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IE

B nactoauei pabore HaliaeHbl NATH K1accoB penleHuit o6obmenoro ypaBienua Kopre-
pera — ne $pusa: bunepmoamueckue, COJIUTOHHBIE, TUIIA YeAMHEHOM BONHKI, PalMOHaNbHbIE
n Bonukl CTOKCa. AHaJM3UPOBaHO yCJIOBME MX peanusauni, a Takwke oddexkTHl BIAMAHUA
AMcnepcHol cpeAbl Ha BOJIBHOBbLIE NapaMeTPhbl.

Ognian Kamenov. EVOLUTION OF PERIODIC WAVES IN DISPERSIVE MEDIUM

~ Inthe present paper five classes of wave solutions of a generalized Kortveg — de Vries equation
are found analytically: biperiodical, solitary, solitone, rational and Stokes’ waves. The conditions
for their realization are analyzed as well as the impact of the dispersive medium on the wave
parameters.

1. INTRODUCTION

The propagation of one-dimensional waves with finite amplitude in dispersive
medium can be modelled by the generalized equation of Kortveg — de Vries (K-dV):

3
(1) us + 5“”: + 0Uzzz ~ BUzzrzr =0,

as it is shown by Kakutani and Ono in [6]. Here the parameters o and § char-
acterize the dispersion of the medium and can take both positive and negative
values. Actually, (1) describes the evolution of waves for which the angle be-
tween their front and the gradient of the external field tends to the critical angle
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. = arctg (\/ml/mo - \/mo/ml), where m; and mg are the masses of ion and

electron, respectively.” In this case the coefficient in front of the third derivative
in the classic K-dV equation decreases, causing debalance between the dispersive
effects and the non-linear ones. The fifth derivative Su;; .-, compensates for this
debalance.

Kawahara has shown numerically in [7] the existence of oscillatory and monoto-
nous-solitary wave solutions of (1). He has found out the existence of two types of
solitary waves — compressive and rarefactive ones, corresponding to the negative
dispersion (a > 0, 8 > 0) and to the positive one (¢ < 0, 8 < 0). Kano and
Nakayama [6] have found an unbounded biperiodical solution, depending on the
wave phase velocity.

In the present paper analytical and bounded biperiodic solutions have been
found. By them in the boundary case of degeneration of the elliptical Jacobbi’s
function another two classes of wave solutions can be determined — solitary and
rational solutions. This fact confirms the unique property of the non-linear periodic
waves, called by many authors ([8, 5, 15]) non-linear principle of superposition.
Under specified conditions of the dispersive medium solitone waves could be also
realized, but not as a consequence of the solitary ones.

2. PERIODIC WAVE SOLUTIONS

Without a loss of generality we shall suppose that because otherwise after the
transformations v — —u, ¢ — —z, t — t we shall obtain an equation analogous
to the eq. (1) in which &« — —a, § — —f. Before reducing (1), let introduce the
following transformations:

-'L'—*-'”/:/B: t—>t/f/a.

We look for a stationary solution in the form

(2) u(e,t) =((2),

where
(3) 2= k(z —vt) + C,
as a result of which (1) is reduced to the non-linear equation
3 d* d?
(4) 20() — wi() + C = K5~ (ak?/VF) T

The constant C (in the general case, it is possible C' to be complex) characterizes
the phase shift, k is the wave number (k > 0) and v is the phase velocity of the
stationary waves with phase z given by (3). Although the integration constant C
in (4) has no dynamic meaning, it will be shown further that C' # 0 for periodic
wave solutions, that is opposite to the boundary conditions of [7] imposing C = 0.
We look for a particular solution of (4) in the form

(5) ((2) = 6Ap*(z,G2G3) + Bp(z, G2, G3) — AG» /2,
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where p(z,G2,G3) s the biperiodic elliptical function of Weierstrasse with real
invariants G and (3, and the constants A and B are unknown for the present. If
we replace (5) in (2) and make use of the fact that

n+1

p*"(2,G2,G3) = D bn_j (G2, Ga)§ (2,G2,Gs), n=1,2,...

j=0
(the concrete derivatives are given in Appendix A), then the left-hand and the
right-hand sides of (2) become forth-degree polynomials of . The condition for
identity of these polynomials, 1.e. the equality of the coefficients in front of the
corresponding powers, is actually a condition for the unknown constants A, B and
also for the unknown invariants G, and GG3. The system becomes:

