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We give a simple proof of the Rubinstein — Walsh coincidence theorem that the
classes of functions (1) and (2) can be represented in forms (4) and (5), respectively.
We prove also that the more general classes of functions (8) and (9) can be represented
in forms (4) and (5), respectively.
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1. Let Ry(D) and R3(D) denote the classes of rational functions
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In [1, Lemma 2(a)] Rubinstein and Walsh prove that the functions (1) and (2) of
the classes R)(D) and Ry(D) can be represented in the corresponding forms

f(z) = —
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(4)
for |z} > 1, and .
o) = 1= A@=a(3), ©)

for |z| < 1, where a(z) and f(z) are analytic functions with |a(2z)| £ 1 and |8(z)| £ 1
for [z| > 1 and |z| < 1, respectively. First we shall give a simple proof of this
theorem of Rubinstein and Walsh.

Proof. For convenience we shall examine the class Ry(D) only. From (2) and
(3) we obtain
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The inequality (6) shows that the function cp(z)/ z is subordinate to the function
1/(1—-2) in [z} < 1,1 e

p(z) , 1
pal || < 1. )
According to the subordination (7) there exists an analytic function 8(z) in |2{ < 1
satisfying |8(z)] £ 1, for which the representation (5) holds. If in (5) we replace z
by 1/z, we obtain (4). :

This completes the proof.

2. Let M; and M, denote the more general classes of meromorphic functions
with representations (4) and (5), respectively. In [2] we introduced the classes
S1(D) and S3(D) of analytic functions
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respectively, where D := {¢ | |{| £ 1} and p(() is a unit mass measure on D, i.e.
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If in (8) and (9) the unit mass is concentrated at n points of D, then, having in
mind (10), we obtain sets R,(D) and Ry(D) of rational functions (1) and (2) with
the conditions (3), respectively. In the end of our paper [2] we put the problem
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whether the classes S1(D) and S2(D) are corresponding subclasses of the classes
M, and M; or not. Now we shall solve affirmatively this problem.

Theorem. The classes S)(D) and S3(D) of functions (8) and (9) are corre-
sponding subclasses of the classes My and M, of functions (4) and (5).

Proof. For convenience we shall examine the class Sa(D) only. From (9) and
(10) we obtain analogously

z) — [z¢]?
Re“’() 1 //Il Igllzar(c)>0, 2] < 1. (11)

From (11) we obtain successively the subordination (7) and the representation (5)

for the functions ¢(z) determined by (9) and (10). By replacing z by 1/z in (5),

we obtain the representation (4) for the functions f(z) determined by (8) and (10).
This completes the proof of the theorem.

Remark. If in (8) and (9) the unit mass is distributed on the circle C, || = 1,
then, having in mind (10), we obtain the sets Sy(C) and S3(C) of Schwarz analytic
functions

f()-/"”‘“ € S(C), ol > 1,

0

and
o(2) = f(l) - Zf‘i‘itl €5(0), <1,

respectivély, where u(t) is a probability measure on [0,27].
Ifin (8) and (9) the unit mass is distributed on the segment [—1, 1}, then, having
in mind (10), we obtain the sets Ny and N; of Nevanlinna analytic functions

1
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- respectively, where p(t) is a probability measure on [-1, 1].
According to the proved theorem the separate classes S;2(C) and N; are
corresponding subclasses of the classes M; ; as well.
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