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The system describing the motion of a particle in a potential field shaped like
the bottom of a champagne bottle (more precisely, an S' symmetric double well) for
the KAM-theory conditions is studied. We show that the Kolmogorov’s condition is
fulfilled everywhere out of the bifurcation diagram of. the energy-momentum map and
we make researches for the condition of isoenergetical non-degeneracy.
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1. INTRODUCTION

The question of the integrability of Hamiltonian systems is one of most impor-
tant problems of the classical mechanics (see [1]). Since the end of the last century
it has been known that most of the Hamiltonian systems are not integrable. The
main problem after this result is to study Hamiltonian systems which are close to
integrable ones. The most powerful approach to non-integrable systems is the per-
turbation theory and especially the KAM-theory. Important for the KAM-theory
are the conditions of non-degeneracy and isoenergetical non-degeneracy.

Before giving a brief account of KAM-theory, let us display the structure of
the integrable Hamiltonian system (see Ch. 2 and [1] for details). The phase
space of a general integrable Hamiltonian system with n degrees of freedom is
foliated into invariant manifolds, the typical fiber being an n-dimensional torus on
which the motion is quasiperiodic. As most of the motions of generic integrable
systems are quasiperiodic, it is a logical question whether small perturbations can
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destroy them. KAM-theory [1, 3] gives conditions for the integrable systems which
ensure the survival of most of the invariant tori. One typical condition is that the
frequency map should be a local diffeomorphism. For any integrable Hamiltonian
system defined by a Hamiltonian H one can introduce at least locally near a fixed
torus canonical co-ordinates I, ..., In, ©1,...,9n, such that I = (Iy,...,I,) maps
a neighbourhood of the fixed torus into an open subset of R” and ¢ = (¢1,...,¢n)
are co-ordinates on any of the nearby tori. Moreover, the first integrals become
functions only of I, ..., I,. The theorem stated by Kolmogorov [3] maintains that
~in the perturbed system

H(I,p) = Ho(I) + eHy(1, ) ,

defined by a small Hamiltonian perturbation of Hy, most of the tori sustain the
perturbation, provided that the Hesseian

8% Hq )
det 1.1
(55 (L1)
is not identically zero. The measure of the surviving tori decreases with the increase
of both the perturbation and the measure of the set, where the above Hesseian is

sufficiently close to zero.
In this paper we study the frequency map

I = (wfI),...,wa(D)),

where

wi(I) = aafjo i=1,...,n,
for the studied model and prove for it a stronger result. We prove that it is regular
for all points out of the bifurcation diagram, i. e. for all non-critical values of the
energy-momentum map.

Another condition of this type stated by V. Arnold and J. Moser (see [1,
App. 8]) is that of the isoenergetical non-degeneracy which we explain further. Let
us fix an energy level Hp = hp. If we get the Hamiltonian Hp in action variables,
then we can define the following map Fj, from the (n — 1) dimensional variety
H{'(ho) into the projective space P"~1:

Fry: I — (wi(I):...:wa(D)).

If the map Fh, is a local diffeomorphism, we call this condition an isoener-
getical non-degeneracy. Analytically, the isoenergetical non-degeneracy conditions
are

92H, 0H,

det | 0% O | 4 (1.2)
OHo
a1
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Some years ago the potentials of the form of an S* symmetric double well were
of interest to field theorists studying the Higgs field. In the present paper we study
this condition for a model of a particle moving in a potential field shaped like the
bottom of a bottle and determine thoroughly the set where it is violated for any
energy level. It turns out to be either empty or consisting of two points. Of course,
again the measure of the surviving tori depends on the measure of the set, where
the above determinant is too close to zero.

Usually, it is difficult to check the conditions (1.1) and (1.2).

As far as I know, it has only been established for the spherical pendulum (see [4,
5]), Neumann'’s system, the geodesic flow on the ellipsoid (see [6]). The Kolmogorov
condition for the Kirchhoff Top was proved in [9]. The condition of isoenergetical
non-degeneracy for the problem of two centres of gravitation was checked in the
paper [8]. We shall give the conditions (1.1) and (1.2) in terms of Abelian integrals
and reduce the problem (as in {4, 5]) to analysis of these reminiscent and the study
of limit cycles problems (see [7]).

