ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Книга 1 — Математика и механика Том 89, 1995

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE Livre 1 — Mathématiques et Mecanique Tome 89, 1995

HYPERBOLIC AND EUCLIDEAN DISTANCE FUNCTIONS*

WALTER BENZ

In memory of Nikola Obreshkoff (1896-1963), the great Bulgarian mathematician

This is a functional equations approach to the non-negative functions h(x,y) and e(x,y) as defined in formulas (1) and (2). Moreover, all distance functions of \mathbb{R}^n are characterized, which are invariant under linear and orthogonal mappings (see Theorem 1), and, especially, all functions of this type are determined, which satisfy in addition (D₂) (see Theorem 2). Here (D₂) asks for the invariance under euclidean or hyperbolic translations of the x_1 -axis. Finally, additivity on the x_1 -axis is considered, leading to the distance functions h and e up to non-negative factors (see Theorem 3).

Keywords: hyperbolic distance, invariance of distance functions under special motions, additivity on a line. theorems.

1991 Mathematics Subject Classification: 39B40, 51M10, 51K05.

1. Let n > 1 be an integer and let $\mathbb{R}_{\geq 0}$ be the set of all non-negative real numbers. A function

$$d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$$

is then called a distance function of $\mathbb{R}_{\geq 0}$. Especially, we are interested in the hyperbolic distance function h(x,y) satisfying

$$\cosh h(x,y) = \sqrt{1+x^2}\sqrt{1+y^2} - xy,\tag{1}$$

^{*} Lecture accepted for the Session, dedicated to the centenary of the birth of Nikola Obreshkoff.

and, moreover, in the euclidean distance function e(x, y) defined by

$$e(x,y) = \sqrt{(x-y)^2}. (2)$$

In formulas (1) and (2)

$$uv = u_1v_1 + u_2v_2 + \cdots + u_nv_n$$

denotes the usual scalar product of the elements

$$u = (u_1, \ldots, u_n)$$
 and $v = (v_1, \ldots, v_n)$

of \mathbb{R}^n .

We will say that the distance function d of \mathbb{R} is of type (D_1) if, and only if, it satisfies

(D₁) $d(x,y) = d(\varphi(x), \varphi(y))$ for all $x,y \in \mathbb{R}^n$ and all linear and orthogonal mappings φ of \mathbb{R}^n .

Obviously, distance functions h and e are of type (D_1) .

2. It is possible to determine all distance functions d of \mathbb{R}^n which are of type (D_1) . We would like to prove the following

Theorem 1. Define

$$K := \{ (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 \mid \xi_1, \xi_2 \in \mathbb{R}_{\geq 0} \text{ and } \xi_3^2 \leq \xi_1 \xi_2 \}.$$

Suppose that $f: K \to \mathbb{R}_{\geq 0}$ is chosen arbitrarily. Then

$$d(x,y) = f(x^2, y^2, xy)$$
 (3)

is a distance function of \mathbb{R}^n of type (D_1) . If, vice versa, d is a distance function of \mathbb{R}^n of type (D_1) , there exists $f: K \to \mathbb{R}_{\geq 0}$ such that (3) holds true for all $x, y \in \mathbb{R}^n$.

Proof. Since $x^2 = [\varphi(x)]^2$ and $xy = \varphi(x)\varphi(y)$ for all $x, y \in \mathbb{R}^n$ and for every linear and orthogonal mapping φ of \mathbb{R}^n into itself, we get

$$d(x, y) = d(\varphi(x), \varphi(y)).$$

d is hence of type (D_1) .

Assume now that d is a distance function of \mathbb{R}^n . Suppose that

$$(\xi_1, \xi_2, \xi_3)$$

is an element of K and define

$$e_1 = (1, 0, ..., 0)$$
 and $e_2 = (0, 1, 0, ..., 0)$

as elements of \mathbb{R}^n . Put

$$x_0 = 0 \quad \text{and} \quad y_0 = e_1 \sqrt{\xi_2}$$

in the case $\xi_1 = 0$. Observe here $\xi_3 = 0$, in view of $\xi_3^2 \le \xi_1 \xi_2$. Define now

