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1. INTRODUCTION AND STATEMENT OF THE RESULTS

The classical Meyer-Konig and Zeller (MKZ) operator is defined for functions
f ∈ C[0, 1) by the formula

Mn(f, x) =
∞
∑

k=0

f

(

k

n+ k

)

mn,k(x), (1.1)

where

mn,k(x) =

(

n+ k

k

)

xk(1− x)n+1.

Right after their appearance, the MKZ operators became a subject of serious
investigations. A reason for this is that they allow approximation of functions
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unbounded at the point 1 (which is not the case with Bernstein polynomials).
However, the fact that the function values are taken at the points k

n+k creates
some additional difficulties when working with these operators.

In this paper we investigate the weighted approximation of functions by the
classical variant of MKZ operator in uniform norm ‖.‖[0,1), i.e. we want to charac-
terize the weighted error of approximation supx∈[0,1) |w(x)f(x)|, where

w(x) = xγ0(1− x)γ1 (1.2)

are the Jacobi weights.

In the unweighted case w(x) = 1 a direct theorem was proved in [4], and a
strong converse inequality of type A (in the terminology of [3]) was proved in [5].
Regarding the weighted case, the first results were obtained by Becker and Nessel in
[2], where they proved direct theorems for some symmetrical weights w(x) = ϕα(x).
Here, ϕ(x) = x(1− x)2 is the weight function naturally connected with the second
derivative of MKZ operators.

In [10] Totik established that for 0 < α ≤ 1 and ϕ(x) = x(1−x)2 the condition

ϕα|∆2
h(f, x)| ≤ Kh2α

is equivalent to
Mnf − f = O

(

n−α
)

.

In [9] the authors proved that for 0 ≤ λ ≤ 1 and 0 < α < 2 the condition

|Mnf(x)− f(x)| = O
(

(

ϕ(1−λ)/2(x)√
n

)α
)

is equivalent to
ω2
ϕλ/2(f, t) = O(tα).

Here ω2
ϕλ/2(f, t) are the modulus of Ditzian-Totik of second order

ω2
ϕλ/2(f, t) = sup

0<h≤t
sup

x±hϕλ/2(x)∈[0,1)

|∆2
hϕλ/2(x)f(x)|.

In [7] Holhoş proved the next direct inequality for weights γ0 = 0, γ1 > 0:

‖w(Mnf − f)‖[0,1) ≤ 2ω

(

f(1− e−t)e−γ1t,
1√
n

)

+
γ1C(γ1)√

n
‖wf‖[0,1).

In this paper we prove better results than the results mentioned above. But
before stating our main result, let us introduce some notation and definitions.
The first derivative operator is denoted by D = d

dx . Thus, Dg(x) = g′(x) and
D2g(x) = g′′(x). By C[0, 1) we denote the space of functions continuous on [0, 1).
The functions from C[0, 1) are not expected to be continuous or bounded at 1. By
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L∞[0, 1) we denote the space of Lebesgue measurable and essentially bounded in
[0, 1) functions equipped with the uniform norm ‖ · ‖[0,1). For a weight function w
we set

C(w)[0, 1) = {g ∈ C[0, 1); wg ∈ L∞[0, 1)} ,
W 2(wϕ)[0, 1) =

{

g,Dg ∈ ACloc(0, 1) & wϕD2g ∈ L∞[0, 1)
}

,

W 3(wϕ3/2)[0, 1) =
{

g,Dg,D2g ∈ ACloc(0, 1) & wϕ3/2D3g ∈ L∞[0, 1)
}

,

where ACloc(0, 1) is the set of functions which are absolutely continuous in [a, b]
for every [a, b] ⊂ (0, 1).