A(3A — 560k*) = 0,

(6) 34 (33 + 4oak2/\/f3) =0,
(7 v = T20AG3k?/B + 6ak?8~/%(1 — 3AG2/B) — 3AG2/4,
(8) v = 6k*(28G, ~ B/A) + B*/(8A) — 3AG,/4,

(9) C+3A%G2/16 — AvGy/2 = 3k*Go(3AG, — B) + ak?87V/2(12AG3 + BG,/2).
It is easy to obtain a non-trivial (A # 0, B # 0) family of solutions, depending on
the parameters

(10) A =560k%/3, B =—40ak?/(3\/8),

(11) Gy =40, Gz = ,Z—Z(E+u17—u072),

(12) v = 160k*e + 3k%y/7 4 577 /42,

(13) C = 40e[20k*y(4k? — 1/3) + 50k*~?/3 — 582400k%¢/3]

+ v%(2240k%¢ + 26k%y/7 — 577 /63)

(we have denoted for short v = a/\/B, po = 1/28224, p; = 13/7840), by means of
which we obtain according to (5) the solution of (1) in the form
(14) u(z,t) = 1120k*p*(k(z — vt) + C1, G2, G3)

: — 40k%y/3p(k(z — vt) + C1, G2, G3) — 11200k*c/3.

- The solution obtained is a biperiodical elliptical function that is not suitable for
use and practical analysis in this form because of the fact that the Weierstrasse’s
function has multiple poles on the real axis in the complex space z + Cy. For these
peculiar points to be isolated from the solution, we have to choose the complex
constant ) so that to have the poles translated half a period in the positive
direction of the imaginary axis. More precisely, this procedure can he done as
follows. We use the designations’

T2 /2
2 r . d
(15) w1 = ./ — E , Wo = 2 / E
ver=es S /I'- M2sin®¢ Vel —e3 / V1 — M-%sin%¢
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for the primitive periods (for which is fulfilled Im(w;/w2) > 0) of the function p,
M is the modulo of the standard elliptical integral of first kind, i.e.
€g — €

(16) o< 22

< M? <1,
€1 — €3

and the real numbers e; > e; > e3 are the roots of the cubic equation

(17) 4Y3? - GoY — G3 = 0.
A sufficient condition for the fulfilment of the above condition is
(18) G3 > 27G3.

Now let the phase shift be half a period in the positive direction of the imaginary
axis, i.e.

(19) C1 = Coler — £3)™ /% +ws/2,

where Cy = const, Cp € R. After taking into account the transformations

plk(x —vt) + C1,G2,G3)
=e3+ (e —ez)sn” —2 (k (z — vi)/er —es+ C'n/el — e3,Ga, G3)

=e3+(e2 — ea)sn? (Co + k(z — vt)Vey — €3, M),

we obtain from (14) a boundary periodic solution, having no poles on the real axis,
of the form

(20) u(z,?) = 1120k*(e2 — e3)%cn® (k(z ~ vt)v/er — ez + Co, M)
— 40k*(ez — e3)(56k%ez — v/3)cn? (k(z — vt)v/er ~ ea + Co; M)
+ 40k%(28k?e2 — ey7/3 — 280k%c/3.

The period of the cnoidal waves (20) is 2K/ (ky/e; — e3) with z, because the ar-
guments of cn are real and K is the standard elliptical integral of Legendre with
modulo M. Actually, u(z,t) is a superposition of two impulses with different am-
plitudes proportional to ey and e3. A typical peculiarity of the periodic solution
(20) obtained here is the dependence of the amplitude and the phase shift not only
on the wave number, but also on the dispersion parameters o and 3. It is easy to
realize from (12) that these periodic waves can propagate in two directions, i.e. on
fixed @ and B > 0,.the freedom of choosing ¢ allows to obtain v > 0 — a propa-
gation in the positive direction of Oz or v < 0 — a propagation in the negative
direction of —Oxz.

3. SOLITARY WAVES

Toda [8] has shown first that the cnoidal wave in the.K-dV equation could be
presented as a superposition of repeated solitary-wave profiles. Later on, a number
of authors ([5, 8, 15]) have ascertained this unique property, called a non-linear
principle of superposition, for a considerable part of the non-linear evolutionary
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equations. Parker {15] has made the most detailed analysis of the indicated non-
linear principle for the equation ILW, revealing a more profound essence of the
phenomenon — that really we do not have one superposition (1n the common
meaning of the linear theory) of solitary waves of the type sech?, but we have a
superposition of their forms, due to the different velocities of propagatlon of the
periodic and the solitary waves. In the present section we try to find a confirmation
of the non-linear principle of superposition for the periodic wave packs in dispersive
medium too. For this purpose we investigate in details the solution (20) for the
right boundary value of the modulo M, i.e. when M = 1. In this case the function
cen(z, 1) becomes degenerated according to the relation

(21) en(z, 1) = sech(z).
The condition M = 1, according to (16) and (17), means that
(22) €1 = €2 # €3.

