a mathematical model proposed by Williams in [7]. Here,
we study the local asymptotic behaviour of the model solutions, depending on the
parameter values in the two limiting cases—when a constant stimulus is present
and when there is no stimulus to trigger muscle activity.

The paper is structured as follows. In Section 2, we derive the mathemati-
cal model. The general properties like existence and uniqueness, positivity, and
boundedness of the solutions are shown in Section 3. An analytic study of model’s
dynamics is carried out in Section 4. In particular, existence and local stability
study of the equilibria is derived. Numerical experiments are given in Section 5
to illustrate the analytic results and to further discuss their biological meaning in
Section 6.

2. MATHEMATICAL MODEL

As discussed earlier, when a nerve impulse comes to the muscle, the action
potential results in the release of Ca2+ ions from the SR. Ca2+ ions then flow
into the sarcomere where the CFs are situated. Then, Ca2+ ions start binding
to the receptors in the CFs and as a result, the filaments start sliding, causing
the sarcomere to shorten. When the stimulus is turned off, the Ca2+ ions are
transported back into the SR and the sarcomere relaxes. Having in mind the
aforementioned, one needs to model the dynamics of calcium ions, SR, and CFs, in
order to understand the process of muscle contraction.

For this purpose, we consider a mass action kinetics model, proposed by
Williams [7], further considered by McMillen [6] and used by Meredith in [5]. The
model is based on the principle of mass action kinetics, which assumes that the rate
of a chemical reaction is proportional to the concentration of the reactants. Let us
denote the following:

• c—concentration of free calcium ions;

• ru—concentration of unbound sarcoplasmic reticulum sites;

• rb—concentration of bound sarcoplasmic reticulum sites;

• fu—concentration of unbound CF sites;

• fb—concentration of bound CF sites;

• k1—rate of release of calcium ions from the SR;

• k2—rate of binding of calcium ions to the SR;

• k3—rate of binding of calcium ions to the CFs;
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• k4—rate of release of calcium ions from the CFs.

The flow of calcium is illustrated in Figure 3:

Sarcoplasmic

 Reticulum

Contractile

 Filaments

Stimulus is off

Stimulus is on

Figure 3: Flow of calcium in the muscle cell.

Based on the principle of mass action, the following statements are valid:

1. When the stimulus is on, i.e., when there is an action potential in the muscle
cell, the rate of unbinding of calcium ions from the SR is proportional to the
concentration of calcium-bound SR sites with a rate constant k1;

2. When the stimulus is off, the rate of binding of calcium ions to the SR is
proportional to the product of the concentrations of free calcium ions and
unbound SR calcium-binding sites with a rate constant k2;

3. The rate of binding of calcium ions to the CF sites is proportional to the
product of the concentrations of free calcium ions and unbound filament sites
with a rate constant k3.

Further, because of empirical evidence, the rate of release of calcium ions from the
CFs is chosen to be proportional to the product of concentration of bound and
unbound filament sites with a rate constant k4. This is meant to account for some
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cooperativity between the bound and unbound CF sites in the process of calcium
release.

In mathematical terms, the above assumptions result in the following system
of five ODEs:

dc

dt
= k1rb − k2ruc− k3fuc+ k4fbfu,

drb
dt

= −k1rb + k2ruc,

dru
dt

= k1rb − k2ruc,

dfb
dt

= k3cfu − k4fbfu,

dfu
dt

= −k3cfu + k4fbfu,

(2.1)

where k1 and k2 are non-negative coefficients and k3, k4 are positive constants.
Further, the following assumptions are made by Williams [7]:

1. when the stimulus is on, k1 > 0, k2 = 0;

2. when the stimulus is off, k1 = 0, k2 > 0.

Adding together the first, second, and fourth equations, it follows that the total
amount of calcium is constant:

c+ fb + rb = C. (2.2)

Analogously, one can show that the total numbers of bound and unbound SR and
CF sites are also constant, i.e,

ru + rb = S,

fb + fu = F, (2.3)

where S and F are the total numbers of SR and CF sites.