2. THE ACTION VARIABLES

In this chapter we introduce some notations which we need in order to state
the problem. We follow [2] and [4].

Let (M,w) be a symplectic manifold of dimension 2n, 1.e. M is a smooth
manifold and w is a closed differential form of rank n. Let H be asmooth function on
M. Denote by Xy the Hamiltonian vector field corresponding to the Hamiltonian
H. Let also f; ... f, be n functions in involution, i. e.

{fi, fiY=X5,£i=0, ji=1,...,n
Define the level set
M.={m : fj(m)=c; i=1,...,n},

and suppose that the differentials are linearly independent on M.. The following
theorem gives complete description of the manifolds M, together with the natural
co-ordinates near them.

Theorem 2.1 (Liouville — Arnold). Suppose M, is a compact component of
M,.. Then:

a) M. is invariant under the flows generated by Xy, , i=1,...,n;

b) there are a neighbourhood U of M, and a diffeomorphism J : f(U) —V, so
that we have I = J o f, and the symplectic form w in the co-ordinates (I, ) takes
a Darbouz canonical form:

wzz:dcp/\dl. | (2.1)

(See [1] for the proof.) Recall that I, ¢ are called action-angle co-ordinates.
Following [2] and [4], one can construct the action co-ordinates. Let (p,¢) be
local Darboux co-ordinates such that the level surfaces ¢; = const meet transver-

sally M.. We suppose that the two-form w is exact, w = do, where o is an one-form.
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Define a basis of cycles ¥;(c), j = 1,...,n, in the homology group H(M., Z). Then
the action variables are given by

Iy = f o, k=1,...,n. (2.2)

10,

We define a model using a potential in the plane by
V(r)=rt—r? (2.3)

where 72 = 2 + y? and z and y are the Cartesian co-ordinates in R2. The Hamil-

tonian of a particle moving in the plane under the influence of this potential is
1 2
H = (o +py) + (2" +9%) — (a* +") (2.4)
in the usual canonical co-ordinates (z,y, ps,py). We change (2.4) into polar co-
ordinates
r=rcosfl, y=rsinf.

Introducing the corresponding momenta p, = p, and ps = p,/r?, we obtain the
Hamiltonian in the form

H= % (pf + rlng) +rt -1 (2.5)
Now dpg/dt = {ps, H} = 0, since 8 is cyclic. Hence G = py is the conserved angular
momentum. This means that the Hamiltonian system is completely integrable,
because we have the two conserved quantities G and H, whose Poisson brackets
vanish.
We want to understand the geometry of the map J from P = R* (the phase
space) to R?, which is given by

JIP—‘R‘2 : (z;y:pz:py)—’(gvh)’

where H = h.
The critical values of the map J are (0,0) and the curve is parameterized by

(g,h) = (:i:\/4r6 - 92rt | 30t - 2,-2) o> 9=1/2

(see [2] for proofs). Denote by U, the set of regular points of the map J (Fig. 1).
For points (g, k) € U, the level surface determined by the equations H = h, G =g¢g
is a torus Ty ». Choose a basis 71, 72 of the homology group H;(Ty n, Z) with the
following representations: for +; take the curve on T s, defined by fixing r and p,
and letting 6 run through [0,27]; for 2 fix # and p, and let r and ps make one
circle on the curve by the equation

1 1
h=—2-<f+r—2p§>+r4—r2. (2.6)
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Fig. 1. Image of the map J

Now we can define the action co-ordinates I, I by the formula (2.2), where

o = py ANdO + p, Adr, w = do = dpg A d6 + dp, A dr. (2.7)
We have
L = fpa df = 27rg, (2.8)