$$f(\xi_1,\xi_2,\xi_3)=d(x_0,y_0).$$

Put $x_0 = e_1 \sqrt{\xi_1}$ and

$$y_0 = \frac{e_1 \xi_3 + e_2 \sqrt{\xi_1 \xi_2 - \xi_3^2}}{\sqrt{\xi_1}}$$

in the case $\xi_1 > 0$. Again define

$$f(\xi_1,\xi_2,\xi_3)=d(x_0,y_0).$$

Two things must now be proved. First of all we have to show that the function f is well-established. But since (ξ_1, ξ_2, ξ_3) is in K, there are only these two cases $\xi_1 = 0$ or $\xi_1 > 0$, and in both cases the value under f is uniquely determined. The second thing we have to prove, is that

$$d(x,y) = f(x^2, y^2, xy)$$

holds true for all $x, y \in \mathbb{R}^n$. Let x, y be elements of \mathbb{R}^n and put

$$x^2 =: \xi_1, \quad y^2 =: \xi_2, \quad xy =: \xi_3.$$

Because of the Cauchy-Schwarz inequality, (ξ_1, ξ_2, ξ_3) must be an element of K. If we are able to prove that, there exists a linear and orthogonal mapping

$$\varphi: \mathbb{R}^n \to \mathbb{R}^n$$

satisfying

$$\varphi(x_0) = x$$
 and $\varphi(y_0) = y$,

where x_0 , y_0 are the already defined elements with respect to ξ_i , then

$$d(x,y) = d(x_0, y_0) = f(\xi_1, \xi_2, \xi_3) = f(x^2, y^2, xy)$$

holds true and (3) is established. We now make use of the following simple statement: let a_1 , a_2 , a_3 , b_1 , b_2 , b_3 be points of \mathbb{R}^n . Then there exists an orthogonal mapping ψ of \mathbb{R}^n with

$$\psi(a_i) = b_i$$
 for all $i \in \{1, 2, 3\}$

if, and only if,

$$(a_i - a_j)^2 = (b_i - b_j)^2 (4)$$

is satisfied for all $i, j \in \{1, 2, 3\}$ with i < j.

In order to apply this statement, we put

$$a_1=0=b_1$$

and $a_2 = x_0$, $a_3 = y_0$, $b_2 = x$, $b_3 = y$. Since the assumptions (4), namely

$$x_0^2 = \xi_1 = x^2, \quad y_0^2 = \xi_2 = y^2$$

and $(x_0 - y_0)^2 = \xi_1 - 2\xi_3 + \xi_2 = (x - y)^2$ are satisfied, ψ exists; which is in addition linear in view of

$$\psi(0) = \psi(a_1) = b_1 = 0.$$

In the case of the hyperbolic distance function we apply the branch $arg \ge 0$ of the inverse function of cosh and we have

$$f(x^2, y^2, xy) = \arg\left(\sqrt{1+x^2}\sqrt{1+y^2} - xy\right).$$

In the case of e(x, y) we get

$$f(x^2, y^2, xy) = \sqrt{x^2 + y^2 - 2xy}$$

3. We would like to prove the following statement. If $z \neq 0$ is an element of \mathbb{R}^n , then there exists a bijection γ of \mathbb{R}^n with $\gamma(0) = z$ and

$$h(x,y) = h(\gamma(x),\gamma(y))$$

for all $x, y \in \mathbb{R}^n$.

There definitely exists a linear and orthogonal mapping φ with $\varphi(z) = e_1 \sqrt{z^2}$. Take now $t \geq 0$ satisfying

$$\cosh t = \sqrt{1 + z^2}.$$

Then $\tau(x) := (x_1 \cosh t + \sqrt{1+x^2} \sinh t, x_2, \dots, x_n)$ must be a bijection of \mathbb{R}^n , transforming 0 into

 $(\sinh t, 0, \dots, 0) = e_1 \sqrt{z^2}.$

Now put $\gamma = \varphi^{-1}\tau$ and observe that

$$h(x,y) = h(\tau(x),\tau(y))$$

holds true for all $x, y \in \mathbb{R}^n$.

Remark. For more information about the mapping τ see the book [5] of the author.