By using (2.2)–(2.3), one reduces the ODE system (2.1) to the following two-
dimensional model for the concentrations of free calcium ions and calcium-bound
sites:

dc

dt
= (k4fb − k3c) (F − fb) + k1 (C − c− fb) + k2c (C − S − c− fb) ,

dfb
dt

= − (k4fb − k3c) (F − fb) .
(2.4)

Further, we scale the model by the total amount of the CF sites F :

f̂b = fb/F, ĉ = c/F, Ĉ = C/F, Ŝ = S/F,

k̂2 = Fk2, k̂3 = Fk3, k̂4 = Fk4.
(2.5)
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Substituting (2.5) in (2.4) and skipping the hats for notational simplicity, one ob-
tains

dc

dt
= (k4fb − k3c) (1− fb) + k1 (C − c− fb) + k2c (C − S − c− fb) ,

dfb
dt

= − (k4fb − k3c) (1− fb) .
(2.6)

Remark 1. The above scaling leads to certain restrictions for fb and c, which
we shall use later in the qualitative analysis of the system (2.6). Dividing both
sides of (2.2) and (2.3) by F , it follows that:

ĉ+ f̂b + r̂b = Ĉ,

f̂b + f̂u = 1.

From the latter equations and the restrictions ĉ ≥ 0, f̂b ≥ 0, r̂b ≥ 0, f̂u ≥ 0, we
obtain

0 ≤ ĉ+ f̂b ≤ Ĉ,

0 ≤ f̂b ≤ 1.

Therefore, system (2.6) is considered in the phase space

{(c, fb) ∈ R2 : 0 ≤ c+ fb ≤ C, 0 ≤ fb ≤ 1, c ≥ 0}. (2.7)

3. GENERAL PROPERTIES OF MODEL’S SOLUTIONS

Proposition 1. The solutions of the model (2.6) are bounded for each choice
of the model parameters.

fb = C - c

0 C
0

C

1

c

f b

(a) Case C ≤ 1.

fb = 1

fb = C - c

0 C
0

1

c

f b

(b) Case C > 1.

Figure 4: Geometry of the phase space
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Proof. For the proof, we shall consider the following two cases, which determine
different geometry of the phase space: C ≤ 1 and C > 1, see Figure 4a and
Figure 4b.

Case C ≤ 1. We shall prove that the vector field at the boundary points to
the inside of the phase space. At fb = C − c, it holds that

dfb
dc

= − (k4fb − k3c)(1− fb)
(k4fb − k3c)(1− fb)− k2cS

≤ −1.

The latter means that at this part of the boundary the slope of the vectors in the
vector field is less than the slope of the line fb = C− c, thus, the vector field points
to the inside of the phase space.

If c = 0, then
dc

dt
= k4fb(1− fb) + k1(C − fb) > 0

is valid.

Finally, when fb = 0,
dfb
dt

= k3c > 0

holds true.

Case C > 1. Let us again consider the boundary of the phase space. If fb = 1,
it follows that

dfb
dt

= 0.

Thus, the solution stays on the boundary.

The results for the behaviour of the vector field on the rest boundary of the
considered phase space coincide with the results in the case C ≤ 1.

Since the vector field points to the inside of the phase space at all of its bound-
ary, it follows that the solutions of the model (2.6) are bounded for every choice of
the model parameters. �

Now, following a standard result (see, e.g., [4, pp, 17–18]), the following propo-
sition holds true.

Proposition 2. For the model (2.6), there exists a unique trajectory through
every point (x0, y0) ∈ R2

+ and it is defined for every t ∈ [0,+∞).

4. LOCAL QUALITATIVE ANALYSIS OF MODEL’S DYNAMICS IN THE
LIMITING CASES k1 = 0, or k2 = 0

In this section, we shall study qualitatively the system of differential equations
(2.6). We shall consider the two limiting cases—when the stimulus is on, i.e., when
k2 = 0, k1 = const > 0, and when the stimulus is off, i.e., k1 = 0, k2 = const > 0.

134 Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 127–151.



4.1. CASE k1 = const > 0, k2 = 0.

Let us first consider the case when the rate constant for binding of calcium to
the SR, k2, is equal to zero. Thus, the system we consider is:

dc

dt
= (k4fb − k3c) (1− fb) + k1 (C − c− fb) ,

dfb
dt

= − (k4fb − k3c) (1− fb) .
(4.1)

Existence of equilibrium points

The equilibria of the system (4.1) are the solutions of the system of algebraic
equations

(k4fb − k3c) (1− fb) + k1 (C − c− fb) = 0,

− (k4fb − k3c) (1− fb) = 0.

