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DIMITER SKORDEV

Given any strictly increasing computable function in the set of natural numbers,
certain algorithmic problems arise on the representation of numbers as sums of distinct
values of the function. The problem whether a given natural number is representable
in this form is obviously algorithmically solvable, but we propose some methods for the
solution of the problem that seem to be better than the straightforward ones.

It is easy to see the algorithmic unsolvability of the problem whether all natural
numbers are representable (under the usual assumption that an index of the given
computable function is used as input data). However, under an appropriate restriction
concerning, roughly speaking, the speed of the growth of the function, we present
an algorithm for solving this problem and the more general one whether all natural
numbers greater than a given one are representable (the restriction is satisfied, for
example, when the given function is a polynomial).

We make applications of the presented positive results to concrete problems con-
cerning, for instance, the representation as sums of distinct squares or as sums of
distinct positive cubes.
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1. INTRODUCTION

Let N, be the set of the positive integers. Suppose f is a strictly increasing
function in N4. An integer n will be called additively f-representable without

1 Lecture presented at the Session, dedicated to the centenary of the birth of Nikola Obreshkoff.
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repetitions ( f-representable, for short) iff
n=73_f)

for some finite subset A of N, ; any such A will be called an f-representation of
n. Of course, all f-representable integers are non-negative, and the number 0 is
f-representable (with an empty f-representation).

There is a case when any non-negative integer is f-representable and has a
unique f-representation. This is the case when f(i) = 2'~! fori=1,2,3,... To
have a more complicated example concerning f-representability, let us consider the
case when f(i) = i* for any i in Ny. Then there exist positive integers that are
not f-representable, as well as ones having more than one f-representation. Some
results connected to f-representability in this case have been presented in [2-5],
but without giving a complete description of the set of the representable integers.
Such a description can be derived from certain results given in [1] that show the f-
representability of all integers greater than 128 as well as of the most of the smaller
positive integers. By checking individually the few remaining positive integers, one
gets the following conclusion: there are exactly 31 positive integers that are not
f-representable, namely the integers 2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27,
28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128.

The mentioned results from [1] are proved by using tools from Number The-
ory (such as, e.g., divisibility considerations). Those results give in fact consid-
erably more precise information about the f-representations in question. For ex-
ample, it is seen that each f-representable integer in the considered case has an
f-representation consisting of not more than six elements. However, it could be
possibly interesting to know that the less precise statement, formulated at the end
of the previous paragraph, can be proved in an algorithmic way without using any
specific tools from Number Theory. This can be done as an application of a certain
method that will be exposed in the present paper.

2. A USEFUT EXTENSION OF THE INVERSE FUNCTION f-!

We turn back to the general case described in the first paragraph of the intro-
duction. Given the function f, we define three other functions REPRy, Ly and fT
with domain Ny, the first two of them being set-valued and the third one being
integer-valued. We define them as follows. Let n be an arbitrary element of N.
We adopt REPR;(n) to be the set of all f-representations of n; clearly, this set
is finite (possibly empty) and its elements (if any) are non-empty finite subsets of
N;. Then we set :
Ly(n) = {minA | A € REPR;(n)}.

Of course, Ly(n) is a finite subset of Ny, and Ls(n) is empty iff REPR;(n) is
empty, i.e. iff n is not f-representable. Finally, if Ls(n) # 0, then we set f)f(n)

to be the maximal element of L;(n), otherwise we set ff(n) = 0. Thus ff (n)isa
non-negative integer that is equal to 0 iff n is not f-representable.
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Example 1. If f(i) =42 fori=1,2,3,..., then
REPR;(50) = {{1,7},{1,2,3,6},{3,4,5}},
hence L;(50) = {1,3}, f(50) = 3.

For any positive integer 7 the singleton {7} is an f-representation of the number
f(7), and any f—representatlon of this number contains some element not greater

than 7, hence the equality f (f(z)) = 7 holds. Thus the function fT 1s an extension
of the inverse function f~1.

We also note that for any f-representable positive integer n the number ft(n)
belongs to some f-representation of n, hence the inequality f( f (n)) < n holds.

The consecutive values of the function fJf can be recursively computed on the
base of the next proposition.

Theorem 1. For any positive integer n we have the equalily

Lyn)={ke N4 |f(k)=n or (f(k)<n and fl(n— f(k)) > k)}.