7
ra . g2 ‘
12=}£p,dr=2/n 2(h+r —r4-5’3)dr, (2.9)
72

where r; < r9 are the roots of the equation p, = 0 (see [2] and [4]). Put

z=r y=pr, y =2hz+22-2-4g% (2.10)
Denote the oval of the curve
I'={(y,2) : ¥’ =2(hz+2* - 2%) - g%} (2.11)
(which exists for all (¢, k) € U, ) by 7. Then we have
W(h,g) =1 = /-ifdz. (2.12)
2
Let us show what is the meaning of r; and ry. If the polynomial P(z) = —2z3 +

322 + 2hz — ¢? has three real roots z; < z; < z3, then to r; corresponds z, and to
ro corresponds 23 (Fig. 2) in the proimage transformation (2.10).

A

2 22 23

Fig. 2. Image of P(z)
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Lemma 2.2. The polynomial
P(z) = —22° + 322 + 2hz - ¢*

has three real different roots for all (g, h) € U,.

3. STATEMENT OF THE MAIN RESULT

Denote by H(I1, I>) the Hamiltonian of our model in action co-ordinates. Our
primary aim is to state the next theorem.

Theorem 3.1. For (g,h) € U, the determinant

0% H O’H
o1r 8Ll
det 92 i (3.1)

31,01, 012

does not vanish.

The condition (3.1) introduced by Kolmogorov [3] is crutial in KAM-theory
(1, 3], dealing with the existence of invariant tori for perturbations of integrable
systems. The procedure by which the invariant tori are constructed excludes the
points, where the determinant (3.1) is violated, together with their neighbourhoods,
whose measure is proportional to the perturbation (see [1]).

We shall give the condition (3.1) an explicite form in terms of Abelian integrals
of the second kind. Using expression for I, I3, we can determine G, H implicitly
from the equations

L =2G, L=vG, 0. (3.2)

Lemma 3.2. The following formula holds true:

OH 9%y 8%y
oy \* o17  OL0I 8%h  Bhdyg
2 (09 1 _
(2m) (ah) det o oy det 0y 6% (3.3)
0,01,  OI2 dgbh  0g?
(For the proof see [4].)
Using (7], we have
oY [ dz |
55_/y¢0 39

in U,.
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Lemma 3.3. For all (g,h) € U, the determinant

0%y 9%y
9%2h  Ohdyg
D = det
a2y a2y |7
0g0h  0g?

This condition is equivalent to Theorem 1.

We formulate the condition of isoenergetical non-degeneracy in the next the-
orem.

Theorem 3.4. 1) For h € (—1/4,0) U ((7v249 — 1) /600, +00) the map
Fn:H Y (A)NU, = P, Fy(l, 1) = (Hy, : Hyp,)

is reqular everywhere;

2) For h € (0, (7+/249 — 1)/600] the map Fy has ezactly two critical points.

Next we would like to show that the entries of D can be represented as elliptic
integrals. If we differentiate ¥(h, g) twice formally, we get the following expressions:

0%y zdz
) (3.5)
Y
%y dz
_axa—g— =9 y3 ) (36)
v
o __ [
dg zy’
Y

T .

Y v

2 2 2 2
.3_2=_/5‘f£~g/2_di_—_../(y t9) g, = g [BEERZ 40 3)
Y v

The differential forms containing y~3 have poles along y. There is a standard way
to get rid of the poles on the integration path and we remind it below. Consider

I‘E’h as an elliptic curve in C defined by the equation for I'y . Topologically, it is a
torus, whose one point is removed (see [4]). Now we deform the cycle 7y on I‘E’h into
anew cycle ¥/ (Fig. 3) on which the function y has no zeroes. Of course, during the
deformation the differential form yz~! dz must have no poles. Then by Cauchy’s
theorem the function ¥(g, h) can be defined by the integral (2.12), taken on the
path of integration 4’ instead 4. With this definition of ¥(g, h) the derivatives are

well defined. We denote again 4’ by 7.

147



71
Fig. 3. The deformation of the cycle ¥

Let

wj(g,h) = j=0,L (3.8)

y3

The next lemma gives a representation of D as a quadratic form in wq, w;,
which we shall need throughout this paper.