Solving the latter system, we find two possible equilibrium points:

E1 = (C − 1, 1) and E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
.

First, let us consider the conditions for the existence of the equilibrium points.

Proposition 3. The equilibrium point E1 exists iff C ≥ 1. The equilibrium

point E2 exists exactly when 0 ≤ C ≤
k3 + k4

k3
.

Proof. In order for the equilibrium points to exist (i.e., to be in the phase
space), they must satisfy the restrictions (2.7).

• Equilibrium E1 = (C − 1, 1) .
We substitute c = C−1 and fb = 1 in (2.7) and derive the existence condition
C ≥ 1.

• Equilibrium E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
.

We substitute the latter in (2.7) and derive:

0 ≤
Ck4

k3 + k4
+

Ck3

k3 + k4
≤ C, 0 ≤

Ck3

k3 + k4
≤ 1.

The first condition is trivially fulfilled, while the latter one is satisfied for

0 ≤ C ≤
k3 + k4

k3
. �
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Local stability of equilibrium points

To analyze the local stability of the equilibrium points we use the Hartman–
Grobman theorem [4]. The Jacobi matrix of (4.1) as a function of the phase
variables c and fb is:

J(c, fb) =

(
−k3(1− fb)− k1 k4(1− fb)− k4fb + k3c− k1

k3(1− fb) −k4(1− fb) + k4fb − k3c

)
.

Proposition 4. The conditions for the stability of the equilibrium points E1

and E2 in terms of C are given in Table 1.

C 0 < C < 1 1 < C <
k3 + k4

k3
C >

k3 + k4

k3
E1 @ saddle stable
E2 stable stable @

Table 1: Classification of equilibria for the case k2 = 0 in terms of C.

Proof. We shall analyze the stability of the equilibrium points separately.

1. Local stability of E1 = (C − 1, 1).
As derived in Proposition 3, the condition for the existence of the equilibirum
point is C ≥ 1. Substituting E1 in the Jacobi matrix, we derive:

J(E1) =

(
−k1 −k4 + k3(C − 1)− k1

0 k4 − k3 (C − 1)

)
.

For the eigenvalues λ1, λ2 of J(E1), we have

λ1 = −k1 < 0, λ2 = k4 − k3(C − 1).

Using the latter, we consider two cases for determining the stability of E1:

• k4 − k3 (C − 1) > 0 ⇐⇒ C <
k3 + k4

k3
.

In this case, the eigenvalues are with opposite signs. That is, the equi-
librium is a saddle point.

• k4 − k3 (C − 1) < 0 ⇐⇒ C >
k3 + k4

k3
In this case, both eigenvalues are negative and E1 is asymptotically
stable.

2. Local stability of E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
.

We compute the Jacobi matrix at E2:
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J(E2) =


−k3

(
1−

Ck3

k3 + k4

)
− k1 k4

(
1−

Ck3

k3 + k4

)
− k1

k3

(
1−

Ck3

k3 + k4

)
−k4

(
1−

Ck3

k3 + k4

)


and obtain

λ1λ2 = det J(E2) = k1 (k4 − k3(C − 1)) ,

λ1 + λ2 = trace J(E2) = −k1 − k4 + k3 (C − 1) .

By the existence condition for E2, derived in Proposition 3, we conclude that
the determinant is always positive, with λ1 + λ2 < 0 and, therefore, the
equilibrium is asymptotically stable, whenever it exists. �

4.2. CASE k1 = 0, k2 = const > 0.

Let us now consider the case, when the rate constant for release of calcium
from the SR, k1, is equal to zero. Thus, we consider the following system:

dc

dt
= (k4fb − k3c) (1− fb) + k2c (C − S − c− fb) ,

dfb
dt

= − (k4fb − k3c) (1− fb) .
(4.2)

Existence of equilibrium points

To find the equilibrium points of the latter system of ODEs, we solve the system
of algebraic equations

(k4fb − k3c) (1− fb) + k2c (C − S − c− fb) = 0, (4.3)

− (k4fb − k3c) (1− fb) = 0. (4.4)

The solutions of (4.4) are fb = 1 and fb =
k3

k4
c. Therefore, the four possible

equilibrium points to the system (4.2) are:

E1 = (0, 1), E2 = (C−S−1, 1), E3 = (0, 0), and E4 =

(
k4(C − S)

k3 + k4
,
k3(C − S)

k3 + k4

)
.