The weighted approximation error ‖w(f −Mnf)‖[0,1) will be compared with
the K-functional between the weighted spaces C(w)[0, 1) and W 2(wϕ)[0, 1), which
for every

f ∈ C(w)[0, 1) +W 2(wϕ)[0, 1) := {f1 + f2 : f1 ∈ C(w)[0, 1), f2 ∈W 2(wϕ)[0, 1)}

and t > 0 is defined by

Kw(f, t)[0,1) = inf
g∈W 2(wϕ), f−g∈C(w)

{

‖w(f − g)‖[0,1) + t‖wϕD2g‖[0,1)
}

. (1.3)

Our main result is the following theorem, which establishes a full equivalence
between the K-functional Kw

(

f, 1
n

)

[0,1)
and the weighted error ‖w(Mnf − f)‖[0,1).

Theorem 1. For w defined by (1.2), where γ0 ∈ [−1, 0], γ1 ∈ R, there exist

positive constants C1, C2 and L such that for every natural n ≥ L and for all

f ∈ C(w)[0, 1) +W 2(wϕ)[0, 1)

there holds

C1‖w(Mnf − f)‖[0,1) ≤ Kw

(

f,
1

n

)

[0,1)

≤ C2‖w(Mnf − f)‖[0,1). (1.4)

The proof is based on a method, used for the first time in [8]. In short, its idea
is the following: by making an appropriate transformation, we move to Baskakov
operators, for which we have the needed estimations, and then go back by the
inverse transformation.

2. A CONNECTION BETWEEN BASKAKOV AND MKZ OPERATORS

Following [8], we introduce a transformation T mapping functions defined on
[0,∞) into functions defined on [0, 1). We make the agreement that, from now on,
we shall denote variables, functions and operators, defined in [0, 1) the usual way,
and their analogs, defined in [0,∞), with tilde.
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Now we give some notation and definitions. The uniform norm on the interval
[0,∞) is denoted by ‖ · ‖[0,∞), and we define the following function spaces:

C(w̃)[0,∞) = {g̃ ∈ C[0,∞); w̃g̃ ∈ L∞[0,∞)} ,

W 2(w̃ϕ̃)[0,∞) =
{

g̃, D̃g̃ ∈ ACloc(0,∞) & w̃ϕ̃D̃2g̃ ∈ L∞[0,∞)
}

,

W 3(w̃ϕ̃3/2)[0,∞) =
{

g̃, D̃g̃, D̃2g̃ ∈ ACloc(0,∞) & w̃ϕ̃3/2D̃3g̃ ∈ L∞[0,∞)
}

.

The weighted error by Baskakov operators will be characterized by the next
K-functional, defined for every function f̃ ∈ C(w̃)[0,∞) + W 2(w̃ϕ̃)[0,∞) and for
every t > 0 by the formula

Kw̃(f̃ , t)[0,∞) = inf

{

‖w̃(f̃ − g̃)‖[0,∞) + t
∥

∥

∥
w̃ϕ̃D̃2g̃

∥

∥

∥

[0,∞)

}

, (2.1)

where the infimum is taken over functions g̃ ∈ W 2(w̃ϕ̃)[0,∞) such that f̃ − g̃ ∈
C(w̃)[0,∞).

We start with the change of variable σ : [0, 1)→ [0,∞) (used for the first time
by V.Totik in [10]) given by

x̃ = σ(x) =
x

1− x
. (2.2)

Then the inverse change of variable σ−1 : [0,∞)→ [0, 1) is

x = σ−1(x̃) =
x̃

1 + x̃
.

The transformation operator T , transforming a function f̃ defined on [0,∞) to a
function f defined on [0, 1) is defined by

f(x) = T (f̃)(x) = λ(x)(f̃ ◦ σ)(x), λ(x) = 1− x. (2.3)

Then the inverse operator T−1, transforming a function f defined on [0, 1) to a
function f̃ defined on [0,∞) is

f̃(x̃) = T−1(f)(x̃) =
1

(λ ◦ σ−1)(x̃)
(f ◦ σ−1)(x̃).