Proof. Let n be a positive integer. Consider first any k belonging to Ls(n).
Then k& = min A for some f-representation A of n, hence k € N4. If k is the only
element of A, then f(k) = n. Otherwise n — f(k) is a positive integer, and A\ {k}
is an f-representation of n — f(k). Therefore

fn = £(k)) > min(A\ {k}) > k.

Thus in both cases k belongs to the right-hand side of the equality. For the reasoning
in the opposite direction, suppose now that k belongs to the rlght hand side of this

equality. Then k € N4, and either f(k) = n or f(k) < n and f (n— f(k)) > k. If
f(k) = n, then we set A = {k}. Otherwise we consider an f-representation B of

n — f(k) such that ff(n' — f(k)) = min B, and we set A = {k} U B. In both cases
A is an f-representation of n and k = min 4, hence k € Ly(n).

Example 2. Let f enumerate the set of the prime numbers, i.e. f(1) = 2,
f(2) =3, f(3) =5, f(4) =7, f(5) = 11 and so on. Then, making use of Theorem 1

and of the definition of the function f!, we get consecutively:

Ly(1) =0, iy =o,
Ly(2) = {1}, @) =1,
Ly(3) = {2}, 3 =2,
Ly(4) =0, i =0,
Ly(5)={1,3}, f1(5) =33,
Ly (6) =0, 1(6) =0,
Ly(7) = {1,4}, (1) =1,
Ly(8)= {2}, 18y =2,
Ly(9)={1}, 19) =1,
L;(10) = {1,2}, flaoy = 2.
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z ff(IOz-i-y)
y=0ly=1ly=2y=3|y= y=5 |y=6 | y=T|y=8]y=9
0 1 0 0 2 1 0 0 0 3
1 1 0 0 2 1 0 4 1 0 0
2 2 1 0 0 0 5 1 0 0 2
3 1 0 0 0 3 1 6 1 2 1
4 2 4 1 0 0 3 1 0 0 7
5 3 1 4 2 2 1 2 1 3 1
6 0 5 2 1 8 4 1 0 2 2
7 3 1 0 3 5 1 0 4 2 1
8 4 9 1 3 2 6 3 2 1 5
9 4 1 0 2 3 1 0 4 3 3
10 10 4 2 2 2 4 5 1 0 3
11 5 1 0 7 3 3 4 6 2 3
12 2 11 4. 2 1 5 4 1 0 4

Fig. 1. The first 129 values of the function ff in the case of f(i) =1*

Clearly, it is not always necessary to find all elements of the set L;(n) in order
to see that it is not empty and to find its maximal element. We have f(k) < n

for any k in Ls(n). Therefore, to calculate f"(n), one could simply find the least
positive integer k such that f(k) > n and then execute the operator

repeat k :=k — 1 until k =0 or k € Ly(n)

(interpreted in a Pascal-like way).

Example 3. Fig. 1 contains a table of the values of fT (n)forn=1,2,...,129,
calculated by computer in the above way in the case of f(i) = i?. The table shows
that among the positive integers not greater than 129, exactly the 31 ones listed in
the introduction are not f-representable. '

The amount of operations can be somewhat reduced by noticing that for
positive integers n, not belonging to the range of f, one could start executing
the above operator from the least positive integer k such that f(k) > n/2 (if
n € N4\ range(f), then f(k) < n/2 for any k in Ls(n), since any k in Lj(n)
belongs to some f-representation of n together with at least one greater number).
Working in this way, one could manually verify the correctness of the values in
Fig. 1 in the course of, let us say, one and a half hour.

Let N be the set of all non-negative integers. The indicated method for com-

puting values of the function ft can be modified by introducing a binary relation
Hy in N as follows: n Hy i iff n has an f-representation A such that all elements
of A are greater than i. We have 0 H; ¢ for any i in N by trivial reasons. On the
other hand, the following equivalence holds for any nin N; and any iin N: n Hj ¢

iff f1 (n) > 1. Making use of these properties of H; and of Theorem 1, we get the
following result.
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Theorem 2. Let n € Ny. Then
Li(n) ={ke N, | f(k) <n and n— f(k) H; k)}.
and for anyi in N |

nHyi < 3k€Ny (k> and f(k) <n and n— f(k) Hy k).

