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This is a functional equations approach to the non-negative functions h(z,y) and
e(z,y) as defined in formulas (1) and (2). Moreover, all distance functions of R™ are
characterized, which are invariant under linear and orthogonal mappings (see Theorem
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1. Let n > 1 be an integer and let Ry be the set of all non-negative real
numbers. A function

d:R" xR" = Ry

is then called a distance function of Ryo. Especially, we are interested in the
hyperbolic distance function h(z,y) satisfying

cosh h(z,y) = V14221 + 42 — 2y, (1)

* Lecture accepted for the Session, dedicated to the centenary of the birth of Nikola
Obreshkoff.
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and, moreover, in the euclidean distance function e(z,y) defined by
)

e(z,y) = [z ~ y)2. (2)
In formulas (1) and (2)
uv = urv] +ugv2 + -+ upv,
denotes the usual scalar product of the elements
= (u1,...,un) and v= (vl,...,vn)

of R".
We will say that the distance function d of R is of type (D;) if, and only if, it
satisfies

(D1)  d(z,y) = d(e(z),e(y)) for all z,y € R" and all linear and orthogonal
mappings ¢ of R".
Obviously, distance functions h and e are of type (D).

2. It is posible to determine all distance functions d of R" which are of type
(D1). We would like to prove the following

Theorem 1. Define
K :={(61,62,8) €R® | £1,& € Ry and £ < &162}
Suppose 1M K — Ry s chosen arbitrarily. Then
d(z,y) = f(z*, %, zy) (3)

is a distance function of R" of type (Dy). If, vice versa, d is a distance function of
R" of type (D), there exists f : K — Ryq such that (3) holds true for all z,y € R™.

Proof. Since z2 = [p(z)]? and zy = ¢(z)p(y) for all z,y € R™ and for every
linear and orthogonal mapping ¢ of R" into itself, we get

d(z,y) = d(e(z), p(y))-

d is hence of type (D;).
Assume now that d is a distance function of R". Suppose that

(51)52353)

is an element of K and define
e; =(1,0,...,0) and e;=(0,1,0,...,0)

as elements of R". Put
zo =0 and yozel\/{’;'

in the case £, = 0. Observe here £3 = 0, in view of £2 < &;£;. Define now

f(&1,€2,€3) = d(zo, yo).

v = e1€3 + ex\/61&2 — €2
V.3

Put z¢ = 61\/{1- and
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in the case £; > 0. Again define
f(§1,€2,€3) = d(z0, yo)-

Two things must now be proved. First of all we have to show that the function
f is well-established. But since (&1,&2,&3) is in K, there are only these two cases
& =0or & >0, and in both cases the value under f is uniquely determined. The
second thing we have to prove, is that

| d(z,y) = f(z*,y*, zy)
holds true for all z,y € R™. Let z, y be elements of R" and put
z? =: €, y2 =: &, zy=:§&s.

Because of the Cauchy—Schwarz inequality, (€1,£>,£3) must be an element of K. If
we are able to prove that, there exists a linear and orthogonal mapping

¢ :R" - R"
satisfying
w(zo) =z and ¢(y) =y,
where zg, yo are the already defined elements with respect to §;, then

d(z,y) = d(xo,yo) - f(€1:§2)€3) S f(‘czxyz:xy)

holds true and (3) is established. We now make use of the following simple state-
ment: let a, ag, aa, b1, by, b3 be points of R". Then there exists an orthogonal
mapping ¥ of R" with
1/)(0.') =& forall i€ {1,2,3}

if, and only if,

(ai = a;) = (b — b;)? . (4)
is satisfied for all 7,j € {1,2,3} with 7 < j.

In order to apply this statement, we put
a) = 0= b1

and as = T9, a3 = Yo, by = z, b3 = y. Since the assumptions (4), namely

2 2
23-‘:51:1‘2. Yy =6 =y

and (zo - yo)? = €1 — 263+ &, = (z —y)? are satisfied, ¥ exists; which is in addition
linear in view of
P(0) = ¢(a1) = b = 0. .
In the case of the hyperbolic distance function we apply the branch arg > 0 of
the inverse function of cosh and we have

fa?, 3, zy) = arg (VI+ 22T+ ~ay) .
In the case of e(z,y) we get

f(z?,¥% zy) = Vz? + y? — 2zy.
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3. We would like to prove the following statement. If z # 0 is an element of
R"™, then there exists a bijection ¥ of R” with ¥(0) = z and

h(z,y) = h(y(z),7(y))

for all z,y € R".
There definitely exists a linear and orthogonal mapping ¢ with ¢(z) = e, V22

Take now t > 0 satisfying
. cosht =1+ 22.