It it well-known that \mathbb{R}^n is a metric space with respect to the distance function e(x, y). We would like to show the following

Proposition. \mathbb{R}^n is a metric space with respect to the distance function h(x,y).

Proof. Suppose that x, y are elements of \mathbb{R}^n . The inequality of Cauchy-Schwarz

$$(xy)^2 \le x^2y^2$$

then implies $(xy)^2 \le x^2y^2 + (x-y)^2$, i.e.

$$(xy)^2 + 2xy + 1 \le (1+x^2)(1+y^2)$$

and hence $xy + 1 \le |xy + 1| \le \sqrt{1 + x^2} \sqrt{1 + y^2}$. We thus have

$$\sqrt{1+x^2}\sqrt{1+y^2}-xy\geq 1,$$

so that (1) determines $h(xy) \ge 0$ uniquely. In view of (1), obviously,

$$h(x,y) = h(y,x)$$

holds true for all $x, y \in \mathbb{R}^n$. Observe, moreover, h(x, x) = 0 for all $x \in \mathbb{R}^n$. Suppose now that h(x, y) = 0. Then (1) implies

$$(xy)^2 = (x-y)^2 + x^2y^2.$$

If x were $\neq y$, we would have the contradiction

$$(xy)^2 \le x^2y^2 < (x-y)^2 + x^2y^2$$
.

In order to prove the triangle inequality

$$h(x,z) \le h(x,y) + h(y,z),\tag{5}$$

take a bijection γ of \mathbb{R}^n satisfying $\gamma(0) = y$ and

$$h(p,q) = h(\gamma(p), \gamma(q)) \tag{6}$$

for all $p, q \in \mathbb{R}^n$. Put $a = \gamma^{-1}(x)$ and $b = \gamma^{-1}(z)$. Then we shall prove

$$h(a,b) \le h(a,0) + h(0,b),$$
 (7)

which leads to (5) by applying (6). Now observe

$$-ab \le |ab| \le \sqrt{a^2} \sqrt{b^2}$$

i.e.
$$\sqrt{1+a^2}\sqrt{1+b^2}-ab \leq \sqrt{1+a^2}\sqrt{1+b^2}+\sqrt{a^2}\sqrt{b^2}$$
. Hence

 $\cosh h(a,b) \le \cosh h(a,0) \cdot \cosh h(0,b) + \sinh h(a,0) \cdot \sinh h(0,b)$

by observing

$$0 \le \sinh h(a,0) = \sqrt{\cosh^2 h(a,0) - 1} = a^2$$

and $0 \le \sinh h(0, b) = b^2$. Thus

$$\cosh h(a,b) \le \cosh(h(a,0) + h(0,b)).$$

This implies (7) since $\cosh t_1 \leq \cosh t_2$ leads to $t_1 \leq t_2$ for non-negative real numbers t_1, t_2 .

Remark. Observe that \mathbb{R}^n is also a metric space under the rather strange distance function

$$d(x,y) := h(x,y) + e(x,y)$$

(for all $x, y \in \mathbb{R}^n$) which is of type (D_1) as well.

4. We shall call a distance function d(x, y) an euclidean (or a hyperbolic) distance function if it admits all euclidean (or all hyperbolic) motions.

Define for a distance function d the property (D_2) , as follows:

(D₂) $d(x,y) = d(\tau(x), \tau(y))$ for all $x, y \in \mathbb{R}^n$ and all euclidean (or hyperbolic) translations of the x_1 -axis.

The euclidean translations of the x_1 -axis are the mappings

$$(x_1,\ldots,x_n)\to(x_1+t,x_2,\ldots,x_n)$$

for $t \in \mathbb{R}$; the hyperbolic translations of the same axis are the already defined mappings

$$x \to \left(x_1 \cosh t + \sqrt{1 + x^2} \sinh t, x_2, \dots, x_n\right).$$
 (8)

Theorem 2. Let g be a function from $\mathbb{R}_{\geq 0}$ into $\mathbb{R}_{\geq 0}$. Then

$$d(x,y) = g(e(x,y))$$

is an euclidean distance function, and

$$d(x,y) = g(h(x,y))$$

is a hyperbolic distance function. There are no other distance functions satisfying (D_1) and (D_2) .

