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Christo Iliev. ON THE NON—INTEGRABILITY OF A HAMILTONIAN SYSTEM RESULTING

FROM A PROBLEM FOR ELASTIC STRING

In this paper the problem of nonlinear vibration of an elastic string is considered. - The
problem s reduced to a system of ordinary differential equations of Hamiltonian type The
analytical non-mtegrab;hty of the correspondmg Hamlltoman system in the case of two degrees
of freedom i is proved (

1. INTRODUCTION AND MAIN RESULTS

- The equation govermng the free lateral vibrations of an ela,stu: stnng which -
. ends are restricted to remain a ﬁxed distance apart is given by

2 . 2 2
1) pha W',__.___ Py + Eh ] (8&:) 4o | &
- N ’ 0
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“with initial and boundary conditions

| w(0, z) = wg(a:} éc.u_(gt,_m) = wl‘(i?);
@ . ‘ (?gw(t 0) | Aw(t, L) I
' wt, 0) = —55—= wit, L) = —5—5— = 0,

where w is the measure of the lateral deflection of the string, z is the space co-
ordinate, t is the time, E is the Young’s modulus, p is the mass density, A is the
thickness of the string, L isits length, and Py is the initial axial tension. The Cauchy
problem (1)-(2) was considered by Nishida [9] under the essential assumption that
the initial data do not contain infinitely higher harmonics, i. e. there exists a natural
N such that the functions w and w; can be represented as -

. .
' . (kT km
wo(x) = ;ak sin (T:e> wl(x) = z by, sin ( 7 ) :
where ai, by, k = 1, ..., N, are real constants. The SOhlthIl‘ of this problem is.
easily proved to exist uniquely in the large in time, see [9] and references therein.
Besides, if certain harmonics are not presented in the initial data, then they do
not appear in the solution in the course of time, 1 e. it is natural to search for the

soiutlon of the kind

| (3) A Wt z) Zuk(t) sin (—:;:)

‘Substituting (3) in the integro-differential equation (1) leads to a Hamiltonian sys- -
tem of differential equations for the functions uj(¢). By means of the Birghoff
transformation and KAM theory Nishida [9] obtained a result for conservation
near the equilibrium of the conditionally periodic motion. :

Here we shall consider the lateral vibrations of an elastic string subjected to an
external volume forcmg caused by the medium. In this case the ‘equation of motion
is given by : :

9% Trow\? . | o T
0 : ’ S

Where c1, €2, hi, hy are some real conétants The right hand side term in (4)
“stands for that additional effect. Suppose however that the initial and boundary,
conditions are given in the form .o ) :

N : . N
e k 5
- w(0, z) = Zak sin ({—x) , W:E aknsm (fgvm) ,
(5) N k=1 k=1 B
o 0%w(t, 0) Bzw(t L)
W, 0)= = = e |
The existence and uniqueness of the solution of (4)—(5) ‘may be attained in the
- framework of the nonlinear perturbation theory for linear evolution equations again,

.

wit, L) = = 0.
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see [9] and references therein. Thus, the solution of the Cauchy problem (4) — (5)
has a similar to (3) structure

(6) A N w(t, z) = Zuk(t)sm(l‘a:)

Subsmtutmg (6) in the lntegro-dlfferentlal equation (4) we get after sa,mphng the
system of differential equations

() + [(31 + = le 2(1‘)} k2uy(t) = [62 + —Elgu (t)} g (1),

(7 . = :
’ ( ) uk(O) = bk, uk(O) = ag, C : ' T

k=1 ..., N. |
It is clear that the system (7) is equivalent to the Hamiltonian system
| A . 8H |
Up = =,
' - ’ n avn
(8) ' . _ OH
Up = — )
Ouy,
n=1 ..., N

~ with Ham'il‘ionian function

N ., céN2~ hy N..V222,h2N 2V2A,
SN +2>:1“f“n"52"‘“+“8“ o) —F (L)

n—l n=1 n=1
o . N . n N 2
where the terms 21 Zn%i 2 Z + - (Z n ) _— (Z ui) ~and
. n=1. n=1 : 1 n=1 '
1 N ’ ]
3 Z stand for potential and kmemc energy, correspondmgly.