The last condition is possible only if the following three relations are satisfied at
the same time: A

(23) G3=271G;, G2>0, G3<0,

or if we have in mind {(11), (15) and the condition 4 > 0:

(24) €® = (a7 [kMe? — 2pay’ [R°)(rk — poy)e — (uay* k%) (urk — po7)?* = 0,
(25) >0,

(26) (ev + m7*)k? < por®, :

where we have denoted py = (3/40)° and v = a/+/B. It is clear that the cubic

equation (24) with respect to € has for every £ > 0 and every v € R at least one
positive root that can be determined using the Cardano’s formula

(27) £o(k,7) = /—QUk, 1)/2 + /D(E,7)
3 .
+1/-Qk, 7)/2 = V/Dk, ) + 7 /3K4,

where Q(k,v) and D(k,v) are given in Appendix B. On specified dispersion pa-
rameters o and 3 (i.e. v is given) those real values of k, satisfying at the saine time
the inequalities k£ > 0 and [eo(k, 7)Y + p172]k? < po7®, determine the permissible
wave numbers ko > 0 for the type of waves being considered here, i.e. the solitary
ones. The intervals will depend on the introduced dispersion parameter 5. In other
words, if we determine e(k,v) > 0 through (27) and if k; > 0 satisfies (26}, then
the roots e;, j = 1,2,3, of (18) could be determined analytically and they have

specific values

(28) €] = €3 = (—03)1/3/2 = \/,U3€(k‘ ‘)’ €3 = -—2\//1360(16 ’)’ H3 = 10/3

The solitary solution of (1) takes the following form:

(29) u(z,t) = 33600keo sech® (ko v/30eo(z — vot) + Co)
— 40k2/30e0 (56k3/p3E0 — 7/3) sech? (kov/30e0(z — wot) + Co)
— 40kZy /Hi3€0/3.
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We have denoted by vp the phase velocity that in the case of solitary waves takes
the value

(30) vo = 160kgeo + 3k3v/7 + 5% /42.

The solitary solution obtained in (29) confirms the non-linear principle of superpo-
sition for the generalized dispersion equation (1) too, i.e. the periodic waves from
(20) are a superposition of solitary forms , propagating in general with different
phase velocity vp from the one of the periodic waves.

4. SOLITONE WAVES

The solitary-wave solution (29) allows another interesting class of non-periodic
waves to be analyzed, i.e. the solitone ones. A necessary condition for this is
u(z,t) — 0 when ko(z — vot) — oo, where u(z,t) is given by (29).

We shall show that the generalized dispersion equation (1) does not have a
solitone solution when @ > 0 (which means that when § < 0 the same is valid too).
In fact, the free term in (29) becomes zero when ko > 0 in two cases: when v = 0
(i.e. when a = 0) or when €9 = 0. In the first case, according to (11}, G3 = 0, that
makes the fulfilment of (23) impossible and this is the reason for the impossibility
the solitary waves (29) to be realized. If we suppose e = 0, that is permissible
according to (24), the solution (29) is identically zero.

The only case when solitone waves can be generated in (1) is the one when
a#0,8=0,ie when (1) takes the form

-3
(31) ur + 7 Uus + QUpgy = 0,

which differs from the classic K-dV equation only in the coeflicients in front of
the non-linear and the dispersion terms. After integrating twice and making the
integration constants equal to zero, we obtain the one-solitone solution in the form

(32) u(z,t) = Cysech® [\/00/16(1(:6 - Cot/4)} :

where Cy is a real constant for which sign Cy = sign «.

A common feature of the non-linear waves is revealed in this solitone solution,
namely a dependence between the amplitude and the phase velocity. For the case
being considered the phase velocity does not depend on the dispersion parameter a,
but the wave number ¥ = y/Cy/16a depends considerably on it, that emphasizes
the role of the dispersive medium for the solitone waves propagating in it. Another
special feature of the one-solitone waves is also evident — the impulses having a
greater amplitude propagate faster, but they are narrower.