Lemma 3.5. The determinant D has the representation

D= %wl(Qhwo + wy) — g?wd. (3.9)
Proof. We have
Py
aRE =~
(see (3.5)),
' 9y _ Iy w
Ohdg _ dgoh _ IU°
(see (3.6)), )
0 "b = —2hwg — wy +2/-—-dz
dg%

(see (3.7)). We need an expression for
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Let transform this integral in the following way: we have

22° = 2(hz + 2%) - g% — ¢*,

R
= %!za %_/-;3- —-/ dy = wo+§w1,

because
y
pe

9%y 2h 4 4h 2
5;2— = -*2’"00 - 2W1 + ?wO = §w1 = ——3-wo - gwl,
this gives the representation (3.9).
We see that D does not depend on the sign of g. That is why it is enough to

prove Lemma 3.3 only for ¢ > 0.

Then

4. PICARD-FUCHS EQUATIONS

Lemma 4.1. Let ¢ = 0. Then the functlions wy and w, satisfy the following
system of Picard-Fuchs equations:

oh(4h + 1)9@ = ~2(Th + 2)wo + 5wy, (4.1)

24h + 1)9;“’—‘ =wo— 10wy, (4.2)

Proof. Differentiating the expression (3.8) with respect to h, we obtain

dwk z* '*’1

=0,1. (4.3)

Put ¢ = 0. Then we transform wy in the following way:
2 _,3
Wo = iij:fidz:z/(hZ‘*‘Z Z)
y y° Yy
v v v

_Z’_l_dwo -gdwl _2/23
3 dh 3 dh v

dz,

¥
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dz = 3/ d22° 3/ d(2(hz+z2) y)

z 2 z
S NP A
3/y52 3/y4y

Y

5

Sl "

i

2h dll)o 4 d'lﬂl 2 -3
"Fdh‘§dh+§/z@
J

Wo.

2hdwo édwl_Q/E__Z’_ld‘wO_‘idwl 2
9 dh 9dh 9) ¥ 9 dh 9dh 9

Then A
_ _?ﬁdwo 2dw1 4.2k 2h dwo ééﬂ+ 2
| WTT3dh 3dh T 9 dh 9dn Q™
This gives
_ 4h dwo 2 dwl
WOETTOR T 7 dh (4.4)
In the same manner we transform w; and obtain
_ 2hdwy 28h + 8 dw,
“=T35dh T T35 dh (4.5)
dwg dw1
Now solving (4.4) and (4.5), for —— 7y and - we get the system (4.1) and (4.2).
We also need the function ' '
‘U)l(h, 0)
h) = —2_1Z .
o) = (456)
Lemma 4.2. The function o(h) satisfies the Riccali’s equation
do 2 . .
2h(4h + I)E = —50°+4(h+ 1)o + h. (4.7)
Proof. Obviously,
do 1 dw, dwo _ 1 9
When g = 0, the expression for D factors is
2 |
D= 30001, (4.8)

where o1 = o + 2h.
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From o; we obtain the Riccati’s equation

d0’1
dh
We need also some other functions both for the study of ¢ and o1, and for the

case g # 0. In order to introduce them, we put the family of curves Iy ; into the
normal form

2(4h + 1)—— = —50% + 4(6h + 1)o; + 8h? — 3h. (4.9)

T, = {(u,v) € C: v2=2(u®~3u+p), p€(-2,2))

. 1
~ by the transformation z = —t + py=avi= Bu, a = §3/2, where

B = -%\/3h+1, ) (4.10)
_ 1L (fh 2 g2 .
| P—§§(§+§7—'2—7), (4.11)|
p € (—2,2) (see [7]): In these variables the integrals wo(g, h), wi(g, h) become
B du |
Wo=~73 / el (4.12)
- v(p)
B —Pu+(1/3
v(p)
We introduce the new functions |
du udu
0o(p) = / = )= | — (4.14)
¥(p) ¥(p)
and their ratio 0(p)
i\p
= —=, 4.15
Q(p) O(P) ( )

In these notations we have

o(h) = ~Be(p(0, ) + 5 .