Our main result concerns ana,lytlcal non-integrability of (8) in the case m’ two
degrees of freedom.
~~ Theorem 1.1. Sﬁppose ;he consianis c1, {:2, hi, and hy satisfy

C2— 4¢q ' . g \
(D) : P <0 and (H) \/ ho o h1 is not odd, '

then the system
. [ hy—hr hy ‘
Uy =1, V1= ( 2 1)11?-{-(—3—2};)uluz—{-(c?—-cl)ul,

. . _{h h -
g = Uz vgz("—z*8h1> u§+(lf2h)ﬁ%u2+(62~461)1£2

t

KON
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obtained from (8) for N =2 does not possess an additional holomorphic, function-,
ally independent of H first integral.

As it is easy to see, the theorem does not result in the substantlal case of
tg = hy = 0, which corresponds to the considered by Nishida case of free vibration
of an elastic string, presented by (1). For that reason it is a subject of the next

theorem.
Theorem 1.2. If hi #0 ihen the sysiem ‘

: , , hl ' -
(10) =y, 0= -—2"’&1 2h1u1ug - cruy,
uz = ¥y, ‘i’ = —-8}1182 —— 2111'&1&2 - 461‘&2

‘does not possess holamerphzc functmnally zndependent of the Hamzlicman H first

integral.
Since the theorems above are obtained by means of the algebraic Zigln’s -
method, we shall present in the next section a brief summary of his technique.

_ In section 3 the proof of Theorem 1.1 will be given in details. As an intermediate
result, the solution of the Cauchy problem (5)—(6) will be found in the case N = 1. °

The proof of the Theorem 1.2 will be explained in short in section 4, where addi-
tional assertions concerning integrability of the system (9) will be stated. In the
last section we shall derive also a conclusion for the algebraic non—mtegrablhty of

~(9) in the framework of the definition given there.

2. DESC{RIPTION' OF THE ZIGLIN’S METHOD

We shall state the two main Ziglin’s theorems as they are originally formulated
and proved in [11], nevertheless that for the proof of our main results we need quite

‘a weak one than their versions which may be found in [7].

Let us consider the analytlc Hamlltonlan system’
(1) . z=w(z),

defined by Hamiltonian H : M?* — C. Let <p(t) be anon-—trwlal solution of (11) and
I’ be its phase curve. Consider the restrlctlons to ITrM of equatlons m variations

~for equatlon (11):

Let F TrM/TT be the normal bundle of I, and 7. M —>F be its progectlon
Equa,tlons ,
(13) . i=m(TE)r ), neF,

induced by (12) are called equations in normal variations. These are Hamiltonian
- equations defined by the linear Hamiltoriian dH o 7~!, which is induced by H. The

level set F, = {n € F|dHor™! = p}, p€ C, of the integral dH on~1 is called
reduced phase space for (13). ' .
Consider the reduced equatxons in varlatlons

) a=me@E)T), e f,
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Let xo, 21 € I'. Then to each continuous path a : [0,1] - I, a(0) = zo, a(1) = x4,
corresponds symplectic transformations g(a) : Fpj, — Fp),., defined as follows.

| Let Q = {(t, p(t)} C C x M be the integral curve of the solutlon z = p(t) and
the maps Pr : (¢, <p(t)) — o(t), Pc : (t, p(t)) — t are the projections in M and C,
respectively. Let & : [0, 1] —  be the lift of o with respect to Pr,i.e. Préa = a.
Then g(a) : Fpy,, — Fp|,, is the map in virtue of (14) at time T'= Pcod: [0,1] — C.
On account of the local single valuedness of solution of (14), the map g(«) does
not change under the homotopy of & with fixed end points. When zg = z; we get
an antihomomorphism g : 71(T') — Aff(F}|, ) from the fundamental droup (T
of the phase curve I' into the group Aff(Fyp,, ) of affine transformations of the
fiber Fyp|, . The image G = g(m1(T)) of thls antihomomorphism is called 'reduced
monodmmy group.