We shall derive conditions for the existence of each of the equilibrium points E1–E4

in terms of the total amount of calcium C.

Proposition 5. The following statements are valid:
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• Equilibrium point E1 exists exactly when C ≥ 1;

• Equilibrium points E2 exists if and only if C ≥ S + 1;

• Equilibrium point E3 exists for every choice of the parameters in the model
(4.2);

• Equilibrium point E4 exists iff S ≤ C ≤ S +
k3 + k4

k3
.

Proof. We shall derive the conditions for the existence of the equilibrium points
separately.

1. Existence of E1 = (0, 1).
Taking into consideration the inequalities in (2.7) and substituting c = 0 and
fb = 1, we obtain the condition C ≥ 1.

2. Existence of E2 = (C − S − 1, 1).
We substitute the values for c and fb in (2.7) and derive C ≥ S + 1.

3. Existence of E3 = (0, 0).
The existence of this equilibrium is trivial since the point (0,0) satisfies the
conditions in (2.7) and, therefore, exists for every choice of the parameters in
the model (4.2).

4. Existence of E4 =

(
k4(C − S)

k3 + k4
,
k3(C − S)

k3 + k4

)
.

Substituting the latter in the inequalities in (2.7), we derive

0 ≤
k4(C − S)

k3 + k4
+
k3(C − S)

k3 + k4
≤ C,

0 ≤
k3(C − S)

k3 + k4
≤ 1.

Taking into consideration the positivity of the constants k3, k4, we derive the

condition S ≤ C ≤ S +
k3 + k4

k3
. �

Local stability of equilibrium points

Proposition 6. The conditions for the stability of the equilibrium points E1 =

(0, 1), E2 = (C−S− 1, 1), E3 = (0, 0), and E4 =

(
k4(C − S)

k3 + k4
,
k3(C − S)

k3 + k4

)
of the

system (4.2) in terms of C, given in Table 2 for the case S < 1 and in Table 3 for
the case S > 1, are valid.
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C 0 < C < S S < C < 1 1 < C < S + 1 S + 1 < C < S +
k3 + k4

k3

C > S +
k3 + k4

k3

E1 @ @ saddle unstable unstable
E2 @ @ @ saddle stable
E3 stable saddle saddle saddle saddle
E4 @ stable stable stable @

Table 2: Classification of equilibria for the case k1 = 0 in terms of the total amount
of calcium ions C, when S < 1.

C 0 < C < 1 1 < C < S S < C < S + 1 S + 1 < C < S +
k3 + k4

k3

C > S +
k3 + k4

k3

E1 @ saddle saddle unstable unstable
E2 @ @ @ saddle stable
E3 stable stable saddle saddle saddle
E4 @ @ stable stable @

Table 3: Classification of equilibria for the case k1 = 0 in terms of the total amount
of calcium ions C, when S > 1 is valid.

Proof. Let us consider the four possible equilibrium points:

E1 = (0, 1), E2 = (C−S−1, 1), E3 = (0, 0), and E4 =

(
k4 (C − S)

k3 + k4
,
k3 (C − S)

k3 + k4

)
.

We linearize the system of equations (4.2) to analyze the stability of the equilibria,
by using the Hartman–Grobman theorem. The Jacobi matrix of the system is

J(c, fb) =

(
−k3 (1− fb) + k2 (C − S − 2c− fb) k4 + k3c− 2k4fb − k2c

k3 (1− fb) −k4 + 2k4fb − k3c

)
. (4.5)

We shall evaluate the Jacobi matrix at the four equilibrium points and determine
the type of the equilibria by the signs of the eigenvalues of the matrix.

1. Equilibrium point E1 = (0, 1).
Let us first note that the point E1 exists only for C ≥ 1, see Proposition 5.
Substituting the latter equilibrium point in (4.5), we derive:

J(E1) =

(
k2 (C − S − 1) −k4

0 k4

)
.