Lemma 4.3. 1) The functions 8o(p), 01(p) satisfy the Picard-Fuchs system

6(4 — 192)90:%0 = Tpfo + 106, (4.16)
64~ ") = 1400 + 59t (4.17)
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2) The function go(p) satisfies the Riccati’s equation
d
34~ p') g =7~ pe~5¢ (4.18)

The proof is the same as the one of Lemma 4.1 (see [4]).

5. ASYMPTOTIC BEHAVIOUR

Lemma 5.1. The following formulas hold true:

lim o(p) = 1, (5.1)
lim o(p) = + (5.2)
im_o(p) = £, | :
lim o(h) = — (5.3)
h——1} 10’ )
,{l-l_'.l‘(l) o(h) =0, (5.4)
hJ-}Too o(h) = | (5.5)
. o(h) _
e Th (5.6)

Proof. The proof of (5.1) and (5.2) is given in [4]. To prove (5.3)-(5.6), note
that
hll.tzl% p(0,h) = -2, 'l‘l_r'r(x)p(O, h) = 2.

Then we obtain

Jim, o) = = lm, 9 im, () + 3 = -

Next we have

1 1
pmo(h)=-3+3=0,
. o(h) _ B 1 -
hl}r:\w —5 = h_l}r:xoo h b hm 9(p)+ -~ hm 0. 5 +0 0.
And finally,
hhToo o(h) = - hm g hm g(p) %: —00.
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6. KOLMOGOROV’S CONDITION

Let us first consider the case g = 0.

Lemma 6.1. The functions o(h), o1(h) satisfy the following inequalities:
1) in the region —% < h<0,0(h)>0and oy(h) <0;

2) in the region 0 < h < 400, o(h) < 0 and oy(h) > 0.

. e : 1
Proof. First we prove that o(h) is positive in the interval (_Z , 0) and nega-

tive in (0, +00). Let h € (—-:11- , 0) and suppose that h; is the first zero of ¢(h) in
this region. Then, using the Riccati’s equation(4.7), we have

1

U'(hl) = m >

0.

The function ¢’(h) is continuous. That is why we obtain that a neighbourhood
of point h; exists, where o/(h) > 0. Then the function a(h) is strictly increasing
in this neighbourhood. Using(5.3), we obtain that a point ho < h; exists, where
o(ho) = 0: an obvious contradicfion. In the same manner we obtain that (k) can
have no zero in the interval (0, +00). Using Lemma 5.1, we obtain that o(k) > 0

for h € (—%,0) and o(h) < 0 for h € (0,+00) (see Fig. 4). In the same way we

o . 1
obtain that the function oy (k) is negative in the interval (_Z’ O).

Fig. 4. Image of o(h)

In order to proof that o1(k) > 0, we need the next proposition.

Lemma 6.2. The function g(p) is decreasing on the interval (—2,2) and
7
1<e(p) <3 (6.1)
(For proof see [4].)
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We have

o1(h) = —Bo(p(0, b)) + % +2h> —f+ % +2h. (6.2)

Using(4.10) and the substitution v/3h + 1 = t, where t € (1, +00) for h € (0, +00),
for the right hand side of (6.2) we obtain the new function

n(t) = 2t> —t — 1.
We shall prove that n(t) > 0 for t € (1, +00). Indeed,
U’(t) =4t -1 )

that is why the function #(t) is strictly increasing on the interval (1, 4+00). Now we
have

n(t) > n(1) = 0.

We obtain that o1(h) > 0 for h € (0 +00). This completes the proof of Lemma 6.1
(see Fig. 5). - '

o

A 4

Fig. 5. Image of o1(k)

Corollary 6.3. I’ is negative for ¢ = 0.
We turn to the general case g > 0.

1
Lemma 6.4. 1) For h € (—Z’O) U (0, +00) and g > 0 we have the represen-

tation

2
D= §wgﬂ2F(p’ﬂ);

where _ !
F(p,B) = o> — 680+ 38p — 2. o (63)

2) The functions B(h) and p(h,g) map the set
0-n{(@0): he (-3.0)U0+0)}
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diffeomorphically on the set

{(p,ﬁ) Be (é ;)U(% +oo), p € (-2, 2)}.