Then 7(z) := (zl cosht + /1 + z%sinht, z,, ...,a:,,) must be a bijection of R",
transforming 0 into
(sinht,0,...,0) = e1Vz2.
Now put ¥ = ¢~ 7 and observe that
h(z,y) = h(r(z), 7(y))
holds true for all z,y € R".

Remark. For more information about the mapping 7 see the book [5] of the
author.

It it well-known that R" is a metric space with respect to the distance function
e(z,y). We would like to show the following

Proposition. R" is a metric space with respect to the distance function
h(z,y). ' |

Proof. Suppose that z, y are elements of R”. The inequality of Cauchy-Schwarz

(zy)* < 2%y’
then implies (zy)? < z?y* + (z — y)?, i.e.
(zy)* + 22y + 1 < (14 2°)(1 +¢°)
and hence zy + 1 < |zy + 1| < V1 + z24/1 + y2. We thus have
V1t 22/1+y2 -2y > 1,
so that (1) determines h(zy) > 0 uniquely. In view of (1), obviously,
h(z,y) = h(y, z)

holds true for all z, y € R". Observe, moreover, h(z,z) = 0 for all z € R". Suppose
now that h(z,y) = 0. Then (1) implies

(zy) = (z - 9)* + 2%’
If z were # y, we would have the contradiction
| (zy)’ < 2% < (z - y)* + 270"

In order to prove the triangle inequality

h(z,z) < h(z,y) + h(y, 2), ()
take a bijection v of R™ satisfying v(0) = y and
h(p,q) = h(v(p), 7(9)) (6)
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for all p,q € R". Put a = y~!(z) and b = y~!(z). Then we shall prove
h(a,b) < h(a,0) + A(0,b), (7N
which leads to (5) by applying (6). Now observe
—ab < |ab] < Va2vb?,
ie. VI+a?V/1+82 —ab <1+ a1+ b2 +Va2Vb2. Hence
| cosh h(a, b) < cosh h(a, 0). cosh h(0, b) + sinh A(a, 0). sinh A(0, b)
by observing

0 < sinh h(a, 0) = y/cosh? h(a,0) - 1 = a?
and 0 < sinh A(0,b) = b%. Thus
cosh h{a, b) < cosh(k(a,0) + h(0,d)).

This implies (7) since cosht; < cosht; leads to t; < t; for non-negative real
numbers t,, t;.

Remark. Observe that R" is also a metric space under the rather strange
distance function

d(z,y) := h(z,y) +e(z,y)
(for all z,y € R™) which is of type (D;) as well.

4. We shall call a distance function d(z,y) an euclidean (or a hyperbolic)
" distance function if it admits all euclidean (or all hyperbolic) motions.
Define for a distance function d the property (D), as follows:

(Dy) d(z,y) = d(r(z), 7(y)) for all z y € R" and all euclzdcan (or hyperbolic)
translations of the z-azis.

The euclidean translations of the z,-axis are the mappings
(z1,...,Zn) = (21 +t,29,...,25)

for t € R; the hyperbolic translations of the same axis are the already defined

mappings .
a:—>(zlcosht+\/1+zzsinht,x2,...,zn). (8)

Theorem 2. Let g be a function from Ry into Ryo. Then
d(z,y) = g(e(z,y))

ts an euclidean distance function, and

d(z,y) = g(h(z,y))

is a hyperbolic distance function. There are no other distance functions satisfying

(D;) and (D3).
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Proof. a) Let us assume that d satisfies (D,) and (D;) with respect to euclidean
translations. Then d admits all congruent mappings of R", in view of (D;) and
(D). Hence

d(z,y) = d(z + (~y),y + (~y)) = d(z - y,0)
and thus d(z,y) = f((z — ¥)?,0,0) because of Theorem 1. Define

9(€) := f(€%,0,0)
for all real £ > 0. Hence

d(z,y) =g (\/(r - y)z) = g(e(z,y)).

b) Suppose that d is a distance function satisfying (D) and (D2) with respect
to hyperbolic translations. From