The eigenvalues of J(E1) are λ1 = k2(C−S−1) and λ2 = k4. Then, obviously,
E1 is a saddle point if C < S + 1 holds and an unstable node if C > S + 1 is
valid.
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2. Equilibrium point E2 = (C − S − 1, 1).
We substitute E2 in (4.5) and obtain

J(E2) =

(
−k2 (C − S − 1) (C − S − 1) (k3 − k2)− k4

0 k4 − k3 (C − S − 1)

)
.

The eigenvalues of the triangular matrix are λ1 = −k2(C − S − 1) < 0 (from
the existence condition) and λ2 = k4 − k3(C − S − 1). Thus, the equilibrium

point is a stable node when k4 < k3(C − S − 1) ⇐⇒ C >
k4

k3
+ S + 1 and is

a saddle point when S + 1 < C <
k4

k3
+ S + 1.

3. Equilibrium point E3 = (0, 0). We compute the determinant and trace of the
Jacobi matrix:

J(E3) =

(
−k3 + k2 (C − S) k4

k3 −k4

)
and obtain

det J(E3) = −k2k4 (C − S) , trace J(E3) = −k3 − k4 + k2(C − S).

The sign of the determinant in this case depends on the factor C−S, therefore,
we shall consider the following two cases:

• C − S > 0.
In this case, the determinant is negative and, therefore, E3 is a saddle
point.

• C − S < 0.
In this case, the determinant is positive and the trace is negative. The
equilibrium is, thus, asymptotically stable.

4. Equilibrium point E4 =

(
k4(C − S)

k3 + k4
,
k3(C − S)

k3 + k4

)
.

J(E4) =


−k3

(
1−

k3(C − S)

k3 + k4

)
−
k2k4(C − S)

k3 + k4
k4

(
1−

k3(C − S)

k3 + k4

)
−
k2k4(C − S)

k3 + k4

k3

(
1−

k3(C − S)

k3 + k4

)
−k4

(
1−

k3(C − S)

k3 + k4

)
 .
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For the eigenvalues, after some computations, we obtain

λ1λ2 = det J(E4)

=
k2k4 (C − S) (k4 − k3(C − S − 1))

k3 + k4
,

λ1 + λ2 = trace J(E4)

=
− k3(k3 + k4 − k3(C − S))− k2k4(C − S)− k4(k3 + k4 − k3(C − S))

k3 + k4

=
k3k4(−1− 1 + C − S) + k23(−1 + C − S)− k4(k2(C − S) + k4)

k3 + k4

=
k3k4 (C − S − 2) + k23(C − S − 1)− k4 (k2(C − S) + k4)

k3 + k4
.

In order for the equilibrium point to exist, using Proposition 5, we consider

the case when S < C < S +
k3 + k4

k3
. In this case, the determinant is always

positive, therefore, we have to determine the sign of the trace. Further, we
shall give an upper bound for the expression of the trace:

trace J(E4) =
k3k4 (C − S − 2) + k23(C − S − 1)− k4 (k2(C − S) + k4)

k3 + k4

=
k3k4(C − S − 1)

k3 + k4
−

k3k4

k3 + k4
+
k23(C − S − 1)

k3 + k4
−
k2k4(C − S)

k3 + k4
−

k24
k3 + k4

<
k3k

2
4

k3(k3 + k4)
−

k3k4

k3 + k4
+

k23k4

k3(k3 + k4)
−
k2k4(C − S)

k3 + k4
−

k24
k3 + k4

= −
k2k4(C − S)

k3 + k4
.

The latter expression is always negative for C > S—the case, which we are
interested in. Therefore, the equilibrium is asymptotically stable. �

5. NUMERICAL EXAMPLES

5.1. LIMITING CASE k1 = const > 0, k2 = 0

In this section, we give example phase portraits for the three different cases,
considered in the classification of the equilibria in Proposition 4. For the numerical
experiments, we consider the model parameters, taken from Table 4:

k1 = 9.6, k3 = 65, k4 = 45,

and S = 2. Let us note that the initial conditions for the system (4.1) must satisfy
conditions (2.7).
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Experiment 1. We consider the following parameter value: C = 0.8, which
corresponds to the case 0 < C < 1. Thus, as concluded in Proposition 4, in this

case the point E1 = (C − 1, 1) does not exist, while E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
is asymptotically stable. The numerical results are shown in Figure 5 and are in
agreement with the analytical conclusions.