5. RATIONAL SOLUTIONS

The rational solutions of the non-linear evolutional equations belong to the
particular solutions, having poles on the real axis. In the general case these are
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complex or singular solutions (or both). For the classic K~dV equation the rational
solution can be obtained in the form of a long-wave approximation to the one-
solitone solution. In this section we shall show that the rational solution of (1) can
be obtained as a boundary case of the solitary solution (20), namely the boundary
case M = 0.

The last is realized when

(33) €y = e3 :]5 ey
or when the following relations are satisfied at the same time:
(34) Gg = 27G§, Gy >0, Gy > 0,

The first two conditions coincide with (24) and (25), and the inequality G5 > 0 is
satisfied for those positive values k; > 0, for which the following relation is fulfilled:
leo(k1, 7)Y + #1721k > poy®. For these values of £9(k1,7) = €1 and k; > 0 we
obtain from (34) and (17) (under the condition of (33))

(35) er=es=—m, e =2m, m=(Gy/12)"% = (10,)/2/3.
In this case the function p(z + C, G2, G3) degenerates according to the formula
p(z 4+ C,12m* 8m3) = —m 4 3msin~2 [(Sm)l/z(z + C)]

and then we get from (14) the irregular solution for u(z, 1)
(36) w(z,t) = V/10e; [sin™ 2 (k1 (z — vit) + Cy) — 1/3]
x {1120k$V/10¢; sin ™2 (k1 (z — v1t) + C1) = k3(1120k3v/10e1/3 + 407/3)}
— 11200k]¢1 /3.

The usual form of the rational solution can be obtained from (36) by means of the
series

o0
sin"20 =072 + E (0 —nm)~?

n=-—0o0
and then
o0
(37) u(z,t) = \/1051{ Z (kyz — kvt 4+ Cj ~ nm)~?
o
+ {kl(lt - v1t) + C1]~2 - 1/3}1120’6?\/ 1061{ Z [k'l(.'l! — ’011) + Cl - THI']“2
n=-=0o0

+ [k1(z — vit) + C1]™% = k¥ (1120k%/10e, /3 + 407/3)} ~ 11200k%e, /3

The rational solution obtained has infinite number two-fold poles that can not
be isolated, because of which they have to be excluded from the definite area,

namely
(nm— C1)/ky < (z — vt < [(n+ )7 — C1)/ky,
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where C; € R characterizes the phase shift. The presence of rational solutions is an
unusual property of some evolutionary equations, especialy when they have infinite
number of poles (as it is in (37)). In these cases we have a transformation of the
time-dependent evolution into evolution of a dynamic system with finite number
degrees of freedom.

6. ANOTHER PERIODIC SOLUTIONS

The Stokes’ investigations [12] in 1847 laid the begining of the non-linear dis-
pergating waves. The fundamental results of his analyses are two — there exist
periodic wave packs in the non-linear systems and the amplitude is present in
the dispersion relations. Actually, the simplicity of the procedure for determin-
ing Stokes’ waves in non-linear evolutionary equations is due to its initial purpose,
namely, the determination of a better approximation to the linear wave pack. In
his fundamental work Boyd [3] has used the Stokes’ procedure for determining an
approximative solution of the FKVD equation (of order O(n°)).

In this section we analyze the possibility for evolution of namely such Stokes’
waves in the generalized dispersion eq. (1). Let 5 be a positive number, specifying
the small wave amplitudes in a dispersive medium. We suppose that 0 < n < 1,
and if we ignore the non-linear term of (1), it is easy to get

(38) uy(kz — vt) = neos[kz — (ak® + Bk°)1)

that represents a solution of the linear problem. In the case of small amplitudes 5
this “linear” solution could be improved by the asymptotic development (to a given
in advance order s > 2) of u(x,t) and the phase velocity with the small amplitude

(39) u(z,t) = nui(8) + n2ua(8) + - -+ n°us(8), 8 =kz—ut,

(40) v(n) =vo+nvr +nva+ -+ 9" oy

Substituting (39) and (40) in (1) and making equal the functions and expressions
in front of the identical powers of 1, we obtain a recurent system of s ordinary
differential equations for determining un(4), n = 1,2,...,s; v;(n), 7 = 0,1,..,,
s—1:

(41) B u®) — ak®u® + vou!, = pa(0), n=1,2,...s,
where ¢, (0) are known for every n =1,2,...,s:
n—1
(42) on(0) = 3 {~vn_yuis(6) + (3k/8)[u; (Bus—; ()}
j=1
It is not difficult to prove by induction that the solution of the system (41) repre-

sents a finite Fourier series

n
(43) un(f) =Y Anjcos(j8), n=1,2,...,s,

J=1
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where An; are constants. The periodicity of the solution (39) with period 2« is
evident. The elimination of the resonant terms for each separate equation is a
delicate moment in solving the system (41). This can be realized thanks to the fact
that for the j-th series the unknown function is u;(6), v;—1. The last have to be
defined properly, so to have the coefficient in front of the secular term equal to zero
for every j = 2,3,...,s. Here are the first several terms of the asymptotic solution
of (1) according to (39) and (43):
_ o [ 3k cos(26) 27k? cos(3t9)

(44)  wu(z,t,n)=ncosh+n [ 1702 ] [ 32/(3)f ]

3

4 27Tk3 [cos(46) 3\ cos(26)
g e () T (ﬂm ﬂa)] -
and the phase velocity v is of the form

5 3 L

(45) () = (B8 + k) = | o]
where f(n) = fk®(n® —n) — ak3(n® —n), n=1,2,...,s

The 27-periodic solution obtained in (44) and (45) shows also the dependence
of the waves amplitudes on the dispersion parameters o and §. These waves just
like the biperiodic ones obtained in (20) could be in two diréctions. Really, when the
amplitudes are small (0 < < 1), the sign of v is determined by vy = k% + ak3.
If the dispersion of the medium is positive (& < 0, # < 0), then v < 0, and
hence the waves will propagate in the negative direction of the real axis. When the
dispersion is negative (a > 0, # > 0), then within O(n) the sign of v is positive
and the wave propagation is in the positive direction of the real axis. Concluding,
we will mention that the solution given in the form (39) could be interpreted as a
finite Fourier series for a periodic wave pack.

+0n3 4,

7..CONCLUDING REMARKS

Finally, we shall comment in brief the conditions under which the analytically
obtained different classes of solutions of the dispersion eq. (1) have been realized.
Apparently, the boundary periodic waves, obtained in (20), can be generated in
an arbitrary chosen o (we suppose § > 0 according to Section 2), i.e. both for
the negative dispersion (o > 0, # > 0) and for the mixed type (o < 0, 8 < 0),
when € > 0 is chosen properly, so that the inequality (18) to be fulfilled. Periodic .
waves with bounded amplitudes can be generated in the appropriate dispersive
medium. Their phase velocity will depend both on the dispersive medium (i.e. on
v = a/+/P) and on the choice of ¢ > 0, and the wave number according to (12) and
the amplitudes will vary proportionally to e; and es.

Obviously, the solitary waves, given by (29), are possible to exist on consid-
erably more bounded conditions. If £ > 0 is arbitrary, then a restriction for v is
given by the inequality (26), where ¢ is an whichever positive root of (24) and, vice
versa, if 7 is arbitrary, then the wave number is restricted by (26), i.e. in return for
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the lengths of the solitary waves. The phase velacity of the solitary waves differs

from the one of the periodic waves, as it was shown in Section 3.

In Section 4 it was ascertained that solitone waves can develop only in disper-

sive medium for which # = 0 and o # 0 is arbitrary.

As asecond boundary case of the solitary waves is the localized rational solution

determined in Section 5, having movable two-fold peculiarities.

If we suppose small amplitudes of the waves evolving according to (1), then the
periodic waves could be considered as a finite Fourier cosine series that represents

in fact Stokes’ waves.

APPENDIX A

((2) = 6A4p°(2,G2,G3) + Bp(z, G2, G3) — AG, /2,

(3(2) = 36474 (2, G, Gs) + 124B° (2, G2, Ga) + (B2 - 642G,)¢? (2, G2, Ga)
— ABGp(z,G2,G3) + A2G§/4r

2 <
Tzc = 1204¢° (2, G2, Gs) + (6B — 184G3)p(z, G2, Gs) — (124Gs + BG2/2),
¥4 . .
dt '
d_f = 5040Ap* (2, G2, G3 ) + 36(B — 284G2)p? (2, G2, G3) - 720AGsp(z, G2, Gs)
4

~ 3G,(B - 34G,).
APPENDIX B

2yt
27k12

D(k,v) = Q%/4 + (137" /3K°)°.

Qk,y) =

(k2 (u1k — pov)(18u2y — p1k* + uovk®) — 2u3+%],
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