To illustrate the application of the relation H; to the computation of values
of ff, we shall consider one more example.
Example 4. Let, as in Examples 1 and 3, f(i) = i2 for i = 1,2,3,... We

shall compute ft (50) by using the properties of the relation H;. Since 50 is not
a value of the function f and the least positive integer k satisfying the inequality

k? > 50/2 is 5, the value of ft(50) can be obtained from k = 5 by applying the
operator

repeat k := k — 1 until k = 0 or k € L;(50).

By Theorem 2 we have
4e€Ly(50) & 50-42H;4 & 34H; 4 &

JkeNy (k>4 and k<34 and 34—k’ H; k) & 34—-5°H;5 &
9H;5 ¢ ke Ny (k>5 and k2 <9 and 9-k? H; k),
hence 4 ¢ L;(50). Again by Theorem 2

3€L;(50) < 50—32H;3 < 41H,3 &

3k €Ny (k>3 and k2 <41 and 41 -k’ H; k) &
41 -4 H;4 or 41-52 H; 5 or 41— 6% H; 6,
41-42H;4 & 25H; 4 &
JkeN,y (k>4 and k? <25 and 25— k* H; k) &
25 -5 Hy 5 0Hy 5,

hence 41 — 42 H; 4, and therefore 3 € L;(50). Thus fT(50) = 3.
Remark. The method used in the above example is convenient when some

value of the function j"L has to be computed without necessarily computing the pre-
ceding ones (an additional reduction of the count of the operations could be achieved
by noticing that the statements of Theorem 2, in particular the second one, hold
also with “f(k) < n/2” instead of “f(k) < n” in the case of n € N \ range(f)).

However, if one has to make a table of the values of ff(n) forn=1,2,...,m,
where m is a given positive integer, then it seems more reasonable to proceed by
consecutive straightforward applications of Theorem 1 as in Example 3.
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The function ft can be used not only for checking whether a given positive
integer is f-representable, but also for finding one of the f-representations of a

given f-representable natural number. This way of using fT is possible on the
basis of the next proposition.

Theorem 3. Let n be an f-representable non-negative integer. Let the integers
no, N1, ... be defined as follows, taken for granted that njyy is defined iff the right-
hand side of the Second equality makes sense:

ng="n, njy =n;— f(ft("j))-

Then there is a non-negative inleger r such that n, = 0, and if r is such an inieger,
then the set {ft(nj) |0 < j<r}isan f-representation of n.

Proof. It is clear that n;y; is defined iff n; is positive and f-representable.
Hence, if n, is defined for a certain r, then n; is defined, positive and f-represent-
able for any j < r, and if n, = 0, then n; is undefined for any j > r. Applying
the last statement in the case of r = 0, we see that the theorem is trivial if n = 0.
Suppose now that n > 0. Then ng is positive and f-representable. On the other
hand, if for a certain j the number n; is defined, positive and f-representable,
then, by the definition of the function ft, the number n;4; is not only defined,
but it has an f-representation whose elements are all greater than ft (nj), and
this implies the inequality fT(nj) < ft(nj'“) in the case of nj4; > 0. Since the
values of the function f are positive, we thus see that the defined numbers n; form
" a strictly decreasing sequence of f-representable and hence non-negative integers,

and the defined numbers f'r (n;) form a strictly increasing sequence. The sequence
ng, Ny, ... should be necessarily finite, and it is clear that its last member should

be 0. Consider now an r such that n, = 0, and set A = {ft(n,-) |0 < j<r}. Then

n=np—n, = Z(n, e Zf(ﬁ(n,)) =3 1(3).

iIEA

Hence A is an f-representation of n.

Example 5. We shall apply the above theorem to f(i) = i® and n = 124. In
this case we get (using the table from Fig. 1)

no =124, fi(no) = 1, ny =123, fi(n) = 2, np = 119, fi(ny) =3,
ns = 110, fT(n3) =5, na = 85, fH(n4) =6, ns =49, fi(ns) =7, ng = 0.