E2

0.2 0.4 0.6 0.8
c

0.2

0.4

0.6

0.8

1.0

fb

Figure 5: Phase portrait for the case k2 = 0 with parameter value C = 0.8. E1

does not exist, while E2 is a stable equilibrium.

Experiment 2. We consider the parameter C = 1.6, which corresponds to the

case 1 < C <
k3 + k4

k3
. By Proposition 4, in this case the equilibrium point E1 =

(C−1, 1) is a saddle point, while E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
is again asymptotically

stable. The numerical results are in agreement with the conclusions in Proposition
4 and are depicted in Figure 6.

E2
E1

0.0 0.5 1.0 1.5
c0.0

0.2

0.4

0.6

0.8

1.0

fb

Figure 6: Phase portrait for the case k2 = 0 with parameter value C = 1.6. E1 is
a saddle point, E2 is a stable equilibrium.
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Experiment 3. In this experiment, we consider the parameter C = 2, which

corresponds to the case C >
k3 + k4
k3

. Following Proposition 4, E1 = (C − 1, 1) is

to be asymptotically stable, while E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
does not exist. The

numerical results are shown in Figure 7. Again, the numerical experiments are in
agreement with the analytic results.

E1

0.0 0.5 1.0 1.5
c0.0

0.2

0.4

0.6

0.8

1.0

fb

Figure 7: Phase portrait for the case k2 = 0 with parameter value C = 2. E1 is a
stable equilibrium, E2 does not exist.

Remark 2. By the correspoding results in Fig 5, 6, and 7, we can further sup-
pose that the locally stable equilibrium points in each of the considered experiments
are also globally asymptotically stable.

5.2. LIMITING CASE k1 = 0, k2 = const > 0

Here, we shall present several phase portraits, illustrating Proposition 6. For
the numerical experiments, we consider the following values for the parameters,
taken from Table 4:

k2 = 5.9, k3 = 65, k4 = 45.

Let us note that the initial conditions for the system (4.2) must satisfy conditions
(2.7).

Experiment 1. In this experiment, we consider the model parameters C = 0.8
and S = 0.5. Thus, we consider the case 0 < S < C < 1. By Proposition 6, in
this case E1 = (0, 1) and E2 = (C − S − 1, 1) do not exist, E3 = (0, 0) is a saddle

point, and E4 =

(
k4 (C − S)

k3 + k4
,
k3 (C − S)

k3 + k4

)
is a stable equilibrium. The following

is illustrated by the numerical results, depicted in Fig 8.
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E4

E3

0.2 0.4 0.6 0.8
c

0.2

0.4

0.6

0.8
fb

Figure 8: Phase portrait for the case k1 = 0 with parameters C = 0.8, S = 0.5. E1

and E2 do not exist, while E3 is a saddle and E4 is a stable equilibrium.

Experiment 2. We consider the case 0 < C < 1 < S, thus, we choose the
model parameters C = 0.8 and S = 4. By Proposition 6, E1 = (0, 1), E2 =

(C − S − 1, 1), E4 =

(
k4 (C − S)

k3 + k4
,
k3 (C − S)

k3 + k4

)
do not exist, while E3 = (0, 0) is a

stable equilibrium. The obtained results, shown in Figure 9, illustrate the latter.

E3 0.2 0.4 0.6 0.8
c

0.2

0.4

0.6

0.8
fb

Figure 9: Phase portrait for the case k1 = 0 with parameters C = 0.8, S = 4. In
this case, E1, E2, and E4 do not exist, while E3 is a stable equilibrium.

Experiment 3. We shall consider model parameters C = 4, S = 6, thus, the
case 1 < C < S holds. Following the statement of Proposition 6, equilibrium

points E2 = (C −S− 1, 1) and E4 =

(
k4 (C − S)

k3 + k4
,
k3 (C − S)

k3 + k4

)
do not exist, while

E1 = (0, 1) is a saddle point, and E3 = (0, 0) is an asymptotically stable equilibrium
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point. The numerical results, which illustrate the statement of Proposition 6, are
shown in Figure 10.