We want to estimate the weighted error by MKZ, so we define a new transformation
operator S by

w(x) = S(w̃)(x) =
1

λ(x)
(w̃ ◦ σ)(x), (2.4)

and its inverse S−1 is

w̃(x̃) = S−1(w)(x̃) = (λ ◦ σ−1)(x̃)(w ◦ σ−1)(x̃). (2.5)
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Obviously we have:

wf = S(w̃)T (f̃) = (w̃ ◦ σ)(f̃ ◦ σ),
w̃f̃ = S−1(w)T−1(f) = (w ◦ σ−1)(f ◦ σ−1).

(2.6)

In the next lemmas, w is a weight in [0, 1) and w̃ = S−1(w) is the corresponding
weight in [0,∞).

Lemma 1. The operators T and its inverse T−1 are linear positive operators

and the next equalities are true:

T (ϕ̃D̃2f̃) = ϕD2(T f̃),

T−1(ϕD2f) = ϕ̃D̃2(T−1f). (2.7)

Proof. We prove only the first equality, as the proof of the second one is similar.
For the right-hand side of the first equality we have

D(T f̃) = D
(

λ(f̃ ◦ σ)
)

= −f̃ ◦ σ + λDf̃ ◦ σ

= −f̃ ◦ σ + λD̃f̃ ◦ σ.λ−2 = −f̃ ◦ σ + λ−1D̃f̃ ◦ σ

and

D2(T f̃) = D
(

−f̃ ◦ σ + λ−1D̃f̃ ◦ σ
)

= −D̃f̃ ◦ σ.λ−2 +D(λ−1)D̃f̃ ◦ σ + λ−1D
(

D̃f̃ ◦ σ
)

= −λ−2D̃f̃ ◦ σ + λ−2D̃f̃ ◦ σ + λ−1D̃2f̃ ◦ σ.λ−2 = λ−3D̃2f̃ ◦ σ.

Consequently,

ϕD2(T f̃) = λ
ϕ

λ4
D̃2f̃ ◦ σ = λϕ̃D̃2f̃ ◦ σ = T (ϕ̃D̃2f̃). �

Lemma 2. The operator T : C(w̃)[0,∞) → C(w)[0, 1) is an one-to-one cor-

respondence with

‖wT (f̃)‖[0,1) = ‖w̃f̃‖[0,∞), ‖w̃T−1(f)‖[0,∞) = ‖wf‖[0,1).

Proof. The above equalities are easily obtainable from the definition (2.3) of
the operator T and from the equalities (2.6). �

Lemma 3. The operator T : W 2(w̃ϕ̃)[0,∞)→W 2(wϕ)[0, 1) is an one-to-one

correspondence with

‖wϕD2(T (f̃))‖[0,1) = ‖w̃ϕ̃D̃2f̃‖[0,∞), ‖w̃ϕ̃D̃2(T−1(f))‖[0,∞) = ‖wϕD2f‖[0,1).
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Proof. From the definition (2.3) of tne operator T and from the equalities (2.6)
and (2.7) we have

w̃ϕ̃D̃2f̃ = w̃T−1
(

ϕD2(T f̃)
)

= w̃
1

λ ◦ σ−1

(

ϕD2(T f̃)
)

◦ σ−1

=
(

λ ◦ σ−1
) (

w ◦ σ−1
) 1

λ ◦ σ−1

(

ϕD2(T f̃)
)

◦ σ−1

=
(

w ◦ σ−1
)

(

ϕD2(T f̃)
)

◦ σ−1 =
(

wϕD2(T (f̃))
)

◦ σ−1.

Consequently

w̃ϕ̃D̃2f̃(x̃) =
(

wϕD2(T (f̃))
)

◦ σ−1(x̃) = wϕD2(T (f̃))(x)

or
‖wϕD2(T (f̃))‖[0,1) = ‖w̃ϕ̃D̃2f̃‖[0,∞).

The proof of the second equality is similar, and therefore is omitted. �

Lemma 4. For every f ∈ C(w)[0, 1)+W 2(wϕ)[0, 1), f̃ = T−1f and t > 0 we

have

Kw(f, t)[0,1) = Kw̃(f̃ , t)[0,∞).