Definition 2.1 [2]. A symplectic linear transformation A © C* — C’z’c is
called resonant if its eigenvalues Ay, ..., Ag, Al_l, . A;‘l salisfy an equation of

the kind AT ... A0* = 1 where my, ..., my are integers for whzch E m? # 0.
: _ | — ‘

Theorem 2.1 [ 1]. Suppose the monodromy group of T’ coniams a nonreso-
nant symplectic transformation g. The number of meromorphic first integrals of
(11)in a connected neighbourhood of the curve I' and which are functionally inde-
pendent together with Hamiltonian, does not exceed the order of mtegmbzlziy of the
monodromy group.

The next theorem provides restrictive condltmns in order the system (11) to
be completely integrable! :

Theorein 2.2 [11]. Suppose that the monodromy group of the curve I' contains
a nonresonant transformation g. In order that the Hamiltonian system (11) has .
n — 1 meromorphic first integrals in a. connected nez’ghbourhood of T', and which are
~ functionally mdﬁpendcnt toyether with the Hamillonian, it is necessary that any
other transformation g’ from the monodromy group has the same fized point and
iransforms the set of ezgendzrectwns of g into iself. If none of the eigenvalues of
g form a regular polygon in the complex plane centred at the origin, then g and ¢’
commaute. - ' ‘

3 PROOF OF THEOREM 1.1

To apply the Zlglm s method we have to ﬁnd an elliptic solutlon of the Hamil-
~ tonian system (9). It 1s easy to see that such family of curves for (9) is gwen
by

(15) P(c) D v = (h2 1 hl) ui + (c2 = cl)'uz1 up = v = 0.

We shall solve explicitly (15), and we shall point at a nonresonant transforma- - -
tion from the monodromy group associated to that solution. Furthermore, if the
system (9) possesses an independent of its Hamiltonian first integral, then any other
element of the monodromy group preserves its fixed point and the set of eigendi-
rections. Our goal will be to establish that it does not match with the assumptions

(I) and (II).
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In the proof we shall con31der that ho—hy > 0 and ¢ca—c; > 0. This assumption
is not restrictive. If it is not fulfilled, the solution has to be slightly modified. In
any case, the solution is expressed by elliptic Jacobi’s functions [6].

Lemma 3 1. Fore> 0

uy(t) = \/«g.sn-( /Aalhz hl)i) .

| 2 . -
(16‘) ‘ vi(t) = Ve.en ( . e\z(hzz - hl)t) dn( v 'x2(h22 — hl)t) ,

) =) =0 |
s @ non-trivial parizcular solutwn of (9), where we denote by Ay and Xy the roots
of ( hl) A2+ (ca —c1)A +e= 0,0 <7'—A1 £ — Az. The ellzptzc constant k -

4
Ay
Ay’

which is involved in the construction of the elliptic functions is given by k

Remark 3. 1. For tke ellzptzc constant k is required 0 < k < 1 Since in the

proof we consider ¢ close to 0, it may be assumed that Ay and Az are real, which
. implies k € [0, 1]. ~
~ Proof. Equation (15)‘,1113,}' be written as

2

2| - (-G (- ()
dm - vn \w) )
' For a ﬁxed k € [0, 1} the function whxch solves t;he dlﬁ'erentla,l equatlon ’
df(t
(49)" - - Py - )

1s precisely defined. It is the Jacobi’s function sn(t — tq), where ¢, € C is arbitrary
[6]. Hence, (16) presents a particular solution as the lemma states.
A Corollary 3.1, For N=1 '

w(t, z) = \/A_lsn( V22(hz “\hl)t - to) sin(z)

2

1s the solution of the Cauchy problem (5)~(6). The constant ¢ — yzeldmg A1 and
Az which of their turn are involved in the construction of sn(r), and the constant

to have to be evaluated from the initial conditions.
- Since sn(7) is a double periodic meromorphic function [6 ], the double periodic

meiémorphic"function ul(t), with periods 77 = \/,\Sg(k)h) and 75
2(n2 — g |

4K (k) i2K' (k) ang 2K (B) + 4k (x)