Proof. a) Let us assume that d satisfies (D_1) and (D_2) with respect to euclidean translations. Then d admits all congruent mappings of \mathbb{R}^n , in view of (D_1) and (D_2) . Hence

$$d(x,y) = d(x + (-y), y + (-y)) = d(x - y, 0)$$

and thus $d(x, y) = f((x - y)^2, 0, 0)$ because of Theorem 1. Define

$$g(\xi) := f(\xi^2, 0, 0)$$

for all real $\xi \geq 0$. Hence

$$d(x,y) = g\left(\sqrt{(x-y)^2}\right) = g(e(x,y)).$$

b) Suppose that d is a distance function satisfying (D_1) and (D_2) with respect to hyperbolic translations. From

$$(x_1,\ldots,x_n)\in\mathbb{R}^n$$

we go over to Weierstrass co-ordinates

$$\left(x_1,\ldots,x_n,\sqrt{1+x^2}\right)$$
.

The mapping (8) then reads

$$\tau\left(x_1,\ldots,x_n,\sqrt{1+x^2}\right)=\left(x_1,\ldots,x_n,\sqrt{1+x^2}\right)H(t)$$

with the (n+1, n+1)-matrix

$$H(t) = \begin{pmatrix} \cosh t & & \sinh t \\ & 1 & & \\ & & \ddots & \\ & & & 1 \\ \sinh t & & & \cosh t \end{pmatrix}$$

with zeros elsewhere. Let

$$B(p_1,\ldots,p_n;k)$$

be an arbitrary Lorentz boost (see [3, Sections 6.10, 6.11]). We hence have $k \geq 1$,

$$p_1^2 + \dots + p_n^2 < 1,$$
 (9)
 $k^2 (1 - p_1^2 - \dots - p_n^2) = 1.$

Set $cosh t := k, t \ge 0$, and

$$(a_{11}, a_{21}, \ldots, a_{n1}) := \frac{\cosh t}{\sinh t}(p_1, \ldots, p_n)$$

for t > 0. (For t = 0, i.e. k = 1, the matrix B must be the identity matrix E, and we are not interested in this case.) Observe

$$a_{11}^2 + \dots + a_{n1}^2 = \frac{k^2}{k^2 - 1} \sum_{i=1}^n p_i^2 = 1$$

from (9). Extend

$$\begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}$$

to an orthogonal matrix

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

of \mathbb{R}^n . Define the so-called induced Lorentz matrix

$$\hat{A} := \begin{pmatrix} & & & 0 \\ & A & & \vdots \\ \hline 0 & \dots & 0 & 1 \end{pmatrix}$$

and observe

$$B(p_1,\ldots,p_n;k)=\hat{A}H(t)\hat{A}^{-1}.$$

(In the case B=E we have $E=EH(0)E^{-1}$.) Because of A.10.1 (see [3. p. 249]), an arbitrary orthochronous Lorentz matrix of \mathbb{R}^{n+1} can be written as the product of a Lorentz boost and an induced Lorentz matrix. This implies that the

group $\overset{(n)}{H}$ of all motions of n-dimensional hyperbolic geometry (that is the group of all orthochronous Lorentz matrices of \mathbb{R}^{n+1} , see [4, Sections 2.6 and 5.7]), can be generated by H(t), $t \in \mathbb{R}$, and the induced Lorentz matrices, i.e. by linear orthogonal mappings of \mathbb{R}^n and hyperbolic translations concerning the x_1 -axis. We now would like to define a function

$$g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$$

as follows: for $\xi \geq 0$ set

$$g(\xi) := d(0, e_1 \sinh \xi).$$

We then have to prove

$$d(x,y) = g(h(x,y))$$

for all $x, y \in \mathbb{R}^n$. Put $h(x, y) =: \xi$. Hence

$$h(x,y)=h(0,e_1\sinh\xi).$$

Take a linear and orthogonal mapping φ_1 of \mathbb{R}^n that transforms x in $e_1\sqrt{x^2}$, then a τ which maps this latter point into 0. With another φ_2 we get

$$\varphi_2 \tau \varphi_1(x) = 0$$
 and $\varphi_2 \tau \varphi_1(y) =: e_1 \eta$

with $\eta \geq 0$. Because of

$$\xi = h(x, y) = h(0, e_1 \eta),$$

it follows $\cosh \xi = \cosh h(0, e_1 \eta) = \sqrt{1 + \eta^2}$, i.e.