Proof. From the definition of the K-functional (2.1) we have

Kw̃(f̃ , t)[0,∞) = inf
g̃∈W 2(w̃ϕ̃), f̃−g̃∈C(w̃)

{

‖w̃(f̃ − g̃)‖[0,∞) + t‖w̃ϕ̃D̃2g̃‖[0,∞)

}

.

Now, from (2.6)
w̃(f̃ − g̃) = (w ◦ σ−1)

(

(f − g) ◦ σ−1
)

and consequently
‖w̃(f̃ − g̃)‖[0,∞) = ‖w(f − g)‖[0,1).

From Lemma 4 we have

‖w̃ϕ̃D̃2g̃‖[0,∞) = ‖wϕD2(T (g̃))‖[0,1) = ‖wϕD2g‖[0,1). �

The classical Baskakov operator Vnf(x) (see [1]) is defined for bounded func-
tions f(x) in [0,∞) by the formula

Vnf(x) = (Vnf, x) = Vn(f, x) =
∞
∑

k=0

f

(

k

n

)

vn,k(x), (2.8)

where

vn,k(x) =

(

n+ k − 1

k

)

xk(1 + x)−n−k.

The next two lemmas give the connection between the MKZ operators Mn and
the Baskakov operators Vn.
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Lemma 5. For every f such that one of the series below is convergent and

for every n ∈ N we have

Mn(f)(x) = T (Vn(T
−1(f)))(x), x ∈ [0, 1). (2.9)

Proof. From the definition of T we get

T
(

Vn

(

T−1(f)
))

(x) = λ(x)(Vn(T
−1(f)) ◦ σ−1)(x)

=
1

1 + x̃
(Vn(T

−1(f)(x̃) =
1

1 + x̃
Vn(f̃ , x̃)

=
1

1 + x̃

∞
∑

k=0

(

n+ k − 1

k

)

x̃k

(1 + x̃)n+k
f̃

(

k

n

)

=
∞
∑

k=0

(

n+ k − 1

k

)

x̃k

(1 + x̃)n+k+1

1

(λ ◦ σ−1)
(

k
n

) (f ◦ σ−1)

(

k

n

)

.

Since

σ−1

(

k

n

)

=
k/n

1 + k/n
=

k

n+ k
,

we have

(λ ◦ σ−1)

(

k

n

)

= λ

(

k

n+ k

)

=
n

n+ k

and

(f ◦ σ−1)

(

k

n

)

= f

(

k

n+ k

)

.

Also,

x̃k

(1 + x̃)n+k+1
=

(

x̃

1 + x̃

)k
1

(1 + x̃)n+1
= xk(1− x)n+1.

Consequently,

T (Vn(T
−1(f)))(x) =

∞
∑

k=0

(

n+ k − 1

k

)

n+ k

k
xk(1− x)n+1f

(

k

n+ k

)

=

∞
∑

k=0

(

n+ k

k

)

xk(1− x)n+1f

(

k

n+ k

)

= Mn(f, x). �

Lemma 6. For every f ∈ C(w)[0, 1) and for every n ∈ N we have

∥

∥w(Mnf − f)
∥

∥

[0,1)
=

∥

∥

∥
w̃(Vnf̃ − f̃)

∥

∥

∥

[0,∞)
.
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Proof. From Lemma 5 we have

Mn(f)(x) = T (Vn(T
−1(f)))(x) = λ(x)(Vn(T

−1(f)) ◦ σ−1)(x)

=
1

1 + x̃
(Vn(T

−1(f)(x̃) =
1

1 + x̃
Vn(f̃ , x̃).

Since

f(x) = T (f̃)(x) = λ(x)(f̃ ◦ σ)(x) = 1

1 + x̃
f̃(x̃),

it follows that

Mn(f)(x)− f(x) =
1

1 + x̃

(

Vn(f̃ , x̃)− f̃(x̃)
)

.

Also, from (2.4) we have

w(x) = S(w̃)(x) =
1

λ(x)
(w̃ ◦ σ)(x) = (1 + x̃)w̃(x̃).