= , has snnple poles
~VA2(he — hl) \//\g(hg — hy) VAa(hs — hy)

in the pa-
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rallelogram of periods. So, the domain of the family of solutions (16) 1s mapped
as complex tori with two points removed. Furthermore, in order to reduce the
domain of solution (16), we shall consider the involution R : (uy, v1, us, ?}2) —

(—uy; —v1, ug, vy). Then factorizing f'(c) = T(c)/R and keeping in mind that
sn(r + 2K (k)) = —sn(r) for each = € C [6], we obtam that the domain of the

- family of curves is mapped as tori with one point removed. Let denote by M the

phase space of (9), and by Fg the set of fixed points of the involution R, i.e.
= {(0, 0, u2, v2)l(uz, v2) € C?}. Then factorizing M \ Fg in R we get the

‘ smooth symplectlc manifold M = (M \ Fr) /R. By that way, Hamiltonian H is

~ mapped in Hamlitoma.n function H for the same system, but in the reduced phase
space M. Itis obvmns that if there exist two functionally independent holomorphic
integrals for the system (9), these integrals are mapped in holomorphic functionally
mdependent first integrals for the same system, which 1s considered yet in M.

Due to the Ziglin’s approach we found non-trivial solution defined over smooth
symplectic manifold M. Now we shall introduce local co-ordinates in TzOM fibers in
such a way, that the obtaining of the reduced variational equations in a convenient.
for further investigation form will be assured. It is easy to see that

| hy — K ‘
61"-:1)1, 7’,!1"_"_;(( 12 2)3?«{-(617-»62))&1, 53;0, 7}2‘:0

is a tangent vector to I'(c). Then for local co-ordinates in TzDM we may chose
&1 m, &2, 2. Since the restrlctmn of differential dH over TzoM is dH = vidvy

L
+(< 1 hz) ul + (c1 mcz)m) duy, i.e. it does not depend on & and nz, we

2
choose €3 and 72 for local co—ordmates in the. reduced pha,se spa,ce

h
Fp—{(fw?l,fz, Uz)EC4ldH(€1> M, €2, 7)2)—vzd'£)1+(( - 21‘1 )ul +(c1 a—cz)u )dul_p}

along I'(¢). So, the followmg lemma is almost a,rguee{ » '
Lemma 3.2. In the co-ordmates introduced above the reduced system in vari-

atwns is writlen by

| by —th
(17)  he=m, M= (C"z — 4y * m-———-—l 2(t)) 52
- . N ‘
Proof. In (&1, m1, &2, 72) local co-ordinates i in TIQM the equatlons in variations

associated to the solutlon (16) are given by

hz - hl uf(t)) él; o

< 4h
52 =M M= (Cz\— 4¢y + “‘—}' 2(t)) 52

: . £y =m, 771:(32"014#3
- (18) |

Since for local co-ordinates of the restricted over F, normal bundle to I',, M were
chosen &3 and 2, the reduced equations in vanatxons are just the ones the lemma -
sta,tes
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Now we shall find a nonresonant transformation from the ‘monodromy group
of (17). Let a; be a path over ['(c) which corresponds to adding of the imaginary
4K (k)

Az(hz — h1)
' !
adding of the real period 4K (k)
o vV E(hz - hl)

transformations of monodromy whxch correspond to the closed paths o and ay on
T(c), respectively.
" Lemma 3.3. The transfarmaiwn g(al) is nonresonant for ¢ close to 0,