E1

E3 0.2 0.4 0.6 0.8 1.0 1.2
c

-0.2

0.2

0.4

0.6

0.8

1.0

fb

Figure 10: Phase portrait for the case k1 = 0 with parameters C = 4, S = 6. In
this case, E2 and E4 do not exist, while E1 is a saddle and E3 is an asymptotically
stable equilibrium. Note: The dashed trajectory will be discussed further in the
next section.

Experiment 4. In the following experiment, we consider the conditions S < C <
S + 1 and choose the model parameters C = 5.2 and S = 5. Taking into account
Proposition 6, in this case, E1 and E3 are saddle points, E2 does not exist and E4

is a stable equilibrium. The numerical results, illustrate the statement of the latter
proposition, see Figure 11.

E3

E4

E1

0.2 0.4 0.6 0.8 1.0 1.2
c

0.2

0.4

0.6

0.8

1.0

fb

Figure 11: Phase portrait for the case k1 = 0 with parameters C = 5.2, S = 5.
In this case E1 and E3 are saddle points, E2 does not exist, and E4 is a stable
equilibrium.

Experiment 5. For Experiment 5, we consider the case S + 1 < C < S +
k3 + k4
k3
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and choose model parameters C = 5.2 and S = 4. Using Proposition 6, E1 = (0, 1)
is an unstable equilibrium, E2 = (C − S − 1, 1) and E3 = (0, 0) are saddle points,

while E4 =

(
k4 (C − S)

k3 + k4
,
k3 (C − S)

k3 + k4

)
is asymptotically stable. The numerical

results in Figure 12 are in agreement with the analytic results.

E1

E4

E3

E2

0.2 0.4 0.6 0.8 1.0 1.2
c

0.2

0.4

0.6

0.8

1.0

fb

Figure 12: Phase portrait for the case k1 = 0 with parameters C = 5.2, S = 4. In
this case, E1 is an unstable equilibrium, E2 and E3 are saddle points, and E4 is an
asymptotically stable equilibrium.

Experiment 6. Here, we shall consider the case C > S +
k3 + k4
k3

and choose

model parameters C = 7, S = 4. By Proposition 6, E1 is an unstable equilibrium,
E2 is asymptotically stable, E3 is a saddle point, and E4 does not exist. The
numerical results in Figure 13 are in agreement with the analytic results.

E1 E2

E3 1 2 3 4 5 6
c

0.2

0.4

0.6

0.8

1.0

fb

Figure 13: Phase portrait for the case k1 = 0 with parameters C = 7, S = 4. In
this case, E1 is an unstable equilibrium, E2 is a stable equilibrium, E3 is a saddle
point, and E4 does not exist.
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6. BIOLOGICAL IMPLICATIONS OF THE QUALITATIVE ANALYSIS

Based on the qualitative analysis of the model for the calcium dynamics in a
muscle cell, we make the following observations:

• Case k1 = const > 0, k2 = 0.

Let us first discuss the case when there is a stimulus, i.e., when k2 = 0. For
each choice of the parameters, depending on the ratio C between the total
concentrations of calcium ions and CF sites, the biological system tends to a
certain equilibrium.

◦ Following Proposition 4, when C < 1 holds, i.e., when the total concen-
tration of CF sites is more than the total concentration of calcium (or,
stated otherwise, there is not enough calcium to fill the CF sites), the

system always reaches the equilibrium point E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
.

◦ However, even in the case when there are sufficient calcium ions, de-

pending on the ratio
k4

k3
between the rates of binding and release from

the CF sites, the system might also stabilize at this point. This is the

case, when C < 1 +
k4

k3
, or equivalently

k4

k3
> C − 1, thus, the rate of

binding of calcium ions to the CF is relatively small, compared to the
rate of release;

◦ Vice versa, if
k4

k3
< C − 1, then calcium ions eventually bind to all CF

sites, which corresponds to the stable equilibrium E1 = (C−1, 1), where
fb = 1.

Let us further note that the equilibrium state of the system does not de-
pend on the rate of release from the SR sites k1. Therefore, the asymptotic
behaviour of the system does not depend on the strength of the incoming
signal. However, it determines the rate at which the biological system tends
to the equilibrium point. For the sake of example, numerical results for the
concentration of free calcium ions, obtained for two different values of k1, are
shown in Figure 14.

• Case k1 = 0, k2 = const > 0.