Hence, by Theorem 3, the set {1,2,3,5,6,7} is an f-representation of the num-
ber 124. '
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3. CHECKING IF ALL NATURAL NUMBERS GREATER THAN
A GIVEN ONE ARE f-REPRESENTABLE

As until now, a strictly increasing function f from N4 to N is supposed to
be given. If this function is computable (in the precise sense given by Recursive
Function Theory), then there are obvious algorithms solving the problem whether a
given natural number is f-representable, and the considerations from the previous
section yield certain better algorithms for the same purpose. A more difficult
problem is to decide whether all natural numbers are f-representable. This problem
is algorithmically unsolvable in the following natural sense: there is no computable
function h defined on the indices of all strictly increasing computable functions f
in N4 and transforming such an index into 0 exactly when all natural numbers
are f-representable with respect to the corresponding function f. To prove this,
let us consider a two-argument primitive recursive function g such that the set
P = {z |3y (9(x,y) = 0)} is not recursive. For each z in N we define a strictly
increasing function f; from N into N, as follows: for any 7 in Ny, if g(z,y) > 0
for all y less than i, then f (i) = 2'~!, otherwise f.(i) = 2'. If z € P, then
the range of the corresponding function f; is the set {1,2,22,23,...} with one of
its elements missing, otherwise the range of f, is the whole set {1,2,22,23 .. }.
Hence, if £ € P, then there are infinitely many natural numbers that are not f.-
representable, otherwise all natural numbers are f;-representable. If we suppose
that a computable function A exists telling apart indices as said above, then we get
a contradiction with the non-recursiveness of P.

Of course, the established algorithmic unsolvability directly implies the unsolv-
ability of the more general problem to decide whether all natural numbers greater
than a given one are f-representable. However, we cannot exclude the possibility
of an algorithmic solution of the last problem under some reasonable restrictions
imposed on the function f. A realization of this possibility will be demonstrated
in the present section.

For any two integers a and b let [a..b) denote the set of all integers n satisfying
the inequalities a < n < b (of course, this set is non-empty iff @ < b). Let [a . . c0)
denote the set of all integers n satisfying the inequality a < n.

Theorem 4. Suppose i € N4, ng € N, and the following two conditions are
satisfied:

1. For any i in [ig ..00) the inequality 2f(i) — f(i + 1) > no holds.

2. All elements of [no..no+ f(i0)) are f-representable.
Then all elements of [no ..0o0) are f-representable.

Proof (making use of an idea from [5]). For any positive integer i we set
S; = [no+£(7)..2f(?)). We shall first show that any element of the set [ng+ f(o)..00)
belongs to some S; (with ¢ > 7). In fact, given an element n of [ng+ f(%)..00), let
us consider the greatest i in N4 satisfying the inequality ng + f(i) < n. For that
¢ we have the inequalities i > i, ng + f(¢ + 1) > n. From them and Condition 1,
the inequality n < 2f(7) follows, hence n € S;. Now we shall prove the conclusion
of the theorem by means of an induction of the following kind: we shall show that

95



whenever an integer n belongs to the set [ng..00) and all smaller integers belonging
to this set are f-representable, then n is also f-representable. Suppose n is an
integer satisfying the above assumptions; we shall prove that n is f-representable.
By Condition 2, we have to examine only the case when n > ngy + f(io). Then we
consider a positive integer 7 such that n € S;. The last condition is equivalent to
the inequalities ng < n— f(i) < f(i). The first of them, together with the inequality
n — f(i) < n and the induction hypothesis, shows that n — f(i) is f-representable.
Let A be an f-representation of n — f(i). The inequality n — f(i) < f(i) implies
that 1 ¢ A. This fact, combined with the equality n = (n — f(#)) + f(i), shows that
AU {i} is an f-representation of n, hence n is f-representable.

Remark. An inspection of the proof shows that Condition 2 may be weakened
by requiring f-representability only of the elements of [no..no+ f(ig)) that belong
to none of the sets S;, 1 =1,2,3,...

Suppose now some ng € N is given. Theorem 4 immediately implies the
following statement: whenever io0 € N, and Condition 1 is satisfied, then the f-
representability of all elements of [ng .. 00) is equivalent to the representability of
the elements of [no..ng + f(io)). If the function f is computable, then the last
condition can be checked in an algorithmic way, and this will be an algorithmic
way to check whether all elements of [ng..o0) are f-representable. Of course, we
may use this way only if we succeed to find some iy € N satisfying Condition 1.
We shall show now some examples when such an iy really can be found.

Example 6. Let f(i) = 2°~! fori = 1,2,3,... Then 2f(i) — f(i+1) =0
for any such 1, hence Condition 1 is satisfied with ng = 0, ip = 1. Therefore the
well-known f-representability of all non-negative integers in this case can be proved
by checking the f-representability of the elements of the set [0.. f(1)). Thus the
f-representability of all non-negative integers is reduced to the trivial fact that 0
is f-representable.