Proof. For D we have (using (3.9), (4.10) and (4.11))

2 1 1
D = §w1(2hwo+w1)—g?w§=— 3(2 ("59’*"5) (2'1-'59-*-%)—392)

Lo

- %wg (w“ 12ﬂ39+262—3 39)
1 4 2 2 3 2 2 2
= Fug (28% —- 128 g—§(3h+l)+2ﬂ + 68°p

%wg (28%0° — 12830 — 4% 4+ 64°) = woﬁ2 (o* —6Be+38p-2).

Lemma 6.5. For all (p,b) € V, the function F is negative.
Proof. We have ' .

?f.-_ﬁ + 3 22_.1;_‘..
56 = TP 3pdp

because o' < 0 (see Lemma 6.2).

= —60' +3> 0,

That is why we obtain that the function — is a strictly increasing function

B
of p € (=2, 2). Now we have
oF oF
il 2 —60(2) +3.2=0,
aﬁ(p ,B) < ﬁ( ,B) = _9( ) |
then F(p, ) is a strictly decreasing function of 8 (8 > %) We obtain

1 .
F(pn@)<F(p)'6_)=92“9+g"2’

but -1 < g < 1 and —% < —p < —1. So now we obtain
p , 49 1
— L iy — %< ——
g+2<0, 0 <25 0’ < 55

hence F(p,3) < 0. This completes the proof of Lemma 6.5 and together with that
the proof of Theorem 3.1.
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7. ISOENERGETICAL NON-DEGENERACY

Our aim is the proof of Theorem 3.4. Here we find an expression for the
function Fj in the terms of elliptic integrals. We have F, = Fj(g), h = const.

Lemma 7.1. Let (g,h) € U.. Then Fy has the representation

1 oy dz

Fp(g) = -~2~7;-—(y, h)=g ot (7.1)

5

The proof is straightforward.

Lemma 7.1 shows that we have to determine the zeroes of the function

- 8%y 0
33 2(9, )3_2%51(9)

: 2
for a fixed h. We shall study the curve of zeroes of the function %—g‘—zl)-(g,h) for

(g, h) € U,. The statement of the theorem easily follows from the properties of this
curve. Because of the symmetry of the set U, with respect to the line g = 0, we
concentrate our attention on the set U* = U, U {g > 0}.

2

Lemma 7.2. For g =0 and (0,h) € U, the function %ﬂlg does not vanish.

The proof is a simple application of Lemma 6.1 and (3.4).
Now let g # 0. It is clear that we study only the case g > 0. We have

0%y 2 w) 2 1

We know that @ # 0, that is why we obtain the equation

1 11 1 ‘
e T - 7.2
o—68+ 35 0, ﬂ€<6 3) (3,+00), (7.2)

= 63 I<p< !
Then we get
1 7+249
PE (5 T] -

Proof of Theorem 3.4. Let 8 € %, isgoﬂ . Then the equation(7.2) has
exactly one solution p(f8) € [—2,2], as Lemma 6.2 implies. This defines a function
B — pB), B € (; ; U (31-,-4-00 , which is strictly increasing. Our aim is to
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2
prove that the curve in U?, defined as the zero-locus of the function ——. has

992’
7+\/2_4‘](h

exactly one point of intersection with the line h = hq for hg € (0 500

1 74249

image of the interval g € ( 360 ] by (4.10)). Suppose there are two points

g1 and g, for which
62 . '
@ ) =0, j=12

Then the images of these pomts (9, ho) by the transformation (4.10), (4.11), which

1 v249+7
3’7 60
Because of g(p) being strictly increasing, we obtain p; = p,. But ¢ > 0 and using
(4.10) we have g; = g2. This finishes the proof of Theorem 3.4.

we denote by (p;, bo), J = 1, 2, satisfy the equation (7.2) for 8y €
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