$$\eta = \sinh \xi.$$

Hence with $\gamma := \varphi_2 \tau \varphi_1$

$$d(x,y) = d(\gamma(x), \gamma(y)) = d(0, e_1 \sinh \xi) = g(\xi) = g(h(x,y)).$$

With respect to the first part of Theorem 2 we know that e and h admit the corresponding mappings mentioned in (D_1) and (D_2) . But those mappings already generate the automorphism groups of the geometries in question.

A distance function d of \mathbb{R}^n will be called *additive* on the x_1 -axis if, and only if, the following property holds true:

(D₃) Let α , β , γ be real numbers with $\alpha \leq \beta \leq \gamma$. Then

$$d(\alpha e_1, \gamma e_1) = d(\alpha e_1, \beta e_1) + d(\beta e_1, \gamma e_1). \tag{10}$$

Theorem 3. Let d be a distance function of \mathbb{R}^n satisfying (D_1) , (D_2) , (D_3) . Then

$$d(x,y) = ke(x,y)$$

or

$$d(x,y) = kh(x,y)$$

holds true with a fixed real number $k \geq 0$.

Proof. a) Euclidean case. Taking into account Theorem 5 (see [4, Section 5.1]) we only need to prove that (D_3) carries over to every euclidean line of \mathbb{R}^n . Let x, z be distinct elements of \mathbb{R}^n and let y be the element

$$y = \lambda x + (1 - \lambda)z$$

with $0 \le \lambda \le 1$. We then transform x, y, z in

$$\alpha e_1, \beta e_1, \gamma e_1$$

with $\alpha = 0$, $\beta = (1 - \lambda)e(x, z)$, $\gamma = e(x, z)$. Now with Theorem 2

$$d(x,y) = g(e(x,y)) = g(e(0,\beta e_1)) = d(0,\beta e_1)$$

and so on. Hence (10) yields

$$d(x,z) = d(x,y) + d(y,z).$$

Then everything else depends on the solution of the functional equation

$$g(\alpha + \beta) = g(\alpha) + g(\beta)$$

for all $\alpha, \beta \in \mathbb{R}_{>0}$ (see [1]).

b) Hyperbolic case. We have to apply Theorem 9 (Section 2.6 in [4]) and a similar procedure as in part a).

Remarks. 1) It is possible now to determine all distance functions d satisfying (D_1) , (D_2) , constituting a metric. By applying Theorem 2 the reader might verify the next statement which we shall formulate for the hyperbolic case. The situation in question is characterized by all functions

$$g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$$

satisfying

(i)
$$g(\xi) = 0 \iff \xi = 0$$
;

(ii) Let α , β , γ be real numbers such that there exists a triangle xyz with $\alpha = h(x, y)$, $\beta = h(y, z)$, $\gamma = h(z, x)$, then

$$g(\gamma) \leq g(\alpha) + g(\beta)$$
.

2) For general information about hyperbolic geometry compare [5-8].

REFERENCES

- A c z é l, J. Lectures on functional equations and their applications. Academic Press, New York - London, 1966.
- 2. Aczél, J., J. Dhombres. Functional Equations in several variables. New Tork, 1989.
- Benz, W. Geometrische Transformationen. BI Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1992.
- Benz, W. Real Geometries. BI Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1994.
- 5. Benz, W. Ebene Geometrie. Eine Einfhrung in Theorie und Anwendungen (to appear).
- Karzel, H., K. Sörensen, D. Windelberg. Einführung in die Geometrie. UTB Vandenhoeck, Göttingen, 1973.
- 7. Nevanlinna, R., P. Kustaanheimo. Grundlagen der Geometrie. Basel, 1976.
- Schwerdtfeger, H. Geometry of complex numbers. Circle Geometry, Moebius Transformation, Noneuclidean Geometry. Dover Publications, New York, 1979.

Received on 10.06.1996

E-mail address: benz@math.uni-hamburg.de