Example 7 (generalization of the previous example). If 2f(i) — f(i + 1) > 0
for any i, then the f-representability of all non-negative integers is equivalent
to the equality f(1) = 1 (since no f-representable positive integer can be less
than f(1)). As a particular instance of this we could consider the case when f
enumerates the Fibonacci numbers 1,2,3,5,8,13,..., ie. f(1) = 1, f(2) = 2
and f(i) = f(i — 1)+ f(i —2) for i = 3,4,5,... In this case, if ¢ = 1, then
2f(i) = f(i+ 1) = 0, otherwise 2f(¢) — f(i + 1) = f(¢) — f(i = 1) > 0. Thus all
non-negative integers are f-representable with respect to this particular function f.

Example 8. Let the function f be a polynomial, i.e.

f(3) = apt” + 1" +asi""% .+ ap_1i+ay,

where » € N, r,ap,a1,...,8,-1,a, do not depend on i, and ag # 0. Obviously, we
should have r > 0, ag > 0, and all coefficients ag, a1, ...,a,_1, @, must be rational
numbers. The function 2f(7) — f(i + 1) is also a polynomial, namely

2f() = fli+ 1) = api” + byi" " + b3i" "2 4 be_yi+ b,

with the same ap and new coefficients by,bs,...,b,_1,b, that are again rational
numbers. Clearly, these new coefficients can be effectively found (assuming, of
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course, that the degree r and the coefficients ao, a1, ...,a,-1, a, are explicitly given
or can be effectively found). Therefore, given any non-negative integer ng, one
can effectively find a positive integer ig satisfying Condition 1. This allows us to
check algorithmically whether all elements of the set [ng..oo) are f-represent-
able (the result can be obviously generalized to computable functions f such that
2f(i) = f(i + 1) effectively diverges to +oo together with i, i.e. such that there is a
computable function transforming any non-negative integer ng into some positive
integer ip satisfying Condition 1).

Example 9 (a particular instance of Example 8). Let f(i) = ¢? for any ¢ in
N,. Then

2f() - fi+1)=di*=2i—1=i(i - 2) -1,

and therefore 2f(i)— f(i+1) > 129 for any i in [13..00). Since 120+ f(13) = 298, the
f-representability of all elements of [129..00) is equivalent to the f-representability
of the elements of [129..298). The f-representability of the mentioned finitely

many integers can be shown by computing the corresponding values of f}r (using
Theorem 1) and showing that they are all positive, i.e. by a certain continuation
of the computations that produced the table from Fig. 1. We have done this by
computer, but we do not present the corresponding continuation of the table here.
We preferred to present a table of f-representations of the numbers from 129 to
297 (cf. Fig. 2), since its correctness allows an easier manual verification (the table
itself is produced by computer on the basis of Theorem 3; the representations are
written without the curly brackets for the sake of saving space).

Remark. Some of the considered numbers have shorter f-representations
than the ones given in the table. For instance, the number 131 has also the f-
representation {1,3,11}. Note also that one could (especially at manual verifica-
tion) use the remark after the proof of Theorem 4 and somewhat reduce the count
of the numbers to be checked. In the concrete situation (f(i) = 1%, no = 129) we
have S; = [129 +i2 .. 2¢?) for any positive integer i. We see that S; = @ for i < 11,
Si2 = [273 ..288), and S; consists of numbers not less than 298 for ¢ > 13. Hence
it would be enough to check the numbers belonging to [129..298) \ Si2, i.e. one
could skip the check of 15 numbers. |