Here, we shall discuss from a biological point of view the qualitative results
for the case, when there is no stimulus present in the muscle cell, i.e., when
k1 = 0.
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Figure 14: Concentration of free calcium ions c in time. Results for k1 = 1 are
depicted with dashed line, for k1 = 9.6—with solid line.

◦ Following Proposition 6, if 0 < C < S holds true, which biologically
means that the total concentration of calcium ions is less than the total
concentration of SR sites, then the system reaches the equilibrium state
c = 0, fb = 0. The latter means that all calcium ions get bound to
the SR, thus, the muscle cell is relaxed. Let us emphasize that the case
0 < C < S is the natural one for the process, since the free calcium ions
were originally released from the SR.

◦ If, however, the total concentration C is higher than S, then different
equilibrium points are reached.

We have discussed in this section the two limiting cases when k1 and k2 are
held constant, one of them 0. Of course, in reality the process is characterized with
consecutive changes in their values. Therefore, the results, presented here, will give
us information for the two separate parts of the process—when the stimulus is on
and off.

Let us further consider one numerical result to illustrate the process of calcium
dynamics, described by model equations (2.6). Here, for model parameters we shall
use values from [6], systematized in Table 4.

Further, we define a square wave stimulus by introducing the piecewise constant
functions k1 and k2 in the following way:

k1 =

{
k10, stimulus is on,

0, stimulus is off,
k2 =

{
0, stimulus is on,

k20, stimulus is off.

For our numerical experiment, we consider the particular choice of k1 and k2,
depicted in Figure 15.
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Parameter Value Parameter Value
C 2 µs 600 mN/mm
S 6 ls0 0.234 mm
k10 9.6 s−1 lc0 2.6 mm
k20 5.9 s−1 a −2.23 mm−2

k3 65 s−1 αmax 1.8
k4 45 s−1 αm 0.4 s/mm
L 2.7 mm αp 1.33 s/mm
P0 60.86 mN/mm2

Table 4: Model parameters for (2.6), taken from [6].
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3
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5

6

k2

(b) k2(t)

Figure 15: Graphs of coefficients k1 and k2.

The numerical solutions for the concentrations c and fb, using fourth-order
Runge–Kutta method [2] with time discretization step 10−3 are shown in Figure 16.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t

0.2

0.4

0.6

0.8

1.0

fb

c

Figure 16: Modelling of calcium dynamics—concentration of free calcium ions
(dashed line), concentration of filament-bound calcium sites (solid line).
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To explain the numerical results, let us consider the two distinct situations in
the process—when the stimulus is on and off.

• Presence of stimulus

Let us first note that in the case, when k2 = 0, this choice of parameters
corresponds to the case of an asymptotically stable point E1 = (C − 1, 1) in
Proposition 4. Thus, for C = 2 and S = 6, the solution would “try to reach”
the corresponding equilibrium point E1 = (1, 1). The latter is clearly seen
from the numerical experiments in Figure 16.

• Absence of stimulus

In the case, when the stimulus is off, or equivalently, when k1 = 0, by the
qualitative analysis, summarized in Proposition 6, there exist the saddle equi-
librium point E1 = (0, 1) and the asymptotically stable E3 = (0, 0). The
latter explains the peculiar behaviour of the solution for c, that is observed,
e.g., around t = 1. In particular, let us consider the dashed trajectory in Fig-
ure 10, which is obtained for an initial condition corresponding to the peak
of the graphs in Figure 6. When close to the saddle point, the trajectory
is repelled with a change in the sign of the derivative for the concentration
c, which results in a rise of the solution for c, followed by a decrease to the
equilibrium c = 0.

7. CONCLUSION

In this paper, we have considered a mathematical model, described in terms
of ordinary differential equations, for the process of calcium dynamics inside the
muscle cell. We have obtained results for the qualitative behaviour of the model so-
lutions in the two limiting cases k1 = 0 and k2 = 0 that to the best of our knowledge
are not known in the scientific literature. On one hand, such kind of qualitative
information is useful in the mathematical modelling of biological processes and it
helps to better understand the dynamical properties of the mathematical model.
On the other hand, it gives valuable information about the influence of the differ-
ent model parameters. The latter is particularly interesting, when considering the
process in different conditions, e.g., when there are certain deceases present, which
affect the normal calcium activity inside the muscle cell.
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