Proof. In order to show that g(a) is a nonresonant transformation we shall
begin with computing its eigenvalues for ¢ == 0: Let consider the phase curve '(0)
in M. It is easy to see that the partial solution (16) for ¢ = 0 degenerates in

uy(t) = 2 H.sinhﬁl(x/cz —¢;.1),
, V h2—hy g

- period of ui(t), and @z be a path over I‘(c) which corresponds to

of ,u%(t). Let g(ai) and g(ag) be the

(19) AN
: vi(t) = wi(t),
ug(i) = ’vg(t) =0 .
Since we consider the solution (16) in its reduced range of va,lues M, its real

period goes to infinity, and its imaginary period changes to %%T which is the
perlod of the degenerated solution (19) |6]. It makes sense to say that the domain
of the solution (16) degenerates in the domain of the solution (19), which is a closed
at mﬁnlty cyhnder Now, for c=0, g{a1) is the transformation of monodromy for
the system o :

| (20) fg =12, 2= (cz —4c1 + 2(e2 — cl) smh (\/c» —_— t)) €.

The computation of the eigenvalues 0f g(m) wﬂl be done along a closed tra,gec—
tory from the same homotopic class to which oy belongs. Let decompose t = s+ T,
where T i IS real and s is purely imaginary, and let denote for convenience the func-
tion sinh™?(v/c; — ¢1.(5 + T)) by p(s, T). It is easy to see that (s, T) 18 penodlc

i |

Vea—cr’
Let al(T) be a trajectory over I‘(O) defined by (19) wﬁ:h argument ¢ for which

in s w1th a period , and also 11m p(s T) = 0.

T
t = zr-{»T T € R is fixed, and r changes from 0 t0 ——=—=. Now we can compute
' & Vez—cyp P

the elgenvalues of g(ay) along &I(T) For T — oo the system (20) reduces to

52 =12, = (cg — 4c1)é2.

Since the exgenvalues of the correspcsndmg matrice are ++/cg — 4(:1, the principal
matrix solution is written as

O(s) = {exl}(vcz"‘*cl-? 0 }
0 exp(—+v/c2 — 4c1.5)

o
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The transforrr;ation of gjp_o.(c1(T)) is determined by the equality

| ® (s + %) = 9;1_@(&1(1’))‘1’(8)— |

" Hence, for ¢ = 0 the eigenvalues of g(ay) are

| . B ez —4cy
(21)_ | ; exp (:i:m' P ) "

When ¢ is close to 0, the eigenvalues of g(a1) will be close to (21). Hence, they can

Cy — 461
S €2 —C1 i
Therefore, the eigenvalues of g(ql) are not roots of unity and g(e1) is a nonresonant

- transformation. - ' o
Now we shall compute the eigenvalues of the commutator of g{ey) and gez).
Lemma 3. 4. For each complez ¢ the eigenvalues of the commutator [g(a1),

g{az)] of g(a1) and g(az) are just - o

| : ‘ . N ho — 4h1 ' '
22 , 1+4/14+85————11].
Préof. The ;commuta,t;:)r [g(dl), g(a2)] = g(a1)g(az)g~(a1)g™ () corre-

iK'(k)

\ }Ag(hg - hl)‘ :

is a non-zero real quantity.

not lie on the unit circle, because by (I) £im

~ sponds to one winding around the regul’arwsihgultar point a{c) =

the second order Fuchsian equation

0 b E=0 f0)=—(a-ta+ ETNA0).

q(t

| yFor thé equation £(t) + ﬁt})};f(t) +.V~(V-€—-~%~)g)~§§(t)‘: 0, where p(t) and g(t) are

o

* holomorphic near tg € C functions, the eigenvalues of the transformation of mon-
odromy,‘which.correspond’s to a loop around g, are just exp(i27py,2) [3], where
~ p1,2 are the roots of the indicial equation - o
) eV +pllptalt)=0. !
Recall that -~ o v ' |

: sn(7) = L
| | » = k(r —iK' (k)
[6], so we get easily that ‘

o h—dh, 1 [ 1
- 0= (t—a(c>>2+°(tea<c))’

and a simple computation gives the eigenvalues.
- We are now at the point to prove Theorem 1.1.