Example 10 (several other particular instances of Example 8). Fig. 3 contains
a summary of results of applying Theorem 4 to concrete polynomials f for obtaining
results of the form “All elements of [ng..oo) are f-representable”. In any of these
results the number ng is the least possible for the polynomial in question and has
been found by means of an iterative process starting with ng = 0 as an initial value.
The iteration step and the termination of the process can be described as follows.
We find a positive integer i satisfying Condition 1 for the current no and then we
consecutively check for f-representability the numbers in [ng..no+ f(i0)). If all of
them turn out to be f-representable, then the process terminates with the current
no as its result. Otherwise, if m is the least number from [ng..ne+ f(ip)) that is not
f-representable, then we take the number m+ 1 as a next value of ng. Note that at
the moment of the termination of the process all integers in the set [0..n¢+ f(i0))
turn out to have been already checked, hence the method can be obviously refined
to compute also the total count of all positive integers that are not f-representable
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n f-represen- n f-represen- n f-represen- Ln f-represen-
tation of n tation of n tation of n tation of n
129 4,78 172 1,4,5,7,9 215 3,6,7,11 258 5,8,13
130 7,9 173 46,11 216 4,6,8,10 259 5,7,8,11
131 3,459 174 5,7,10 217 6,9,10 H 260 8,14
132 1,3,4,5,9 175 3,6,7,9 218 7,13 261 6,15
133 4,6,9 176 1,3,6,7,9 219 5,7,8,9 262 4,5,10,11
134 | 3,5,10 177 | 4,5,6,00 || 220 | 345711 | 263 | 5,6,9,11
135 3,4,5,6,7 178 3,13 221 10,11 264 3,5,7,9,10
136 6,10 179 3,7,11 222 4,6,7,11 265 11,12
137 - 4,11 180 6,12 223 2,5,7,8,9 || 266 8,9,11
138 5,7,8 181 9,10 224 4,8,12 267 4,7,9,11
139 3,7,9 182 5,6,11 225 15 268 | 3,5,7,8,11
140 2,6,10 183 3,5,7,10 226 4,5,8,11 269 10,13
141 4,5,10 184 2,6,12 227 5,9,11 270 7,10,11
142 5,6,9 185 8,11 228 3,5,7,8,9 271 4,5,7,9,10
143 2,3,7,9 186 4,7,11 229 6,7,12 272 4,16
144 12 187 2,3,5,7,10 230 7,9,10 273 4,7,8,12
145 8,9 188 | 1,2,3,5,7,10 || 231 | 5,6,7,11 274 7,15
146 5,11 189 5,8,10 232 6,14 275 5,9,13
147 3,5,7,8 190 | 4,57,10 || 233 8,13 276 | 5,7,9,11
148 2,12 1911 56,79 234 7,8,11 277 9,14
149 7,10 192 | 156,79 || 235 | 45789 | 278 | 3,10,13
150 3,4,5,10 L 193 7,12 236 3,5,9,11 279 5,6,7,13
151 3,569 |l 194 7,8,9 237 4,10,11 280 |  6,10,12
152 4,6,10 195 5,7,11 238 6,9,11 281 6,8,9,10
153 3,12 196 14 239 3,7,9,10 282 7,8,13
154 4,5,7,8 197 49,10 240 3,5,6,7,11 283 3,7,15
155 5,7,9 198 4,5,6,11 241 4,15 284 3,5,9,13
156 2,4,6,10 199 | 3,4,5,7,10 242 5,6,9,10 285 8,10,11
157 6,11 200 6,8,10 243 5,7,13 286 6,9,13
158 4,5,6,9 201 4,811 244 10,12 287 6,7,9,11
159 2,5,7,9 202 9,11 245 8,9,10 288 3,5,6,7,13
160 4,12 203 3,7,8,9 246 5,10,11 289 17
161 5,6,10 204 3,5,7,11 247 4,5,6,7,11 290 11,13
162 4,5,11 205 6,13 248 4,6,14 291 5,8,9,11
163 3,4,5,7,8 206 6,7,11 249 6,7,8,10 292 6,16
164 8,10 " 207 4,5,6,7,9 250 9,13 293 7,10,12
165 4,7,10 208 8,12 251 7,9,11 294 7,8,9,10
166 6,7,9 209 4,7,12 252 3,5,7,13 295 5,7,10,11
167 3,4,5,6,9 " 210 5,8,11 253 3,10,12 296 10,14
168 -2,8,10 211 4,57,11 254 6,7,13 297 | 4,6,8,9,10
169 13 212 4,14 255 5,7,9,10
170 7,11 213 7,8,10 256 16
171 4,5,7,9 214 3,6,13 257 7812 - J
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Fig. 2. Some f-representations of the numbers from 129 to 297 for f(i) = i




f(1) no 0 | no + f(30)
(1 +1)/2 3 [ 9 79
2 41 52| 9 134
(t+1)72 -1 157 | 13 352
i(i +1)(i +2)/6 559 | 16 1375
i 12759 | 25 28384

Fig. 3. Several other instances of application of Theorem 4

(we established in this way the existence of exactly 2788 positive integers that are
not f-representable in the case of f(i) = 13). It is easy to design the process so
that the output includes also the complete list of the non-representable positive
integers.
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