(z},...,:cn)emn

we go over to Welerstrass co-ordinates
(zl,..¢,2n, \/ 1+ 1:2) .
The mapping (8) then reads

r(zl,...,a:n,\/l+a:2) = (zl,...,xn,\/l+z2) H(t)

with the (n + 1,n + 1)-matrix

cosht sinh ¢
1
H(t) =
1
sinh t cosht
with zeros elsewhere. Let
B(pI) . »Pmk)
be an arbitrary Lorentz boost (see [3, Sections 6.10, 6.11]). We hence have k¥ > 1,
pr++pl <1, 9)
B(l-ptoopl) =1
Set cosht :=k,t > 0, and
cosht
(allx azr, ..., anl) = Sinht (Pl, e :pn)

fort > 0. (Fort =0, 1.e. k=1, the matrix B must be the identity matrix £, and
we are not interested in this case.) Observe

2 2 B o
ap +---+ap, =;c7‘_'_—'l‘zpi =1
i=l
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from (9). Extend

to an orthogonal matrix

and observe

B(ply' ,pmk) = AH(t)A—l

(In the case B = E we have £ = EH(0)E~'.) Because of A.10.1 (see [3. p.
249)), an arbitrary orthochronous Lorentz matrix of R**! can be written as the
product of a Lorentz boost and an induced Lorentz matrix. This implies that the

(n)
group H of all motions of n-dimensional hyperbolic geometry (that is the group

of all orthochronous Lorentz matrices of R**!, see [4, Sections 2.6 and 5.7]), can
be generated by H (t), t € R, and the induced Lorentz matrices, i.e. by linear
orthogonal mappings of R" and hyperbolic translations concerning the z;-axis.
We now would like to define a function

g :]Rzo —->]R20

as follows: for £ > 0 set
g(€) := d(0, €1 sinh §).
We then have to prove
d(z,y) = g(h(z,v))
for all z,y € R™. Put k(z,y) =: £&. Hence
h(z,y) = h(0, e; sinh §).

Take a linear and orthogonal mapping ¢; of R" that transforms z in e; V2, then
a 7 which maps this latter point into 0. With another 2 we get

parp1(z) =0 and  parpr(y) =:e1n

with 7 > 0. Because of
6 = h(l’, y) = h(o, 6177);
it follows cosh € = cosh h(0,e;11) = /14 n?, i.e.

n =sinh&.
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Hence with v 1= @79,

d(z,y) = d(v(z),7(y)) = d(0, €1 sinh &) = ¢(§) = g(h(z, y)).
With respect to the first part of Theorem 2 we know that e and h admit the
corresponding mappings mentioned in (D;) and (D2). But those mappings already
generate the automorphism groups of the geometries in question. "
A distance function d of R™ will be called additive on the z;-axis if, and only
if, the following property holds true:

(D3) Let a, B, v be real numbers with a < 3 <. Then
d(aey,ve;) = d(aey, Beq) + d(Ber, ye1). (10)

Theorem 3. Let d be a distance function of R"™ satisfying (Dy), (Dg); (D3).
Then
d(z,y) = ke(z,y)
or
d(z,y) = kh(z,y)
holds true with a fized real number k > 0.

Proof. a) Euclidean case. Taking into account Theorem 5 (see [4, Section 5.1])
we only need to prove that (Dj3) carries over to every euclidean line of R". Let z,
z be distinct elements of R" and let y be the element

y=Az 4+ (1- Az
with 0 < A < 1. We then transform z, y, z in
aey, PBey, ve;
with a= 0, 8 = (1 — Ae(z, 2), v = e(z, z). Now with Theorem 2
d(z,y) = g(e(z,y)) = 9(e(0, Ber)) = d(0, Be1)
and so on. Hence (10) yields
d(z,7) = d(z,y) + d(y, 2).
Then everything else depends on the solution of the functional equation
g(a+ B) = g(a) + 9(B)

for all @, B € Ryq (see (1]).
b) Hyperbolic case. We have to apply Theorem 9 (Section 2.6 in [4]) and a
similar procedure as in part a). "

Remarks. 1) It is possible now to determine all distance functions d satisfying
(D1), (D2), constituting a metric. By applying Theorem 2 the reader might verify
the next statement which we shall formulate for the hyperbolic case. The situation
in question is characterized by all functions

9:Ry0— Rxo

satisfying
- () 9€)=0 = £=0;
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(i1) Let a, B, 7 be real numbers such that there exists a triangle zyz with
a = h(z,y), B = h(y,2), y = h(z,z), then

9(7) < g(a) + g(B).
2) For general information about hyperbolic geometry compare [5-8].
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