Consequently

w(x)
(

Mnf − f
)

(x) = (1 + x̃)w̃(x̃)
1

1 + x̃

(

Vn(f̃ , x̃)− f̃(x̃)
)

= w̃(x̃)
(

Vnf̃ − f̃
)

(x̃)

i.e.
∥

∥w(Mnf − f)
∥

∥

[0,1)
=

∥

∥

∥
w̃(Vnf̃ − f̃)

∥

∥

∥

[0,∞)
. �

3. PROOF OF THEOREM 1 AND SOME OTHER RESULTS FOR MKZ

From Lemma 5 we have

Mn(f)(x) = T (Vn(T
−1(f)))(x) = λ(x)(Vn(T

−1(f)) ◦ σ−1)(x)

=
1

1 + x̃
(Vn(T

−1(f)(x̃) =
1

1 + x̃
Vn(f̃ , x̃).

Since

f(x) = T (f̃)(x) = λ(x)(f̃ ◦ σ)(x) = 1

1 + x̃
f̃(x̃),

it follows that

Mn(f)(x)− f(x) =
1

1 + x̃

(

Vn(f̃ , x̃)− f̃(x̃)
)

.
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Also, from (2.4) we have

w(x) = S(w̃)(x) =
1

λ(x)
(w̃ ◦ σ)(x) = (1 + x̃)w̃(x̃).

Consequently,

w(x)
(

Mnf − f
)

(x) = (1 + x̃)w̃(x̃)
1

1 + x̃

(

Vn(f̃ , x̃)− f̃(x̃)
)

= w̃(x̃)
(

Vnf̃ − f̃
)

(x̃)

i.e.,

∥

∥w(Mnf − f)
∥

∥

[0,1)
=

∥

∥

∥
w̃(Vnf̃ − f̃)

∥

∥

∥

[0,∞)
.

From [6, Theorem 1] we have that for weights w̃(x̃) = x̃β0(1 + x̃)β∞ , where
β0 ∈ [−1, 0], β∞ ∈ R, the next equivalency is true:

There exists an absolute constant L such that, for every natural number n > L,

∥

∥

∥
w̃(Vnf̃ − f̃)

∥

∥

∥

[0,∞)
∼ Kw̃

(

f̃ ,
1

n

)

[0,∞)

.

From Lemma 4 we have

Kw(f, t)[0,1) = Kw̃(f̃ , t)[0,∞),

and consequently
∥

∥w(Mnf − f)
∥

∥

[0,1)
∼ Kw

(

f,
1

n

)

[0,1)

.

For the weights w̃(x̃) = x̃β0(1 + x̃)β∞ we have

w(x) =
1

λ(x)
(w̃ ◦ σ)(x) = (1 + x̃)w̃(x̃) = x̃γ0(1 + x̃)γ∞+1

= xγ0(1− x)−(γ∞+γ0+1) = xγ0(1− x)γ1 .

Since β0 ∈ [−1, 0], β∞ ∈ R, we have γ0 ∈ [−1, 0], γ1 ∈ R.

The proof of Theorem 1 is complete. �

From Lemma 6, Lemma 3 and Lemma 5 in [6] we obtain the following Jackson-
type inequality.

Theorem 2. For w, defined by (1.2) there exists a constant C such that for

every natural n ≥ |1 + γ0 + γ1| we have

∥

∥w(Mnf − f)
∥

∥

[0,1)
≤ C

n

∥

∥wϕD2f
∥

∥

[0,1)

for every function f ∈W 2(wϕ)[0, 1).
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From the definition of T , Lemma 3, Lemma 5 and Lemma 7 in [6] we obtain
the following Bernstein-type inequality.

Theorem 3. For w, defined by (1.2) there exists a constant C such that for

every natural n ≥ |1 + γ0 + γ1| we have

∥

∥wϕD2Mnf
∥

∥

[0,1)
≤ Cn‖wf‖[0,1)

for every function f ∈ C(w)[0, 1).
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