+0(1) \
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. Assume that the system (9) has an additional functionally indiapendent of H
first integral, which is holomorphic in a neighbourhood of I'(c). Then the corre- -
sponding system on M has an additional, functionally independent of H, holomor.’
phic in a neighbourhood of I'(c) first integral. By Lemma 3.3 g(a1) is a nonresonant,
element of the monodromy group associated to the phase curve f‘(c). Therefore, by
~ Theorem 2.2, the other element of the monodromy group preserves the fixed point
- and.the set of eigendirections of g(a;). Hence, g(az) either keeps or interchanges
the two eigendirections of g(«;). We shall show that neither of these opportunities
takes place. ‘ ‘ : : - ; S

If we suppose that g(as) keeps the eigendirections of g(a1), i.e. g(a;) and
- g(@2) commute, it follows that [g(a;), g(as)] = id, which is a contradiction because |
the eigenvalues of the commutator are not equal to unity by Lemma 3.4 and the
assumption (II). S o -

Let suppose that g(a3) interchanges the eigendirections of 9(a1). In an appro- .
priate basis g(ay) is written as : o

gar) = [g 791},
- Hence, in the same basis g(aiz) looks like
) 0 &
()= | 8]

Since g(ay) is a symplectic transformation, § = —v=1. Therefore,

]

\[9'(‘111); ?(f;fzj] = h)? : 7921

and the quotient

(25) - yE? = exp | i | 1+ 1+8M '
, : V - : VvV h-h

LY

for the eigenvalues"f and 1. of g(a1) must be met. For \/ 1+ SH
. g — hy

. real (25) can not be fulfilled because v%? does not lie on the unit circle as we saw

in the proof of Lemma 3.3. For \/l + SM
o L : h2 - hl

4hy being

..

being purely imaginary (25) can

not be fulfilled also, because exp (z'?r (1 + \/ 14 8%3:%&
N o ' 2 —

)) < 0,‘Wherea.s'.the .

¢y — 4ey

real parts of v*2 are close to exp (ii?vr > 0. Hence, the quotient (25)

C2 — €1
can not be met, and that contradicts the requirement for g(as) to keep the set of
eigendirections of g(a; ), which was inferred by the assumption that there exists an
additional holomorphic integral for (9). : ‘

This concludes the proof of Theorem 1.1.-
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4. PROOF OF THEOREM 1.2 AND SOME ADDITIONAL REMARKS
e FOR NON-INTEGRABILITY |

We shall prove Theorem 1.2 and state additional assertions for analytical non-

" integrability of (9). Also, we shall show the algebraic non-integrability of (9).
Proof of Theorem 1.2. , : . |

© Sirice the proof is going in a similar to the proof of Theorem 1.1 manner, we

~ shall refer to some of the results obtained in section 3. A

The partial solution (16) is now slightly modified to look as

uy (1) - \/Esn (mz) -

2
(26) | vi’(g) - \/g’cn‘(__'..\/—;‘z‘i.t) dn (@1)

N . ' az(t) o vz(t): 0.

_ Its. phase curve, in virtue of the involution R, will be considered in M. Having in
mind Lemma 3.2, the reduced equations in variations have to be written as

en b =12, 1= —(dc1 + 2h1ud(¥))éa,

where u;(t). is defined in (26). The elements g(c1) and g(a3) of the monodromy
group associated with (27) are defined in a similar way also, 1. e. as transformations
which correspond to adding the imaginary and real periods of the solution (26),
- respectively. By Lemma 3.4 ¢ determined as a commutator of g(a1) and glag) is
nonresonant. | . - S ,
"~ Let assume now that (10) has two functionally independent holomorphic inte-
grals in a neighbourhood of the complex curve H(ui, v1, Uz, v2) = 2¢ for ¢ close
to 0. By Theorem 2.1 the reduced system in variations has a non-trivial rational
first integral. Since g is nonresonant, g(a1) preserves its fixed point and keeps or
exchanges its eigendirections. We shall prove that g(a1) can not keep the set of
eigendirections of g. In the proof of Lemma 3.3 we saw that for ¢ close to 0 the
eigenvalues of g(a;) were close to exp (:i:i':r cj 4:1 . Since now cq = 0, they
: ' , , 2—C1 : K _ :
are close to exp(+i27) = 1.-Therefore, they can not form a regular polygon centred
at the origin. Then, having in mind Theorem 2.2, it follows that g(c1) must keep - -
the eigendirections of g. Let consider now g(az). It-can not keep the eigendirec-
‘tions of g, otherwise it commutes with g and, therefore, with g(a;), which is a
contradiction with g = g(o)g(az)g™(e1)g ™ (a) # id. Hence, g(ap) exchanges
the eigendirections of ¢ and g(a1). Then; as in the proof of Theorem 1.1, we easily
obtain that the eigenvalues of g are squares of the eigenvalues of g(a1). But it is
not the case, because for ¢ close to 0 the squares of the eigenvalues of g(a1) are
close to exp(&i4m), whereas the eigenvalues of g are just exp(im(l+ v/33) # 1. This
contradiction proves Treorem 1.2. - ‘ o
The results from section 3 allow a simple criterion [4] for algebraic complete
integrability to be applied for the system (9). We shall examine for an algebraic
integrability in the sense of the definition given by Adler and Moerbeke in [1].

T
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- Definition 4.1. A Hamiltonian system s called algebraically completely in-
tegrable, if its first integrals are all rational functions and their level sets in the
complezr domain are complex tori. : ' - _

. Proposition 4.1. Hamiltonian system (9) is algebraically non-integrable, un-

less .
ho —4h,
\/1 + Sm
s odd.

Proof. For the proof of this proposition it is enough to find a phase curve,
along which the equations in variations have a multi-valued solution {4]. Such phase
curve is represented by the partjal solution (16) and the corresponding equations
In variations are (18). One partial solution of ( 18) is given by

where & () = 71(t) = 0 and (£,(¢), 72(t)) is defined as a solution of (17). The multi-
valuedness of (28) is established by examining the roots of the indicial equations
(24) [3]. Since the roots ' :

14 \/1+8--_—-_h2",4h1
_ o 2—-];1

Pz = 5

‘are not integers, the partial solution (28) is multi-valued, which proves the propo-.
sition. o » '

- At the end, we state an amplified version of the Theorem 1.1. Following Ziglin’s
analysis, demonstrated in the proof of Theorem 1.1 in which a similar technic to
that developed in [11], [5], [10] was used, it is easy to obtain a resembling statement
for the analytical non-integrability of the system (9). One way to do it is to find .
another partial solution for the system (9), or to consider such a level set for the
Hamiltonian, in a neighbourhood of which the presence of another nonresonant
element of the associated monodromy group is assured. '

Theorem 4.1. If ‘ A

or

N : "02“431 ' hy—4h, | !
(I) o o — ¢ <0 and \/1 ‘3“ gm 15 not Odd,}
N —a L T~k
(i) ) 02 —dc; <Q and \/1 +8m s nqt odd,
or D o - -

C3 — 461 hg - 4&1 : | ) ﬁz - 4h1 . | | |
(iii) e hs = hy >0 and \/I + SM is not odd,

or

. V.,;’V Cy — 461 hz - 4}11 ‘ . f. | ‘kg - 4h1 . i
(iv) ca—c1 Py —16h; >0 an \/1 %Swhz “i6h, 18 not odd, |
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than the Hamiltonian system (9) does not possess an additional integral which 1s
holomorphic and functionally independent of the Hamiltonian.

An empirical method to test. for analytical integrability of a system (9) is to
. compute Poincare surface of section [8]. It is done by keeping track on the successive
points of intersections of a given trajectory of the system with a fixed plane. If the
points of intersection form a regular curve, a conjecture for integrability is implied.
The other kind of behavior is observed when the orbit is not quasi periodic: the
points on the surface of section fill an area, which implies for non-integrability. The
numerical investigation for integrability of (9) carried out by the standard 4-5th
~ order Runge-Kutta method revealed chaotic regions which matches with the results
obtained analytically. The non-integrability of the system under consideration has
as consequences the strong dependence on the initial conditions of the orbit of the
Cauchy problem (4)-(5) and its chaotic behavior in the course of time.
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